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Abstract. An oscillator of two lumped masses linked through a vertical spring moves forward in the
horizontal direction, initially at a certain height, over a horizontal Euler beam and descends on it due to
its own weight. Vibration of the beam and the oscillator is excited at the onset of the ensuing impact. The
impact produced by the descending oscillator is assumed to be either perfectly elastic or perfectly plastic.
If the impact is perfectly elastic, the oscillator bounces off and hits the beam a number of times as it
moves forward in the longitudinal direction of the beam, exchanging its dynamics with that of the beam.
If the impact is perfectly plastic, the oscillator (initially) sticks to the beam after its first impact and then
may separate and reattach to the beam as it moves along the beam. Further events of separation and
reattachment may follow. This interesting and seemingly simple dynamic problem actually displays rather
complicated dynamic behaviour and has never been studied in the past. It is found through simulated
numerical examples that multiple events of separation and impact can take place for both perfectly elastic
impact and perfectly plastic impact (though more of these in the case of perfectly elastic impact) and the
dynamic response of the oscillator and the beam looks noisy when there is an event of impact because
impact excites higher-frequency components. For the perfectly plastic impact, the oscillator can experience
multiple events of consecutive separation from the beam and subsequent reattachment to it. 

Keywords: jumping, moving oscillator, Euler beam, vibration, separation, impact.

1 Introduction

Vibration of an elastic beam and an oscillator of one mass-one spring or of two masses linked by

one spring that traverses a beam is an extensively studied problem (Fryba 1999, Pesterev and

Bergman 1997, Yang et al. 2000, Metrikine and Verichev 2001). A moving system of multiple

masses and springs representing a vehicle (Fryba 1968, Yang et al. 2004, Lou 2005) and a moving

flexible body (Ouyang and Mottershead 2007) were also studied in the very recent past. It is usually

assumed that the contact between the moving-oscillator and the beam is always maintained
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throughout its horizontal travel along the beam. This so-called moving-oscillator problem as a

special case of general moving load-problems has been solved and does no longer present any

difficulties, when constant contact is assumed. 

A few theoretical works indicated that separation between the moving object and the supporting

beam was possible (Fryba 1999, Lee 1995). Lee (1996) seems to be the first researcher that

investigated separation between a moving object and a supporting structure in the context of a

moving-mass problem. A known theorem in matrix theory (Meyer 2000) for the analytical

expression of inverting the time-dependent mass matrix of Lee’s moving-mass problem was

suggested by Pesterev and Bergman (1998). Although separation was considered by Lee (1996), the

reattachment of the moving mass to the beam after separation was very simplistic in that the impact

between the moving mass and the beam at the instant of reattachment was excluded. Cheng et al.

(1999) considered separation and in particular reattachment in their moving multi-degree-of-freedom

oscillator problem, which was the first investigation that considered both separation and

reattachment in a sensible way. The approach to impact at the reattachment was novel but quite

complicated. Stancioiu et al. (2008) considered separation and also suggested a simple approach to

impact at the reattachment in their study of a moving-oscillator problem. There are two major types

of complexities in the above investigations. One is the constant monitoring of separation and

reattachment and switching between two sets of equations for these two different regimes, and the

other is dealing with the reattachment. At reattachment, there is usually an impact because of the

different velocities of two colliding bodies (the oscillator and the beam), which is a sophisticated

branch of physics in its own right. So how to deal with impact, which may happen several times in

a moving-load problem (Stancioiu et al. 2008), is an issue of on-going research interest. Impact

excites higher frequencies and the velocity at the instant of impact is discontinuous. Moving-load

problems considering separation and reattachment belong to non-smooth dynamics systems and are

difficult to study.

In this paper, the vibration of a jumping oscillator and its induced vibration of the beam are

studied. When a vehicle runs downhill towards a bridge, if the travelling speed is high enough, it

may leave the ground for a brief moment and lands onto the bridge from the above. On the other

hand, if there is a ramp in front of a bridge, a fast travelling vehicle may also leave the ground

briefly and lands on the bridge with a vertical speed. Both situations can be described simplistically

by the present dynamic model. The most likely situation would be a shallow downward bend (for

example, due to soil settlement) in the road leading up to a bridge. Certain packaging processes in

which a robot arm regularly operates on objects on a moving conveyor belt also share some basic

features of this model.

If impact between the oscillator and the beam is assumed to be perfectly elastic, the oscillator hits

the beam and then bounces off repeatedly while it moves in the longitudinal direction of the beam.

This moving-load problem has not been studied in the past to the authors’ best knowledge. The real

impact should be between a perfectly elastic impact and a perfectly plastic one, the latter of which

was studied by Cheng et al. (1999) and Stancioiu et al. (2008). For the jumping oscillator studied in

this paper, there are more events of separation and impact-reattachment than the same moving

oscillator simply sliding along the beam. Therefore the numerical integration algorithm used in this

paper must be more accurate and be capable of capturing the instants of separation and reattachment

in a satisfactory manner. 
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2. Dynamic model

A moving oscillator, shown in Fig. 1, is initially at a vertical height of H above an Euler beam

and moves at a constant speed during its course of horizontal motion. Due to its own weight, it

gradually descends and hits the beam below, as shown in Fig. 2. Both the oscillator and the beam

then start to vibrate. More than one scenario is possible afterwards. The oscillator may bounce off

and continue to travel forward in the air, and then hit the beam again. And this process continues

until the oscillator leaves the beam. The oscillator may stick to the beam and moves along the beam

like a conventional moving-oscillator problem. Depending on the parameter values involved, the

oscillator may then continue its horizontal motion without separation, or may separate from the

beam throughout the rest of its horizontal journey, or may separate and then reattach to the beam

again and could have repeated events of consecutive separation and reattachment. All these possible

scenarios are studied in this paper. 

The equation of the transverse motion  of the beam under a concentrated contact force fc
(defined as positive when it is compressive) from the oscillator moving on the beam at constant

speed v is

(1)

where EI is the flexural rigidity and ρA is the mass per unit length of the beam. δ is Dirac’s delta

function. It should be noted that the horizontal motion of the force (from the oscillator) does not

w x t,( )

EI
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w x t,( )

∂x
4
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∂2
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---------------------+ fc t( )δ x vt–( )–=

Fig. 1 Moving oscillator

Fig. 2 Moving oscillator and a simply-supported elastic beam
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have to be of constant speed and may be an arbitrary known function of time t. When the oscillator

is not in contact with the beam, fc = 0, and both the beam and the oscillator undergo free vibration

during separation.

The transverse vibration of the beam may be expressed as a modal expansion below

(2)

where qj is the j-th modal coordinate and ψj is the mass-normalised j-th mode of the beam. ψ =

 and . T as a superscript stands for matrix or vector transpose.

The mass-normalisation of the beam modes means

,

where I is identity matrix of appropriate dimension and  denotes a diagonal matrix

composed of natural frequencies of the beam squared and ranked in ascending order. 

Substituting Eqs. (2) into (1) and further mathematical manipulation yield

or (3)

where the overhead dot in this paper represents the differentiation with respect to time t. 

The equations of the vertical motion for the sprung and unsprung masses of the oscillator are 

(4)

(5)

where  and  are the weights of the two masses, in which g is the

acceleration due to gravitation. 

When the oscillator is in contact with the beam, it is assumed that the vibration of the oscillator

and that of the beam at the contact point are equal, which is adopted in most moving-load

problems. Therefore whenever there is contact,

(6)

and hence

(7)

where the dash in the paper stands for the differentiation with respect to the horizontal coordinate x.

It should be pointed out that when the oscillator is not in contact with the beam,  is unrelated

to the velocity of the beam and must be found from Eqs. (4) and (5).
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3. Separation and reattachment

When the oscillator hits the beam from above, impact takes place. The equation of motion of the

beam under this impact at time tr in the modal coordinates, adapted from Stancioiu et al. (2008), is

(8)

where p is the impulse that occurs at the instant of the impact. It is crucial to derive the modal

velocity of the beam and the velocity of the unsprung mass immediately after the impact, as these

are the initial velocities for the ensuing vertical vibration that is different from the vertical vibration

before the impact.

Time-integration of Eq. (8) in the time-domain before and after the impact yields 

(9)

where  and  are the instant just before and just after the impact. It follows from Eq. (9) that 

(10)

For the moving oscillator, similarly

(11)

Eqs. (9) and (11) reveal that there is a discontinuity in the velocity of the unsprung mass and the

velocity of the beam at tr. The instant of impact tr should be captured accurately. Otherwise the

resultant error will propagate through numerical time-domain integration and lead to poor results

over time.

Combining Eqs. (9) and (11) gives

(12)

Two simplest types of impact, perfectly elastic and perfectly plastic, are studies below. In general,

an impact will be neither perfectly elastic nor perfectly plastic, but somewhere in between.

Interested readers may refer to Goldsmith (2001) for more general cases of impact. It was found

that different types of impact represented by different values of restitution coefficient had some

local influence on the dynamic response (Baeza and Ouyang 2008).

3.1 Perfectly elastic impact

If the impact is perfectly elastic, the total energy before and after the impact are the same. The

difference between these two energy values is then
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(13)

where  has been used in the mathematical manipulation of Eq. (13). Please

notice that just before and just after the impact the values of the beam’s potential energy are the

same and the values of the kinetic energy of the sprung mass are the same too, and therefore these

terms do not appear in Eq. (13).

Substituting Eqs. (12) into (13) and solving for  yields

(14)

and then from Eq. (12) one gets

(15)

Therefore the modal velocity  and the vertical velocity  of the unsprung mass at  can

be calculated form the modal velocity  and the vertical velocity  of the oscillator at .

At the point of impact, there is usually a velocity discontinuity by the amount of  and

 respectively. 

After the impact, the oscillator (unsprung mass) bounces off the beam at a newly gained vertical

velocity  as its initial velocity and the vertical motion of the unsprung mass is now governed

by

(16)

while the equation of motion for the sprung mass remains unchanged as Eq. (4). It should be

pointed out that the vertical displacements (motions) of the unsprung mass and of the beam are each

continuous throughout the entire time duration of interest and thus the displacements just after and

just before the impact remain the same and known. Numerical integration of Eqs. (4) and (16)

allows u(t) and z(t) to be found. Whenever u(t) approaches  again at a later time, a new

impact takes place in general.

3.2 Perfectly plastic impact

When the impact is perfectly plastic, the unsprung mass sticks to the beam immediately after the

impact and hence acquires the same displacement and the same vertical velocity of the beam at .
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(17)

Substituting Eqs. (12) into (17) and noticing that  (displacements are always

continuous) and effectively , one can derive

(18)

and

(19)

After the impact, the unsprung mass attaches to the beam and vibrates at vertical initial velocity

 given in Eq. (18). Eqs. (3)-(5) must then be solved together by numerical integration. The

value of  must be constantly checked for possible separation again, which occurs whenever

 drops to zero. 

Whether the impact is perfectly elastic or perfectly plastic (or any sort of impact), separation and

reattachment must be constantly monitored. Quite often the chosen time steps will not allow an

exact hit at the instant of separation or instant of reattachment at the end of a time step. If during a

time step separation or reattachment is found to have taken place, time t must go back to the

beginning of this time step and a new (smaller) time step must be used in the numerical integration,

so that at the end of this new time step separation or reattachment happens to occur (within a small

acceptable error). This new time step is predicted using the idea put forward by the second author

of the paper and his colleagues (Ouyang et al. 1999). There are two different sets of dynamic

equations for these two different regimes (in contact or in separation). This non-smooth dynamic

problem takes time to compute and the numerical integration algorithm must be capable of

capturing these crucial instants accurately. 

Another point to be made is that during perfectly plastic impact, a small amount of energy will be

lost. This energy loss should be very small as impact takes place within a very short time interval.

4. Numerical examples

A simply-supported beam with L = 15 m, I = 0.0003 m4, A = 0.03 m2, E = 2.1×1011 Pa and

ρ = 7500 kg·m−3, is considered. For the oscillator, mz = 1000 kg,  mu = 100 kg, k = (2π)2mz N/m.

Height H = 0.1 m. v = 10 m/s. Given this height and the horizontal velocity, the oscillator lands on

the beam at vt/L = 0.095. The damping factor ζ is defined as . The two masses together

are close to represent a small car.

The natural frequencies and modes of the unloaded beam are  and

 . The critical speed (Fryba 1999) of the beam, defined

as the lowest speed at which a moving force of constant magnitude will excite the supporting

structure into resonance, is . Numerical results of displacements are

presented in terms of the displacement ratios of  and , where the static mid-

span beam deflection . Values of different types of energy involved are also

shown.

u· tr
+( ) ∂w

∂t
------- v

∂w

∂x
-------+⎝ ⎠

⎛ ⎞

x vt
r

+

=

ψ
T

vtr
+( )q· tr

+( ) vψ′T vtr
+( )q tr

+( )+= =

q tr
+( ) q tr

–( ) q tr( )= =

vtr
+

vtr=

u· tr
+( )

muψ
T

vtr( )ψ vtr( )u· tr
–( ) ψ

T
vtr( )q· tr

–( ) vψ′T vtr( )q tr
–( )+ +

muψ
T

vtr( )ψ vtr( ) 1+
------------------------------------------------------------------------------------------------------------------------------=

q· tr
+( )

q· tr
–( ) muvψ vtr( )ψ′T vtr( )q tr

–( )– muψ vtr( )u· tr
–( )+

muψ
T

vtr( )ψ vtr( ) 1+
-----------------------------------------------------------------------------------------------------------------=

u· tr
+( )

fc t( )
fc t( )

c/2 kmz

ω j jπ/l( )2 EI/ρA=

ψj x( ) 2/ρAL sin jπx/L( )= j 1 2 3 …, , ,=( )

vcr ω1L/π 110.8 m/s= =

u vt( )/ wst w vt t,( )/ wst

wst Wz Wu+( )L3
/48EI=



376 Luis Baeza and Huajiang Ouyang

Fig. 3 Displacement ratios: --- ;  w(vt,
t)/

u vt( )/ wst

wst

Fig. 4 Energy values:  total energy; --- kinetic
energy;  elastic energy in the oscillator;

 gravitational potential energy.

.
––

...

Fig. 5 Velocity of the unsprung mass and corresponding velocity of the beam
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Case 1:  and assuming perfectly elastic impact. The results of displacement ratios, values of

various energy and velocities are given in Figs. 3-5.

The bounces of the oscillator during x = 0.1 and 0.4 m become smaller and smaller as the beam

deflects downward. This decreasing level of bouncing of the oscillator is due to the transfer of

kinetic energy from oscillator to the beam. When the beam starts to vibrate upward to meet the

oscillator moving downward at a later stage the bounces of the oscillator begin to increase in

general. It can be observed from Fig. 3 that the second large separation initiated at about vt/L = 0.6

is where the negative deflection of the beam quickly moves upwards towards its un-deformed

position of zero deflection and the stiffness of the beam quickly increases. The small-amplitude

ripples are high-frequency components excited by impact, giving the appearance of noise. Although

the responses at times look noisy, the energy is conserved, as seen in Fig. 4. This serves to validate

the model and the numerical results. 

Comparing the velocity of the unsprung mass with that of the beam at the corresponding horizontal

coordinate shown in Fig. 5 is interesting. The vertical rise or fall (five in total) in the zoomed view

indicates impact events in which the velocity of the unsprung mass always rises and that of the beam

always falls at any instant of impact, and the two velocity values are always different immediately

after impact. The latter is due to perfectly elastic impact assumed so that the two colliding bodies

always separate immediately after impact. In contrast, it will be seen later in Cases 2 and 3 that the

two velocity values become the same immediately after perfectly plastic contact. As there is repeated

switching from separation to impact, the numerical simulation takes time. 

Case 2: The same data as in Case 1 are used, but now perfectly plastic impact is assumed. The

results are shown in Figs. 6-8.

With the assumption of perfectly plastic impact, two events of impact are clearly seen in Fig. 6.

The second impact occurs when the beam vibrates upward after separation. As the oscillator

attaches to the beam after an impact, the dynamic responses become much smoother than those of

ζ 0=

Fig. 6 Displacement ratios: --- ;  w(vt,
t)/

u vt( )/ wst

wst

Fig. 7 Energy values:  total energy; --- kinetic
energy;  elastic energy in the oscillator;

 gravitational potential energy

.
––

...
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Case 1 of perfectly elastic impact. In another word, fewer events of impact or less hard impact (that

is, smaller difference in the two velocity values of the colliding bodies just before impact) imply

less ‘noisy’ responses. As a certain amount of energy is lost during perfectly plastic impact, the

total energy level, shown in Fig. 6, decreases (slightly) as the oscillator travels forward. The amount

of energy lost is very small as the total duration of impact is very short.

A closer look at the velocities (in the zoomed view of Fig. 8) reveals that underneath the

appearance of lack of activity between vt/l = 0.1 and 0.14, there are actually three events of impact-

reattachment. But as the impact is not hard due to a small velocity difference, its influence is

effectively not detectable unless zoomed in. Because of the perfectly plastic impact assumed, the

velocity of the unsprung mass stays identical to that of the beam for a while immediately after

impact. This behaviour is very different from that of perfectly elastic impact studied in Case 1.

Case 3: The same data as in Case 2 are used, except now with a higher  and

damping factor  (perfectly plastic impact). The results are presented in Figs. 9-11.

With a much higher spring constant of the oscillator there are more occurrences of bounce and

impact in the early stage of the horizontal travel of the oscillator but no further detectable separation

at later stage of the travel. The presence of the oscillator damping makes it less oscillatory and less

capable of bouncing off, leading to no apparent separation in the later stage of vibration. The beam

vibrates in more cycles. Due to the large damping, the total energy drops sharply to nearly zero.

There are only two occurrences of impact after the initial one from Fig. 9. Fig. 11 shows that this is

indeed the case. The oscillator and the beam maintain contact mostly during its horizontal travel.

k 20π( )2mz=

ζ 20%=

Fig. 8 Velocity of the unsprung mass and corresponding velocity of the beam
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Fig. 9 Displacement ratios: --- ;  w(vt,
t)/

u vt( )/ wst

wst

Fig. 10 Energy values:  total energy; --- kinetic
energy;  elastic energy in the oscillator;

 gravitational potential energy

.
––

...

Fig. 11 Velocity of the unsprung mass and corresponding velocity of the beam
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Fig. 12 Displacement ratios: --- ; u vt( )/ wst

w vt t,( )/ wst

Fig. 13 Energy values:  total energy; --- kinetic
energy;  elastic energy in the oscillator;

 gravitational potential energy

.
––

...

Fig. 14 Velocity of the unsprung mass and corresponding velocity of the beam
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Case 4: The same data as in Case 3 are used, except that the two masses are swapped as

mz = 100 kg, mu = 1000 kg and perfectly elastic impact is now assumed. The results are shown in

Figs. 12-14.

This seems to be the most complicated case so far. There are a number of events of separation

and impact. The dynamic response of the beam looks quite noisy because of those impact events

exciting high-frequency components. This is also reflected by the oscillating level of kinetic energy,

even though the total energy level is fairly smooth. The total energy decreases steadily due to

damping of the oscillator. Because of the definition of the damping factor as , effectively a

smaller damping of c in Case 4 than in Case 3 is used when  in both cases. 

As in the previous case of perfectly elastic impact the oscillator never sticks to the beam after

impact. It is fairly easy to pinpoint where impact takes place. In Fig. 14, there are three events of

impact where the velocity of the unsprung mass undergoes a jump.

Finally, the zoomed views of Figs. 5, 8, 11 and 14 should show one particular challenge of the

numerical procedure in which the displacements and velocities of the unsprung mass and the

corresponding location of the beam must be tracked in order to decide on whether there is

separation and more importantly impact. If there is separation, a different set of equations of motion

must be integrated. If there is impact after separation, on the other hand, new initial velocities of the

unsprung mass and the beam must be calculated and then the original equations of motion must be

integrated. 

5. Conclusions

In this paper, an oscillator, comprised of two masses connected through a vertical spring and

moving at a constant speed in the horizontal direction, drops onto an elastic beam with impact due

to its self-weight and excites vibration in itself and the beam. Two types of impact, perfectly elastic

and perfectly plastic, are considered and separation between the oscillator and the beam during

ensuing vibration is investigated. The effects of the masses, the spring constant and damping of the

oscillator on the vibration of itself and the beam, are studied through four numerical examples. It is

found the resultant dynamics of the oscillator and the beam is very complicated. When the impact is

perfectly elastic, a number of events of bouncing (separation) and impact may occur. When the

impact is perfectly plastic, several events (though fewer than in the perfect elastic impact) of

bouncing (separation) and impact may still occur. Whenever there is impact, the vibration looks

noisy because of excitation of high-frequency components. When there is damping in the oscillator

or the impact is perfectly plastic, there is a loss of total energy as the oscillator moves forward.
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