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Abstract. The purpose of this paper is to propose a simple analysis method of axial deformation of
base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to
the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is
introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated
buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the
tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii)
ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial
compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the
base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber
bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown
that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases
the limiting aspect ratio. 

Keywords: base-isolation; bound of building aspect ratio; analysis of axial deformation of rubber bear-
ing; recursive analysis; nonlinear uplift; base shear coefficient.

1. Introduction

It is usually recognized (e.g., see Kelly 1999, Naeim and Kelly 1999, Jangid 1995, Jangid and

Datta 1994, Jangid and Banerji 1998, Morales 2003, Kobori 2004, Takewaki 2004, 2005, 2008) that

base-isolation (BI) systems are very useful in reducing the acceleration and displacement responses

relative to base of buildings caused by earthquakes. BI systems were introduced in many buildings

and facilities after the Northridge earthquake (1994) and Hyogo-ken Nanbu earthquake (1995). It is

believed that BI systems are effective only for ground motions without long-period components. In

fact, most of the ground motions recorded in the USA include high-frequency components in

general, and long-period ground motions (Irikura et al. 2004, Kamae et al. 2004) have never been
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discussed except in a few cases, e.g. Landers in 1992 and Northridge in 1995 (Heaton et al. 1995,

Hall et al. 1995, Jangid and Kelly 1999). Even in these cases, the period range of the long-period

wave components, so-called pulse waves, is rather short (2-3s) compared to those (5-10s) discussed

in Japan.

BI systems are effective for low-rise stiff buildings and most of BI systems have been installed in

those buildings (Kobori 2004). However, not a few tall base-isolated buildings are being planned

and constructed in Japan (Ariga et al. 2006). In this situation, it may be meaningful to discuss the

bound of aspect ratio of tall base-isolated buildings and clarify the characteristics of such buildings

(Li and Wu 2006).

The purpose of this paper is to propose a simple analysis method of axial deformation of base-

isolation rubber bearings in a building subjected to earthquake loading and present its applicability

to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient

is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-

isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate

state of the tensile stress of rubber bearings based on a proposed recursive analysis for seismic

loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state

of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of overturning

moment at the base for seismic loading. A new simple recursive analysis method of axial

deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of

rubber bearings and it is shown that the relaxation of the constraint on ultimate state of the tensile

stress of rubber bearings increases the limiting aspect ratio. 

2. Definition of bound of aspect ratio

The definition of bound of aspect ratio is shown in Fig. 1. The plan of the building is given and

the size and location of rubber bearings are also prescribed. Then the ratio of the building height to

the building width is defined as the aspect ratio and its limiting value is found. The constraints on

the following three design conditions are considered here.

(i) The design condition on the compressive stress of rubber bearings under dead loads

(ii) The design condition on the tensile stress of rubber bearings under dead loads and seismic

disturbance (the limiting value of tensile stress is 1 N/mm2)

(iii) The design condition on the shear deformation of rubber bearings under seismic disturbance

The constraint on axial compressive stress of rubber bearings under dead loads and seismic

disturbance is assumed now to be satisfied. In fact, the control of the axial stress of rubber bearings

under dead loads and the tensile stress of rubber bearings under seismic loading enables one to

satisfy that constraint in a direct manner. If desired, this constraint can be added without difficulty.

The most direct method to obtain the bound of aspect ratio is to change the building height

sequentially and evaluate the above-mentioned design conditions. When one of the design

constraints is violated for the first time, that aspect ratio becomes the limiting value (bound). While

this procedure is direct, the check of the design condition (ii) is elaborate. For this reason, the base

shear coefficient is used as a key parameter in this paper and a simple analysis method is proposed

of axial deformation of base-isolation rubber bearings. An evaluation method is also proposed

simultaneously of the base shear coefficient under a design response spectrum. Its applicability to

the analysis of the bound of the aspect ratio of base-isolated buildings is discussed in detail.
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3. Seismic response evaluation method in terms of base shear coefficient

Consider an N-story shear building model, as shown in Fig. 2, supported by a base-isolation

system. The base-isolation system consists of a linear stiffness element (natural rubber bearing) and

a linear viscous damping element (oil damper), as shown in Fig. 3, in the horizontal direction. On

the other hand, the axial restoring-force characteristics of the rubber bearings of the base-isolation

system have different stiffnesses in the compressive and tensile stress regions. The stiffness in the

tensile stress region is one-tenth of that in the compressive region. 

Let mi, ki, ci, hi denote the mass, story stiffness, story damping coefficient and the story height of

the i-th story, respectively. The floor mass just above the base-isolation story, the stiffness and

damping coefficient of the base-isolation story and the story height of the base-isolation story are

denoted by m0, k0, c0, h0, respectively (see Fig. 3). Let x0 and xi denote the horizontal displacement

of the floor just above the base-isolation story and that of the floor in the (i+1)-th story. Then the

set of x0 and  is denoted by {x}. 

Let [M], [C], [K], {1} denote the mass, damping and stiffness matrices and the vector

consisting of N unities, respectively. In this paper, the lowest mode is used to transform the

MDOF model to an equivalent reduced SDOF model. The equations of motion for this model

may be expressed by

(1)

x1 … xN, ,

M[ ] x··{ } C[ ] x·{ } K[ ] x{ }+ + M[ ] 1{ }x··g–=

Fig. 1 Definition of bound of aspect ratio
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3.1 Transformation of MDOF model to SDOF model and the aspect ratio-base shear
coefficient relation determined from the design condition on tensile stress of rubber bear-

ings

If the building deformation can be described approximately by the lowest-mode only, the base

shear and overturning moment at the base can be expressed by

(2)

(3)

where M and H are the equivalent mass and the equivalent height of the equivalent SDOF model 

described by .  is the lowest-mode normal 

coordinate and  and β1 are the lowest-mode horizontal displacement and the participation factor

of the lowest mode. 

From Eqs. (2) and (3), the relation  holds. The aspect ratio-base shear coefficient

relation determined from the design condition on tensile stress of rubber bearings can then be

Q M q··0
1( )

x··g+( )=

Mov MH q··0
1( )

x··g+( )=

M β1Σi 0=

N
miui

1( )( ), H β1Σi 0=

N
mi hj

j 0=

i

∑ ui

1( )

⎝ ⎠
⎜ ⎟
⎛ ⎞

/M== q0

1( )

ui

1( )

Mov QH=

Fig. 2 Shear building model supported by a base-isolation system

Fig. 3 Shearing restoring force-deformation relation of a set of rubber bearings and damping force-velocity
relation of a base-isolation damper system
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obtained from this relation and the recursive analysis shown in Section 4.

3.2 Horizontal deformation in the base-isolation story

If the base shear coefficient CB is given, then the base shear can be expressed by

(4)

Eq. (2) can also be expressed as

(5)

Eqs. (4) and (5) provide

(6)

Let d denote the horizontal deformation in the base-isolation story. By keeping ,

 in mind, d can be expressed as

(7)

where g and ω1 denote the gravitational acceleration and the fundamental natural circular frequency

of the model. Eq. (7) provides the aspect ratio-base shear coefficient relation determined from the

design condition on horizontal deformation in the base-isolation story.

If desired, the P-Δ effect can be taken into account by decreasing the base-isolation story stiffness.

3.3 Aspect ratio-base shear coefficient relation determined from the design condition on

compressive stress under dead loads

This aspect ratio-base shear coefficient relation does not depend on the base shear coefficient and

can be evaluated directly from the total weight of the building and foundation and the total cross-

sectional area of rubber bearings.

3.4 Aspect ratio-response base shear coefficient relation

The building is designed based on the relation  of the fundamental natural period

T1(s) with the building height H(m). The fundamental mode of the building with a fixed base is

assumed to be a straight line and the story stiffnesses are determined via an inverse problem

formulation (Nakamura and Yamane 1986). Two models are used as the models for response

spectrum method in order to evaluate the response base shear coefficient; one is a 2DOF model

consisting of the SDOF building and the SDOF base-isolation system, the other is an SDOF model

transforming the total system into a single-degree-of-freedom system.

The schematic diagram of the procedure for evaluating the response base shear coefficient with

respect to the aspect ratio in terms of SDOF and 2DOF models is shown in Fig. 4. The detailed

explanation will be provided in Section 5. From this procedure, the aspect ratio-response base shear
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N
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coefficient relation can be derived.

4. Recursive analysis of rubber bearing axial deformation allowing the nonlinear

tensile behavior

It is usually believed that the nonlinear time-history response analysis is inevitable in order to

evaluate the nonlinear response of the base-isolation system under seismic disturbances. However, it

may be possible to develop a simple method of analysis of axial deformation of rubber bearings

which allows the nonlinear tensile behavior of rubber bearings. The nonlinear axial force-

deformation relation of rubber bearings is shown in Fig. 5. It is assumed that a special mechanism

(for example, a flat-type spring surrounded by a round wall) is incorporated in the base-isolation

system and the performance of horizontal resistance of rubber bearings remains unchanged even

after the stress of a rubber bearing goes into a tensile region. In other words, the horizontal

resistance of rubber bearings is guaranteed by the round wall even if the stress of a rubber bearing

goes into a tensile region. This mechanism has been invented in Japan for base-isolation.

Consider a simple model, as shown in Fig. 6, consisting of the axial springs representing rubber

…

Fig. 4 Schematic diagram of the procedure for evaluating the response base shear coefficient with respect to
the aspect ratio in terms of SDOF and 2DOF models

Fig. 5 Nonlinear axial stress-strain relation of rubber bearing
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bearings and the shear springs modeling connecting beams. Let n and 2l denote the number of

columns (and rubber bearings) in a frame of interest and the distance between the outer columns (or

outer rubber bearings). It is assumed that n is an odd number. Let  and k' denote the axial

stiffness of i-th rubber bearing from the left end (called i-th rubber bearing hereafter) and the

common shear stiffness of the beam, respectively. When the left-end rubber bearing goes into a

tensile range,  decreases and the small tensile stiffness is employed in that case. This model is

subjected to column axial forces .

Let Δyi denote the shear deformation of the connecting beam between the i-th column and (i+1)-th

column. The total axial deformation yi of the i-th rubber bearing consists of the component 

due to shear deformation of the connecting beam and that  excluding the

component of shear deformation of the connecting beam as shown in Fig. 7. The displacement

component  results from the rigid motion of the beam. The total axial

deformation yi of the i-th rubber bearing can be expressed by

(8a, b)

The overturning moment Mov at the base (the top level of the base-isolation system) has been

evaluated in Section 3.4. Given the overturning moment, the column axial forces  can be

related to the overturning moment.

(9)

k0′ i( )

k0′ 1( )
fi{ }

Σj 1=

i 1–

yjΔ
y i( ) yi Σj 1=

i 1–

yjΔ–=

y i( ) yi Σj 1=

i 1–

yjΔ–=

yi y
2 i 1–( )

n 1–
-----------------lθ yjΔ

j 1=

i 1–

∑ i 1≠( )+ +=

yi y                                         i = 1( )=
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-----------
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2

--------------------------fi
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n
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Fig. 6 Simple model consisting of axial springs modeling rubber bearings and the shear springs modeling
connecting beams

Fig. 7 Definition of total axial deformation yi of the i-th rubber bearing consisting of the component
 due to shear deformation of the connecting beam and that  excluding

the component of shear deformation of the connecting beam
Σj 1=

i 1–
yjΔ y i( ) yi Σj 1=

i 1–

yjΔ–=
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If the distribution of  is given, then the magnitude of  can be determined from Eq. (9).

The equilibrium equation in the vertical direction of the node above every rubber bearing may be

described in a recursive manner by

(10)

In addition, the equation of moment equilibrium around the top of the first rubber bearing can be

expressed as

(11)

The set of equilibrium equations, Eqs. (10) and (11), may be described alternatively as

(12)

(13)

The set of equilibrium equations, Eqs. (12) and (13), may be expressed compactly as
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(14)

Substitution of Eq. (12) into Eq. (13) and elimination of  lead to 

(15)

Incorporation of Eq. (15) into Eq. (14) provides

(16)

In the first cycle, all the stiffnesses  are assumed to be the stiffnesses in

compression. The axial stress of the left-end rubber bearing has a one-to-one correspondence with y.

Therefore, if the axial tensile strength of the rubber bearing is given, the corresponding

displacement y can be obtained. For the given aspect ratio and y, the corresponding base shear

coefficient, related with  in terms of the aspect ratio, and the other unknowns θ, 

can be obtained. In this way, the aspect ratio-base shear coefficient relation can be derived. It should

be noted that, if the axial deformation of the left-end rubber bearing is negative (in elongation), then

the stiffness  has to be changed to the stiffness in tension. This procedure has to be repeated

until all the combinations of the stiffness and the deformation are compatible.

5. Seismic response evaluation method

In this paper, a reduced SDOF model and another 2DOF model, as shown in Fig. 8, are used in
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Fig. 8 Reduced SDOF model and 2DOF model for evaluation of response base shear coefficient and response
overturning moment under seismic loading
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order to evaluate the response base shear coefficient and response overturning moment at the base

under seismic loading.

5.1 Building model

The plan of an N-story shear building model supported by a base-isolation system is shown in

Fig. 9 and the building parameters are explained in Table 1. The vertical and horizontal stiffness of

the natural rubber bearing of height 356.6 mm and diameter 800 mm are 2.93 × 109 N/m and

1.22 × 106 N/m, respectively. It is assumed that the horizontal stiffness does not change, but the

vertical stiffness becomes 1/10 of the original in the tensile stress range. The allowable compressive

stress of rubber bearings under dead loads is 14.7 N/mm2 and the allowable horizontal deformation

of rubber bearings is 0.48 m. The fundamental natural period of the building with a fixed base is

specified as 0.02 × H (s) where H is the height in meter of the building. The lowest mode of the

building with a fixed base is assumed to be a straight line and the story stiffnesses of the building

are computed from the inverse design method (Nakamura and Yamane 1986). The shear spring

stiffness of the standard foundation reinforced-concrete beam of 1000 mm × 1000 mm is 1.95 × 108

Fig. 9 Plan of model building

Table 1 Building parameter

Floor area of model 20 m × 5 m

Story height
base-isolation story 2 m

super-structure 4 m

Floor mass
base-isolation story 2400 kg/m2

super-structure 800 kg/m2

Fundamental natural period of building with 
fixed base (s)

0.02H (H:building height in meter)

Stiffness

base-isolation story total horizontal stiffness of rubber bearings

super-structure
determined from straight-line lowest mode for building with 

fixed base

Damping 
coefficient

base-isolation story damping ratio 0.1 for rigid super-structure

super-structure stiffness-proportional with lowest-mode damping ratio 0.05
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N/m and three other cases, 1.95 × 106 N/m; 1.95 × 109 N/m; 1.95 × 1011 N/m, are also treated.

The damping matrix of the building is assumed to be proportional to the stiffness matrix and the

lowest-mode damping ratio of the building with a fixed base is given by 0.05. The damping

coefficient of the base-isolation system is prescribed by giving the damping ratio as 0.1 for a rigid

superstructure. The total damping ratio of the whole system is evaluated by a modal approximation

method (Thomson et al. 1974).

5.2 Evaluation of overturning moment and base shear coefficient

5.2.1 Evaluation by SDOF model

Let SA1, M, H denote the acceleration response spectrum corresponding to the lowest mode, the

equivalent mass of SDOF model and the equivalent height of the equivalent mass of SDOF model.

The response overturning moment and response base shear coefficient can be expressed by

(17a)

(17b)

5.2.2 Evaluation by 2DOF model

Let SA1, SA2 and β1, β2 denote the acceleration response spectra and modal participation factors

corresponding to the lowest and second modes, respectively. The lowest and second-mode

component overturning moments  and the lowest and second-mode component base shear

coefficients  can be expressed by

(18a)

(18b)

Mov MHSA1=

CB SA1/g=

Mov

1( )
Mov

2( ),
CB

1( )
CB

2( ),

Mov

i( )
βiSAi m0u0

i( )
h0 M1u1

i( )
H1+( )=

CB

i( ) βiSAi m0u0

i( )
M1u1

i( )
+( )

m0 M1+( )g
--------------------------------------------------=

Fig. 10 Response overturning moment at the base with respect to the aspect ratio and the response base shear
coefficient with respect to the aspect ratio
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Then the response overturning moment and response base shear coefficient can be expressed by

(19a)

(19b)

In order to show the validity of the present response evaluation method, another model as a full

MDOF model has been used. A standard foundation reinforced-concrete beam of 1000 mm ×

1000mm is used. Fig. 10 shows the response overturning moment at the base with respect to the

aspect ratio and the response base shear coefficient with respect to the aspect ratio. It can be

observed that the SDOF model is an appropriate model for response evaluation of the base shear

coefficient and the overturning moment at the base.

Fig. 11 shows the comparison between the horizontal displacement of the SDOF model and the

horizontal displacement at the same height level due to the rocking of the connecting beam of the

proposed simplified model. By investigating the contribution of the horizontal displacement due to

the rocking of the base-isolation floor, the validity of the proposed model as a shear-type structure

can be shown. It can be understood from Fig. 11 that, if the aspect ratio is smaller than 6

approximately, the contribution of the horizontal displacement due to the rocking of the base-

isolation floor becomes smaller than 5% and the SDOF model ignoring the rocking displacement

can be used as an appropriate model.

6. Analysis of bound of aspect ratio

The principal purpose of this section is to clarify the effect of the nonlinear tensile behavior of

rubber bearings on the bound of aspect ratio. An SDOF model is used as a model for the seismic

response evaluation and it is assumed that the deformation can be described approximately by the

Mov Mov

1( )( )
2

Mov

2( )( )
2

+=

CB CB

1( )( )
2

CB

2( )( )
2

+=

Fig. 11 Comparison between the horizontal displacement of the SDOF model and the horizontal displacement
at the same height level due to the rocking of the connecting beam
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lowest-mode vibration component only. This assumption is well recognized in the structural design

practice of base-isolated buildings. The acceleration response spectrum for large earthquakes used in

Japan (2000) is employed and is shown in Fig. 12 for damping ratio = 0.05. That acceleration

response spectrum (in m/s2) for damping ratio = 0.05 can be expressed in terms of the natural period

T by

(20)

The acceleration response spectrum for damping ratio h is calculated by multiplying the coefficient

1.5/(1.0 + 10h) on the response spectrum for h = 0.05. This response spectrum is similar to the well-

known one (Newmark and Hall 1982). 

As for the distribution of column axial forces for seismic loading, the axial force of the left-end

column is four times that of the second column from the left. Furthermore, an anti-symmetric

distribution is assumed. It should be pointed out that, when the stress in a rubber bearing goes into

the tensile region, the distribution of column axial forces may change. It may be useful to discuss

the effect of the redistribution of these column axial forces on the limiting aspect ratio. The result is

shown in Appendix. It is concluded that the effect of the redistribution of these column axial forces

on the limiting aspect ratio is negligible within a restricted range.

Fig. 13 shows the relation of the aspect ratio with the base shear coefficient in the case where the

design condition on the ultimate state of tensile stress of a rubber bearing is active (satisfied with

equality) and the other design conditions are inactive (satisfied in inequality). Four foundation beam

stiffnesses are considered. The intersection of this active relation with the aspect ratio-response base

shear coefficient relation gives the limiting aspect ratio for the critical design condition. Two limit

values (0 and 1 N/mm2) of tensile stress of rubber bearings were employed. It can be observed that

the limit values 1 N/mm2 of tensile stress of rubber bearings can increase the bound of aspect ratio

SA 3.2 30T   T 0.16s<( )+=

SA 8.0   0.16s T 0.64s<≤( )=

SA 5.12/T   0.64s T≤( )=

Fig. 12 Acceleration response spectrum for large earthquakes used in Japan (2000) 
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remarkably. This implies that, when the stress in a rubber bearing goes into a tensile region, the

redistribution of stresses in the other rubber bearings occurs and this mechanism of stress

redistribution plays an important role in the increase of the bound of aspect ratio.

Fig. 14 illustrates the axial stress variation of five rubber bearings with respect to the aspect ratio

for two different connecting beam stiffnesses. It can be understood that, when the aspect ratio

becomes larger, the stress of the left-end rubber bearing goes into the tensile region. In addition, it

can also be observed that, if the connecting beam is stiff, the axial stress of the second rubber

Fig. 13 Relation of the aspect ratio with the base shear coefficient in the case where the design condition on
ultimate tensile state of rubber bearings is active (four cases of connecting beam shear stiffnesses
1.95 × 106 N/m, 1.95 × 108 N/m, 1.95 × 109 N/m, 1.95 × 1011 N/m)
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bearing from the left end is approaching to null. In other words, when the beam stiffness becomes

larger in case of allowing the nonlinear tensile behavior of rubber bearings, the inner rubber

bearings sustain the tensile stress and the tensile stress in the outer rubber bearings becomes smaller.

This means that, the stiffer the beams are made, the larger the bound of aspect ratio of tall base-

isolated buildings becomes.

Fig. 15 shows the variation of the column axial forces under seismic loading with respect to the

variation of the connecting beam. Fig. 15 presents the comparison of the limiting aspect ratios

between the case without the consideration of the vertical seismic loading and that with the

consideration of the vertical seismic loading (axial stress corresponding to 0.3 g is added). It can

Fig. 14 Variation of axial stresses of five rubber bearings with respect to the aspect ratio for two different
connecting beam stiffnesses

Fig. 15 Comparison of the limiting aspect ratio between the case without the consideration of the vertical
seismic loading and that with the consideration of the vertical seismic loading



366 J. Hino, S. Yoshitomi, M. Tsuji and I. Takewaki

be observed that the consideration of vertical seismic loading decreases the limiting aspect ratio.

7. Conclusions

 The conclusions may be summarized as follows:

(1) A recursive analysis method of axial deformation of base-isolation rubber bearings under

earthquake loading has been proposed by developing a simple model consisting of beam shear

springs and rubber axial springs subjected to equivalent seismic column axial forces. The

rubber axial springs have different stiffnesses in the compressive and tensile stress states. This

method enables one to take into account approximately the nonlinear tensile behavior of

rubber bearings without elaborate time-history response analysis.

(2) Once the stress of a rubber bearing goes into a tensile state, the seismic column axial forces

may change. However the effect of this change on the limiting aspect ratio is expected to be

small so long as the tensile stress is smaller than 1 N/mm2. This guarantees the validity to use

the same seismic column axial forces even for the nonlinear tensile behavior of rubber

bearings.

(3) Relaxation of the design condition on ultimate state of the tensile stress of rubber bearings, i.e.

from a null tensile stress to 1(N/mm2), increases the limiting aspect ratio.

(4) When the beam stiffness becomes larger in case of allowing the nonlinear tensile behavior of

rubber bearings, the inner rubber bearings sustain part of the tensile stress and the tensile

stress in the outer rubber bearings becomes smaller. This means that, stiffer the beams, larger

the bound of aspect ratio of tall base-isolated buildings.
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Appendix I: Effect of redistribution of column axial forces on limiting aspect ratio 

Fig. A1 shows a possible scenario of redistribution of column axial forces resulting from the nonlinear
tensile behavior of the rubber bearing at the left end. It is assumed that there is no additional vertical load and
overturning moment due to this redistribution of column axial forces. In other words, the additional column
axial forces denoted by dotted arrows are in self-equilibrium and have zero overturning moment. Fig. A2
presents the relation of the aspect ratio with the base shear coefficient for four redistribution cases of column
axial forces. The left column axial force decreases by 0%, 5%, 10% and 15% from the original value. These
values are derived from another static frame analysis under vertical and horizontal loading, shown in Fig. A3,
with respect to variation of stiffness of the connecting beam. It can be observed that the effect of redistribu-
tion of column axial forces on the limiting aspect ratio is very small.

Fig. A1 A possible scenario of redistribution of column axial forces resulting from the nonlinear tensile
behavior of the rubber bearing at the left end
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Fig. A2 Relation of the aspect ratio with the base shear coefficient for four redistribution cases of column
axial forces 

Fig. A3 Variation of the left-end column axial force under seismic loading with respect to the variation of the
connecting beam stiffness




