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Abstract. This paper presents a novel structural damage detection method with a new damage index
based on the statistical moments of dynamic responses of a structure under a random excitation. After a
brief introduction to statistical moment theory, the principle of the new method is put forward in terms of
a single-degree-of-freedom (SDOF) system. The sensitivity of statistical moment to structural damage is
discussed for various types of structural responses and different orders of statistical moment. The formulae
for statistical moment-based damage detection are derived. The effect of measurement noise on damage
detection is ascertained. The new damage index and the proposed statistical moment-based damage
detection method are then extended to multi-degree-of-freedom (MDOF) systems with resort to the least-
squares method. As numerical studies, the proposed method is applied to both single and multi-story shear
buildings. Numerical results show that the fourth-order statistical moment of story drifts is a more
sensitive indicator to structural stiffness reduction than the natural frequencies, the second order moment
of story drift, and the fourth-order moments of velocity and acceleration responses of the shear building.
The fourth-order statistical moment of story drifts can be used to accurately identify both location and
severity of structural stiffness reduction of the shear building. Furthermore, a significant advantage of the
proposed damage detection method lies in that it is insensitive to measurement noise.
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1. Introduction 

Civil engineering structures begin to deteriorate once they are built and continuously accumulate

damage during their service life due to harsh environment such as corrosion, earthquake, and

typhoon. Vibration-based structural damage detection methods have therefore attracted considerable

attention in recent years for assessment of integrity and safety of complex civil engineering
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structures. Most of currently-used vibration-based structural damage detection methods are built on

the idea that the measured modal parameters or the parameters derived from these modal parameters

are functions of the physical properties of the structure and, therefore, changes in the physical

properties will cause detectable changes in the modal parameters (Doebling et al. 1998). 

The changes in modal parameters (damage indices) commonly used in vibration-based structural

damage detection include natural frequency changes, mode shape changes, mode shape curvature

changes, flexibility matrix changes, and modal strain energy changes (Xu et al. 2004, Kim et al.

2006, Zhao and DeWolf 2007). These damage indices are often estimated experimentally from the

structural response time histories measured before and after the changes in physical properties of a

structure. However, the structural damage typically is a local phenomenon, and the change of

natural frequency has low sensitivity to local damages (Salawu 1997). Furthermore, natural

frequency is a global property of the structure and it generally can not provide spatial information

about damage location. The damage indices based on mode shape changes or those derivatives can

give the spatial information on damage location in theory. However, they may not be effective and

reliable in consideration of the number of sensors required and the measurement noise arising from

the environment conditions during the test, and they generally do not provide the information

regarding damage severity (Pandey et al. 1991, Farrar and Jauregui 1998). Alvandi and Cremona

(2006) assessed various damage indices and concluded that the modal strain energy is less affected

by measurement noise. However, even for the modal strain energy method, a 3% noise level is

considered as a high level of noise which already makes it difficult to identify damage location of a

structure. Another class of damage detection methods is based on the updating of structural modal

matrices to reproduce as closely as possible the measured static or dynamic response of a structure

(Link 2001). However, the measured structural responses are always contaminated by measurement

noise but model updating exactly reproduces the contaminated structural responses. The results of

damage detection from the model updating may thus become unreliable. 

In view of the aforementioned studies, it can be seen that although vibration-based damage

detection methods and modal updating methods have demonstrated various degrees of success, the

damage detection of civil structures still remains a challenging task. The main obstacles are the

insensitivity to local/minor structural damage for the methods based on modal properties

(particularly modal frequencies) and the high sensitivity to measurement noise for the methods

based on derivatives of modal parameters and the model updating methods which might be sensitive

to local/minor structural damage. The high sensitivity to measurement noise also inheres in the new

group of damage detection methods recently developed in the time domain or the time-frequency

domain (Sohn et al. 2003, Cho et al. 2004, Chen and Xu 2007). Therefore, efficient and effective

damage detection methods which are sensitive to local/minor structural damage but insensitive to

measurement noise need to be pursued.

The purpose of this study is to explore a new damage detection method which is based on the

statistical moments of dynamic responses of a structure under a random excitation with the

expectation of being sensitive to minor structural damage and at the same time insensitive to

measurement noise. With brief introduction of statistical theory, the principle of the new method is

presented through a single-degree-of-freedom (SDOF) system. The sensitivity and noise issues of

the proposed method are discussed in relation to various response types and different orders of

statistical moment used. The new method is then extended to MDOF system in which the least

square optimization technique is used to update stiffness of the system from the measured statistical

moments. Numerical studies are presented to demonstrate the feasibility and accuracy of the new
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method in detecting damage location and evaluating damage severities.

2. Statistical moment theory 

To introduce the statistical moment-based damage detection method, a brief review of statistical

moment theory is presented here. For a linear structural system, if the excitation is a stationary

Gaussian random process, then the structural response is also a stationary Gaussian random process

(Meirovitch 1975). 

The probability density function (PDF) of a structural response x of Gaussian distribution can be

expressed by

 (1)

where p(x) is the PDF of structural response x; σ is the standard deviation of structural response;

and  is the mean value of structural response. The nth-order statistical moment of structural

response can be given in terms of PDF by the following integrals

 (2)

In general, the odd moments relate to information about the position of the peak of probability

density function in relation to the mean value while the even moments indicate the characteristics of

the spread of the distribution. Fig. 1 shows variations of probability density function with variance

of a zero-mean structural response of Gaussian distribution. It can be seen that for a large variance,

the curve tends to be flatter and more spread out. Therefore, the shape of probability density

function depends on the value of even statistical moments. Let us focus on even statistical moments

up to sixth order for structural damage detection. For a structural response of Gaussian distribution,

some relationships exist between the even statistical moments and the variance:
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 (4)

 (5)

The differentiation of Eqs. (3), (4) and (5) with respect to the standard deviation σ then yields

 (6)

 (7)

 (8)

The above expressions reveal that the relative changes in higher even statistical moment possesses

higher sensitivity to the relative change in the standard deviation of a structural response. A more

general approach to calculate the statistical moments of the measured structural response whenever

it fits the Gaussian distribution or not is to use summation-type relationships as follows (Martin

1989)

 (9)

 (10)

 (11)

 (12)

where N is the data point in a structural response time history recorded.

3. Statistical moment-based damage detection method for SDOF system 

Structural damage such as stiffness losses in a structure will cause changes in both statistical

moments and probability density function of the structure under random excitation. Therefore, the

changes in statistical moments, particularly higher even statistical moments, may be sensitive to

structural damage. In this regard, the principle of statistical moment-based damage detection method

is put forward in terms of a SDOF system in this section. The sensitivity of statistical moments to

structural damage is first discussed for different types of structural responses and different orders of

statistical moments. The formulae for statistical moment-based damage detection are then derived.

The effect of measurement noise on damage detection is finally ascertained. 
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3.1 Statistical moments

Let us consider single-story shear building under zero-mean white-noise ground acceleration of

Gaussian distribution as shown in Fig. 2(a). Considering only linear-elastic structural system, the

equation of motion of the shear building can be expressed as

 (13)

or

(14)

where m, c and k are respectively the mass, damping coefficient and stiffness coefficient of the

building; x,  and  are respectively the relative displacement, velocity and acceleration responses

of the building to the ground;  is the white noise ground acceleration; ξ is the damping ratio of

the building; and ωo is the circular natural frequency of the building and it is equal to . If a

structure is a linear system, the power spectrum S(ω) and the variance σ2 of the structural response

can be obtained by

(15)

(16)

where  is the power spectrum of ground excitation; and  stands for the frequency
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S0 over the whole frequency zone from  to . For a SDOF system, the module of the

displacement FRF, , the velocity FRF, , and the acceleration FRF, , can be

obtained as follows

 (17)

 (18)

 (19)

Substituting Eq. (17) to Eq. (15) and then Eq. (16) leads to the variance or second-order moment

of displacement response . 

 (20)

In a similar way, the variance or second-order moment of velocity,  and acceleration,  can

be obtained as follows 

 (21)

 (22)

The fourth-order and sixth-order moments of displacement, velocity and acceleration can then be

given as 
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3.2 Sensitivity analysis

Based on Eqs. (21) to (28), the following sensitivity equations can be derived:

(29)

(30)

(31)

From the above equations, it can be observed that the relative changes of the statistical moments

of displacement and velocity are negatively proportional to the relative change of stiffness while the

relative change of the statistical moment of acceleration is positively proportional to the relative

change of stiffness. The ratio of the relative change of the second-order, fourth-order and six-order

moments of displacement to the relative change of stiffness are always three times of the

counterparts of velocity and acceleration positively or negatively. This result reflects that the relative

change of the statistical moment of displacement is two times more sensitive to the relative change

of stiffness than those of velocity and acceleration. Thus, only the statistical moment of

displacement is examined in this study. Furthermore, it can be observed that the relative change of

higher order moment of displacement is more sensitive to the relative change of stiffness. 

3.3 Damage detection

Based on Eqs. (20), (23) and (26), the stiffness of the structure can be obtained from the second-

order, fourth-order, and sixth-order statistical moments of displacement response, respectively.
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 (35)

In the above, the symbol ‘^’ represents ‘estimated’ in contrast with ‘theoretical’. The superscript

‘u’ and ‘d’ stand for ‘undamaged’ and ‘damaged’, respectively.

3.4 Effect of measurement noise

There are many sources causing measurement noise to pollute desirable signals during either

laboratory tests or field measurements of civil structures. The type and intensity of measurement

noise depend on the type and size of a structure, the measurement system, and the environment

surrounding the structure. In this numerical study, the measurement noise is assumed to be white

noise, indicating that the measurement noise is caused by many sources of equal importance. The

measurement noise intensity is defined as the ratio of the root mean square (RMS) of measurement

noise ε to the RMS of displacement response x.

 (36)

The effect of measurement noise on damage detection is measured in terms of the noise effect

ratio γ.

 (37)

where  is the identified structural stiffness with considering the effect of measurement noise while

 is the counterpart without considering the effect of measurement noise. By defining the structural

response with measurement noise as y, there is a relationship
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(43)

where kn is the theoretically identified stiffness with considering measurement noise; and k is the

corresponding stiffness without considering measurement noise. It can be seen that the theoretical

noise effect ratio is only 1.47% even at the noise intensity of 15%. This result indicates that the

statistical moment of displacement response is not sensitive to measurement noise.

4. Statistical moment-based damage detection method for MDOF system 

In this section, the statistical moment-based damage detection method is extended to a MDOF

system. Let us consider an N-story linear shear building subjected to ground acceleration  as

shown in Fig. 2(b). The lumped mass, horizontal stiffness coefficient, and structural damping

coefficients of ith story of the building are denoted as mi, ki and ci, respectively, where i = 1,

2,…, N. The equation of motion in the matrix form for this shear building can be expressed as

 (44)

where M, C and K are the mass matrix, damping matrix and stiffness matrix of the building

structure, respectively;  and  are the acceleration, velocity and displacement response

vectors relative to the ground, respectively; and I is the column vector with all its elements equal to

unity. The ground acceleration  is taken as zero-mean white noise ground excitation whose power

spectral density is a constant S0. By adopting the Rayleigh damping assumption, Eq. (44) can be

decoupled through the following transformation:
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superposition method and taking the Fourier transform, the Fourier transform of the displacement

response xi of the ith floor can be obtained 

 (48)

(49) 

Because story drifts are directly related to horizontal stiffness reduction, the statistical moments of

story drifts other than floor displacements are considered in this section. The Fourier transform of

the ith story drift can be obtained by
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The power spectral density (PSD) function of the ith story drift  can be expressed as
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horizontal stiffness. Therefore, the ith-order moment vector of story drift, denoted as Mi(i = 2, 4, 6),
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 (58)

Ideally, if the given stiffness vector k is equal to the actual value, the 2-norm of the residual

vector, , will be zero. Practically, the optimal stiffness vector can be identified by the least-

squares method, that is, giving k an initial value and minimizing . Thus, the statistical

moment-based damage detection method for a MDOF system can be carried out in the three stages:

(1) the statistical moments of story drifts are estimated by the measured displacements for

undamaged and damaged building respectively; (2) the structural stiffness vector is identified by the

least-squares method for the undamaged and damaged building respectively; and (3) the structural

damage including damage existence, location and severity can be detected by comparing the

identified stiffness vector k
u for the undamaged building with the identified stiffness vector k

d for

the damaged building. To investigate the effect of measurement noise on the statistical moment-

based damage detection, the measurement noise can be added to the measured displacement

response vector. The contaminated displacement response vector is then used to estimate the

contaminated statistical moment vector to obtain the stiffness vector. The noise effect is finally

assessed in a similar way to the SDOF system.

5. Numerical example of SDOF system

5.1 Numerical model 

A three-story shear building model used by Zhao et al. (2005) will be utilized as an example

building model in next section to demonstrate the effectiveness of the statistical moment-based

damage detection method for MDOF systems. To be consistent with this building model, the mass

and horizontal stiffness of single-story shear building model (see Fig. 2), which will be discussed in

this section, are taken as 230.2 kg and 5.46 × 105 N/m, respectively. The damping ratio is 1%. The

ground excitation is taken as a zero-mean white-noise stationary process. The duration of the ground

excitation time history is 1000s with the sampling frequency of 256 Hz. The ground excitation time

history is generated using the method of digital simulation of a random process developed by

Shinozuka and Jan (1972). The excitation time history generated is ergodic regardless of the number

of frequency intervals. This makes the method directly applicable to a time domain analysis in

which the ensemble average can be evaluated in terms of the temporal average. Note that the

simulated process is of Gaussian distribution by virtue of the central limit theorem. Fig. 3 presents

the attributes of a simulated band-limited white Gaussian excitation, which includes its time history,

power spectrum density and probability density distribution. It can be seen that the intensity of the

power density function (PDF) is 2.18 × 10−3(m/s2)2/Hz within a frequency band from 0.5 Hz to

70 Hz. 

5.2 Sensitivity of PDF to structural damage

The sensitivity of PDF of different responses of the building to structural damage severity is

numerically investigated. The displacement, velocity and acceleration responses of the building with

different stiffness k0, 0.98k0, 0.95k0, 0.90k0, 0.80k0 and 0.70k0 are computed for the same ground

excitation. These stiffness coefficients represent different damage severities, that is, 0%, 2%, 5%,

F k( ) Mi k( ) M̂i–=

F k( ) 2

F k( ) 2
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10%, 20% and 30%, correspondingly. The reduction in horizontal stiffness of a shear building

structure can be seen as the real damage of either bracing system or shear wall of a building

structure. The displacement, velocity and acceleration response time histories are then used to

compute their PDF curves. The PDF curves are finally fitted by the Gaussian PDF curves and

shown in Figs. 4(a), (b) and (c) for displacement, velocity, and acceleration responses, respectively,

in which DS stands for damage severity. 

Fig. 3 Simulated ground excitation
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It can be seen that the PDF curves of displacement and velocity responses become flatter with the

increase of structural damage severity but the PDF curves of acceleration responses show the

contrary phenomenon. With reference to Fig. 1, one may conclude that the statistical moments of

displacement and velocity responses get bigger with the decrease of structural stiffness but those of

acceleration responses become smaller. Furthermore, the PDF curves of displacement responses

present more apparent and consistent changes with respect to different damage severities than those

of velocity and acceleration responses. Accordingly, the PDF curve of displacement response is

more sensitive to structural damage severity than those of velocity and acceleration responses. These

results are all consistent with the previous conclusions drawn from theoretical analysis given in

Section 3.2. The displacement responses will be therefore utilized hereinafter in order to effectively

conduct damage detection.

 

5.3 Sensitivity of statistical moments to structural damage

As mentioned above, changes in the structural stiffness values are clearly illustrated in the PDF of

displacement responses which would take the form of well known Gaussian bell shaped curve for a

Fig. 4 Probability density functions of different responses for different stiffness values
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linear SDOF structural system under the ground excitation of zero-mean white noise. The

theoretical second-order, fourth-order and sixth-order statistical moments which represent the

characteristics of distribution are now computed for the undamaged building and the damaged

building with the stiffness reduction of 2%, 5%, 10%, 20% and 30% (Scenario 1 to Scenario 5)

respectively using Eqs. (20), (23), and (26), respectively. The corresponding circular frequencies of

the undamaged building and the damaged building are also computed. The theoretical circular

frequency and the theoretical second-order, fourth-order and sixth-order statistical moments of the

undamaged building are donated as  and , respectively. The counterparts of the

damaged building are donated as  and , respectively. The change ratios of these

values to those of the undamaged building are listed in Table 1. It can be seen that statistical

moments are more sensitive to structural damage than circular natural frequency. Furthermore, it can

be seen that higher-order statistical moment is more sensitive to structural damage than lower-order

moment. This has also been theoretically interpreted in Section 3.2. It seems that the higher-order

statistical moment would be a good index for structural damage detection. However, the statistical

moments are random variables in the actual numerical calculation due to the effects of limited time

duration and the transitory unstable dynamic responses at the initial stage. It is, therefore, necessary

to investigate the stability of higher statistical moment value. To this end, 20 ground acceleration

time histories are generated randomly and then exerted on the undamaged structure. The statistical

moments of displacement response are computed. The mean value and standard deviation of 20

statistical moments and then the coefficient of variation δ are calculated.

(62)

where  is the standard deviation of the ith statistical moment and  is its mean

value. The results show that the coefficients of variance of the second-order, fourth-order and sixth-

order moments are 8.9%, 16.9% and 24.2%, respectively. The coefficient of variance is larger for

higher statistical moment. Namely, higher statistical moment is less stable. Therefore, as far as a

damage index is concerned, the fourth-order moment may be a good choice which represents a

compromise measure between sensitivity and stability. In the following study, the fourth-order

moments are adopted for damage detection. In addition, the stability of the identified structural

stiffness using the mean value of 20 fourth-order moments is also investigated. The mean value of

corresponding structural stiffness identified is 549880 N/m which only has a bias of 0.71% and the

coefficients of variance 0.42%, comparing with the true value. This promising result paves the way

for the following damage detection.
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Table 1 Change ratios of natural frequency and statistical moments (SDOF system)

Scenario  (%)  (%)  (%)  (%)

1 −1.00 3.08 6.25 9.52

2 −2.53 8.00 16.64 25.96

3 −5.13 17.12 37.17 60.66
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5.4 Damage detection results

In this section, the damage detection is carried out without considering the effect of measurement

noise. The identified stiffness from the fourth-order moment of displacement response of the

undamaged building, , is 547244 N/m, which is very close to the theoretical stiffness ku of

546000 N/m. The identified stiffness  from the fourth-order moments of displacement responses

of the damaged building, , is tabulated in Table 2 for Scenario 1 to Scenario 5. In the table, 

stands for the estimated fourth-order moment of the damaged building using Eq. (11) while  is

the theoretical value derived by Eq. (23) using the theoretical stiffness kd. The maximum difference

between the identified and theoretical stiffness among all the five cases is 0.88% only. The

identified damage severities for the five damage cases are 2.20%, 4.12%, 9.38%, 19.83% and

29.64%, which correspond to the theoretical values, 2%, 5%, 10%, 20%, and 30% respectively. It

can be seen that even for the damage severity of 2%, the proposed statistical moment-based damage

detection method produces a satisfactory result if measurement noise is not considered.

5.5 Effect of measurement noise

Random white measurement noises are now introduced into the structural displacement responses

to investigate the effect of measurement noise on damage detection. Five noise intensities are

considered and they are 1%, 2%, 5%, 10% and 15%, respectively. Table 3 displays the noise effect

ratio γ obtained for the aforementioned five damage cases and five noise intensities. As shown in

the table, the noise effect ratio is only related to noise intensity and has almost nothing to do with

damage severity. The measurement noise has only small effects on the damage detection. Even

when the noise intensity is as high as15%, the absolute γ values for the five damage cases are only

1.88%, 1.63%, 1.72%, 1.39% and 1.65%. 
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Table 2 Damage detection results and theoretical values (SDOF system)

Scenario
(10−13 m4) (10−13 m4) (N/m)

kd

(N/m)
 (%)  (%)

1 2.5516 2.5530 535218 535080 −2.20 −2

2 2.1644 2.2310 524683 518700 −4.12 −5

3 3.2873 3.3646 495871 491400 −9.38 −10

4 3.8272 3.8841 438702 436800 −19.83 −20

5 7.2024 7.3511 385054 382200 −29.64 −30
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Table 3 Noise effect ratio γ (SDOF system)

α Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1% −0.01% −0.01% −0.01% −0.01% −0.01%

2% −0.03% −0.03% −0.03% −0.03% −0.03%

5% −0.21% −0.19% −0.19% −0.13% −0.17%

10% −0.90% −0.80% −0.76% −0.57% −0.71%

15% −1.88% −1.63% −1.72% −1.39% −1.65%
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It can be concluded that the fourth statistical moment is a sensitive measure but it is insensitive to

measurement noise. By using the fourth moment as a damage index, the proposed statistical

moment-based damage detection method can provide not only reliable damage detection results but

explicit estimation of noise effects on damage detection results.

6. Numerical example of MDOF system 

In this section, the robustness of the statistical moment-based damage detection method is

numerically demonstrated based on the three-story shear building model mentioned before. Various

damage cases with different damage severities and locations are investigated by making use of the

inherent relationship between the fourth-order moments of structural responses and structural

properties. Random white measurement noises are also introduced into the structural responses to

investigate the effect of measurement noise on the damage detection quality. 

6.1 Numerical model 

The mass and horizontal stiffness coefficients of the three-story shear building model are

respectively 230.2 kg and 5.46 × 105 N/m for the first story, and 230.4 kg and 5.04 × 105 N/m for

the second and third story (Zhao et al. 2005). The mass of each floor is assumed to be invariant.

The first and second modal damping ratios are both taken as 1% and the third modal damping ratio

is taken as 1.24% according to the Rayleigh damping assumption. The ground acceleration is taken

as zero-mean white noise simulated by the aforementioned method. The duration of ground

acceleration time history generated is 1000s with the sampling frequency of 256 Hz. 

Listed in Table 4 are the values of the fourth-order moments for all the three stories of the

undamaged building, , obtained using Eq. (11). The identified stiffness values of the

undamaged building,  using the corresponding values of the fourth-order moments and

the least-squares method are also listed in Table 4. It can be seen that the identified horizontal

stiffness coefficients of the undamaged building  are very close to the theoretical values . This

lays down a good foundation for the coming damage detection.

6.2 Damage detection results: Damage severities 

The main purpose of this section is to demonstrate the effectiveness of the statistical moment-

based damage detection method for identifying damage severities of the three-story building. Five

single-damage cases with different damage severities in the first story are considered. The details of

the five damage cases are listed in Table 5 in which the theoretical stiffness values  and  of

the undamaged building are presented in Table 4. The theoretical damage severities are actually 2%,
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Table 4 Identified statistical moments and stiffness of undamaged building (MDOF system)

Story  (m4)  (N/m)  (N/m)

1 2.3732×10−12 552514 546000

2 1.3744×10−12 510059 504000

3 1.7623×10−13 509807 504000
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5%, 10%, 20% and 30%, respectively, in the first story of the building. 

For each damage case, the fourth-order moments of story drift are computed for each story of the

damaged building and then used to identify stiffness coefficients of the damaged building using the

least-squares method. With reference to the identified stiffness coefficients of the undamaged

building (see Table 4), the damage severities of each story are finally calculated for each damage

case. The results are listed in Table 6, in which the result from Scenarios 2 is also plotted in Fig. 5.

In comparison with the actual damage severities shown in Table 5, it can be seen that the identified

damage severities are quite close to the actual damage severities. 

6.3 Damage detection results: Damage locations 

To demonstrate the accuracy of the statistical moment-based damage detection method for

Table 6 Identified damage severities μ (%) for Scenarios 1-5 (MDOF system)

Scenario Story 1 Story 2 Story 3

1 −2.04 −0.04 −0.01

2 −5.53 −0.57 −0.50

3 −11.03 −1.16 −1.05

4 −20.20 −0.26 −0.23

5 −30.42 −0.61 −0.56

Table 7 Eleven more damage Scenarios 6-16 with stiffness  (MDOF system)

Scenario Story 1 Story 2 Story 3

6 0.95

7 0.90

8 0.90

9 0.98 0.98

10 0.90 0.95

11 0.90 0.90

12 0.95 0.90

13 0.80 0.90

14 0.70 0.90

15 0.90 0.70

16 0.95 0.90 0.80
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Table 5 Five single-damage Scenarios 1-5 with stiffness  (MDOF system)

Scenario Story 1 Story 2 Story 3

1 0.98

2 0.95

3 0.90

4 0.80

5 0.70
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identifying damage locations of the three-story building, 11 damage scenarios with combination of

various damage severities and locations are considered. The details of damage cases are presented in

Table 7 in which the theoretical stiffness values of the undamaged building  and  are

presented in Table 4. Scenarios 6 and 7 simulate single damage in the second story with damage

severities of 5% and 10%, respectively. Scenario 8 has single damage in the third story with

damage severity of 10%. Scenarios 9 to 15 simulate two damages at different stories with the same

or different damage severities. In Scenario 16, the three stories all have damage but with different

severities.

By using the same procedure as used in Section 6.2, the damage severities μ are identified for

each damage scenario and listed in Table 8. The identification results for Scenarios 7, 14 and 16 are

also plotted in Fig. 5. It can be seen that not only the damage severities can be found but also the

damage locations are detected at the same time except for the small damage scenarios of 2%

stiffness reduction in which the predicted damage severities are relatively less accurate.

6.4 Effect of measurement noise

To assess the effect of measurement noise on the damage detection of the three-story building,

white noises are added to the story drifts of the undamaged building. Two noise intensities, α = 5%

and 15%, are considered respectively. The fourth-order moments and horizontal stiffness coefficients

of the building are then calculated. The results are listed in Table 9. Compared with the results

presented in Table 4 for the scenarios without considering measurement noise, it can be seen that

the effects of measurement noise on the fourth-order moments and horizontal stiffness coefficients

k1

u
k2

u, k3

u

Table 8 Identified damage severities μ (%) for Scenarios 6-16 (MDOF system)

Scenario Story 1 Story 2 Story 3

6 −1.03 −6.00 −0.96

7 −1.05 −10.96 −0.69

8 −1.22 −1.23 −11.00

9 −3.29 −3.31 −1.21

10 −9.89 −4.89 0.03

11 −11.09 −11.12 −1.08

12 −0.34 −5.33 −10.27

13 −0.64 −20.51 −10.56

14 −0.46 −30.33 −10.37

15 −10.47 −0.52 −30.37

16 −5.90 −10.87 −20.70

Table 9 Identified statistical moments and stiffness of undamaged building with noise (MDOF system)

Story 
α = 5% α = 15%

 (m4)  (N/m)  (m4)  (N/m)

1 2.3858×10−12 553110 2.4781×10−12 544726

2 1.3809×10−12 510682 1.4380×10−12 502638

3 1.7703×10−13 510295 1.8438×10−13 502336
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Table 10 Identified damage severities μn (%) for Scenarios 2, 7, 11, 14 and 16 with noise intensity
   α = 5% (MDOF system)

Scenario Story 1 Story 2 Story 3

2 −5.74 −0.79 −0.71

7 −1.26 −11.16 −1.02

11 −11.27 −11.32 −1.28

14 −0.65 −30.47 −10.54

16 −6.14 −11.11 −20.89

Table 11 Identified damage severities μn (%) for Scenarios 2, 7, 11, 14 and 16 with noise intensity
  α = 15% (MDOF system)

Scenario Story 1 Story 2 Story 3

2 −5.43 −0.42 −0.35

7 −1.11 −10.96 −0.96

11 −11.25 −11.23 −1.20

14 −0.60 −30.39 −10.43

16 −6.19 −11.10 −20.90

Fig. 5 Damage detection results of Scenarios 2, 7, 14 and 16 with noise free
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are very minimal when noise intensity is changed from 5% to 15%. The white noises of the

aforementioned intensities are then added to the story drifts of the damaged building case by case.

Five scenarios listed in Table 5 or 7 are considered for the three story building. The identified

results with 5% and 15% measurement noise intensities are listed in Tables 10 and 11, respectively.

The four of the five scenarios with 15% measurement noise intensities are also plotted in Fig. 6.

Compared with the counterpart results without measurement noise, it can be seen that even the

measurement noise intensity is as high as 15%, it has only very little impact on the identified

damage results: the damage severities and damage locations can still be properly identified. The

robustness and reliability of the proposed method are demonstrated again.

7. Conclusions

A new structural damage detection method has been proposed in this study based on the statistical

moments of dynamic responses of a building structure under ground motion. The basic equations

for sensitivity analysis and damage detection have been derived. The proposed method has also

been applied to a single-story shear building as well as a three-story shear building with various

damage severities and damage locations and with/without measurement noise. It was found that the

Fig. 6 Damage detection results of Scenarios 2, 7, 14 and 16 with measurement noise
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relative change of the statistical moment of story drifts is two times more sensitive to the relative

change of building stiffness than those of velocity and acceleration. The relative change of second-

order moment of story drifts is more sensitive to the relative change of natural frequency of the

building. Furthermore, the relative changes of fourth-order and sixth-order moments of story drifts

are more sensitive to the relative change of the second-order moment of story drift, and the fourth-

order moment is more stable than the sixth-order moment. Therefore, the fourth-order moment of

story drift of a shear building has been proposed as a new damage index. It was also found from

the numerical examples that the fourth-order moments of story drifts could be used to accurately

identify both damage location and severity of the shear building. A significant advantage of the

proposed damage detection method lies in that it is insensitive to measurement noise. Even when

the measurement noise intensity is as high as 15%, the method based on the fourth-order moments

of structural responses still presents highly reliable results on detecting damage severity and damage

location. 

Nevertheless, at least two steps should be accomplished in the near future before the proposed

method is applied to real structures. A well-planed experimental investigation on the proposed

method shall be first conducted to confirm the feasibility and accuracy of the proposed method, in

which some issues such as structural damping assumption, measurement noise, and degrees of

structural responses can be further investigated. Secondly, the basic theory of the statistical moment-

based damage detection method presented in this paper shall be extended to more complicate

structures under more unrestricted excitations.
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