
Structural Engineering and Mechanics, Vol. 30, No. 3 (2008) 383-386 383

An efficient FE model for dynamic instability analysis of 
imperfect composite laminates

Anupam Chakrabarti†

Department of Civil Engineering, Indian Institute of Technology Roorkee, 
Roorkee 247667, India

(Received March 13, 2007, Accepted January 8, 2008)

1. Introduction 

The dynamic instability analysis of composite laminates is of considerable importance in which

the effect of shear deformation becomes very significant consideration mainly due to its laminated

configuration. The problem becomes more involved if some inter-laminar imperfection is found in

the form of weak bonding or otherwise. The instability of plates subjected to in-plane loads may

occur below the critical load of the structure over a range of excitation frequencies. The well-known

Hill’s method of infinite determinants is used for solving a system of Mathieu-type equation in the

present problem to predict the stability properties. Dynamic instability of plates under different in-

plane loads has been investigated by a number of different investigators in case of perfect interface

(Deolasi and Datta 1995, Chen and Yang 1990, Kwon 1991, Chattopadhay and Radu 2000).

However, no such studies based on Refined Higher order Shear Deformation Theory (RHSDT) are

found in the literature even in case of perfect composite laminates. In this paper attempt has been

made for the first time to study the dynamic instability of imperfect composite laminates using an

efficient finite element plate model based on RHSDT in combination with linear spring layer model

(Chakrabarti and Sheikh 2007). 

2. Formulation 

In the general formulation to model RHSDT and linear spring layer theory in the FE analysis

(Chakrabarti and Sheikh 2007), the element stiffness matrix [k], element geometric stiffness matrix

[kg] and element mass matrix [m] are evaluated for all the elements and assembled together to form

the overall stiffness matrix [K], geometric stiffness matrix [KG] and mass matrix [M] of the whole

structure. With these matrices, the equation of equilibrium for an elastic system undergoing small

displacements at the instant of buckling may be written as 
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(1)

In the above equation, the in-plane load factor P is periodic and may be expressed in the form 

(2)

where PS is the static portion of P, Pt is the amplitude of the dynamic portion of P with Ω as the

frequency of excitation. The buckling load Pcr may be used to express PS and Pt as follows

(3)

where α and β are static and dynamic load factors respectively. Using Eqs. (2) and (3) the equation

of motion (1) may be expressed as series of algebraic equations for the determination of instability

regions. Principal instability region, which is of practical importance leads to the dynamic instability

equation

(4)

The above eigenvalue solution give the value of Ω, which are the bounding frequencies of the

instability regions for the given values of α and β. Before solving the above equations, the

stiffness matrix [K] is modified through imposition of boundary conditions (Chakrabarti and

Sheikh 2007). 

3. Numerical examples 

Numerical examples on imperfect as well as perfect composite laminates under uniformly distributed

in-plane edge loadings are solved in this section using the proposed finite element plate model. 

3.1 Cross-ply square laminate simply supported at the four edges 

This is a problem of simply supported cross-ply (0/90/90/0) square laminate having imperfection

at the layer interfaces. The analysis is carried out by the proposed element using mesh sizes (full

plate) 16 × 16 taking h/a = 0.01, 0.05, 0.10, 0.20 and 0.25. In this problem, all the layers are of

same thickness and material properties (E1 = 40E, E2 = E, G12 = G13 = 0.6E, G23 = 0.5E and ν12 =

0.25). The imperfections at the layer interfaces are defined by the parameters:  =  = Rh/E

and  =  = 0.0 where the non-dimensional parameter R is varied from 0.0 to 1.2 (R = 0.0

represents perfect interface). The factors α and β are varied to identify the lower and upper

boundaries of the excitation frequency. The results obtained are presented in the form of excitation

frequency parameter, Ω =  in Table 1. The results presented in Table 1 show that the

excitation frequency decreases rapidly with the increase in the imperfection parameter (R). 

3.2 Simply supported square plate having three orthotropic layers 

A simply supported three layered square plate (h/a = 0.1) having imperfection at the layer
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Table 1 Excitation frequency parameters (Ω) of a simply supported square laminated composite plate (0/90/
90/0) subjected to uniform in-plane edge loading (Bi-axial) 

R β
 

Excitation frequency parameters, Ω 

α = 0.0 α = 0.2 α = 0.4 

Upper Lower  Upper Lower Upper Lower

Thickness ratio (h/a) = 0.01

0.0 0.3 40.357 34.696 36.680 30.341 32.591 25.245

0.5 42.075 32.591 38.562 27.909 34.696 22.264 

0.8 44.528 29.150 41.225 23.801 37.633 16.830 

0.2 0.3 40.207 34.567 36.544 30.228 32.470 25.151 

0.5 41.919 32.470 38.419 27.806 34.567 22.181 

0.8 44.362 29.042 41.072 23.713 37.493 16.767 

0.3 39.044 33.568 35.487 29.354 31.531 24.424

1.2 0.3 39.044 33.568 35.487 29.354 31.531 24.424

0.5 40.707 31.531 37.308 27.002 33.568 21.540

0.8 43.080 28.202 39.884 23.027 36.409 16.283 

Thickness ratio (h/a) = 0.20

0.0 0.3 23.220 19.963 21.104 17.457 18.752 14.525 

0.5 24.208 18.752 22.187 16.058 19.963 12.810 

0.8 24.335 16.772 23.719 13.694 21.653   9.683 

0.2 0.3 18.563 15.959 16.872 13.956 14.991 11.612 

0.5 19.353 14.991 17.737 12.837 15.959 10.241

0.8 20.481 13.408 18.962 10.948 17.310   7.741

1.2 0.3 11.218 9.645 10.196   8.434   9.060   7.018

0.5 11.696 9.060 10.719   7.758   9.645   6.189

0.8 12.378 8.103 11.459   6.616 10.461   4.678

Fig. 1 Instability region of a simply supported
laminated plate having orthotropic layers
(α = 0.0)

Fig. 2 Instability region of a simply supported
laminated plate having orthotropic layers
(α = 0.6)
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interfaces and subjected to in-plane bi-axial loading is studied here. The central orthotropic layer

has a thickness of 0.8h while each of the face layers is 0.1h thick. The material properties of the

orthotropic face layers are taken as multiple (Kt) of those of the central layer/core where the value

of Kt is taken as 5.0. The material properties used for the core are E22/E11 = 0.543, G12/E11 = 0.2629,

G13/E11 = 0.1599, G23/E11 = 0.2668, ν12 = 0.3. The imperfections at the layer interfaces are defined

by the parameters:  =  = Rh/E11 and  =  = 0.0 where the non-dimensional parameter R

is varied from 0.0 to 1.2 (R = 0.0 represents perfect interface); α and β are varied as before. The

results obtained for the excitation frequency parameters, Ω =  are presented in

Figs. 1 and 2 for different values of α (0.0 and 0.6). 
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