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Abstract. Structural pipe-in-pipe cross-sections have significant potential for application in offshore oil
and gas production systems because of their property that combines insulation performance with structural
strength in an integrated way. Such cross-sections comprise inner and outer thin walled pipes with the
annulus between them fully filled by a selectable thick filler material to impart an appropriate
combination of properties. Structural pipe-in-pipe cross-sections can exhibit several different collapse
mechanisms and the basis of the preferential occurrence of one over others is of interest. This paper
presents an elastic analyses of a structural pipe-in-pipe cross-section when subjected to external
hydrostatic pressure. It formulates and solves the static and elastic buckling problem using the variational
principle of minimum potential energy. The paper also investigates a simplified formulation of the
problem where the outer pipe and its contact with the filler material is considered as a ‘pipe on an elastic
foundation’. Results are presented to show the variation of elastic buckling pressure with the relative
elastic modulus of the filler and pipe materials, the filler thickness and the thicknesses of the inner and
outer pipes. The range of applicability of the simplified ‘pipe on an elastic foundation’ analysis is also
presented. A brief review of the types of materials that could be used as the filler is combined with the
results of the analysis to draw conclusions about elastic buckling behaviour of structural pipe-in-pipe
cross-sections.
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1. Introduction

Sub-sea pipelines in deep water are expected to deliver three distinctly different types of

performance. First and foremost they need to have collapse resistance to external hydrostatic
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pressure in deep water (up to 2000 m). Secondly, the requirement of oil and gas production requires

the pipes to have insulating properties to a varying degree depending on the production fluids being

carried. Thirdly, in many cases, the weight in water of sub-sea pipelines is a key design

requirement. Pipelines laying on the sea bed, or buried just under it require high submerged weight

for stability whereas pipelines suspended in the water column require low buoyant weight to reduce

surface vessel tension requirements.

Structural pipe-in-pine cross-sections are a possible, efficient design solution to this three-way

performance problem. Such cross-sections comprise inner and outer thin walled steel pipes with the

annulus fully filled by a filler material with no voids such that the material provides structural

support to both the inner and outer pipe walls. The filler can be from a wider variety of materials

ranging from plastics through to advanced composites and ceramics. The choice of filler material

for optimum collapse strength, insulation and buoyancy leads to design efficiencies which are

expected to be important for deep water applications.

Much work has been carried out in this field in recent years. For example, the phenomena of

buckle propagation in pipe-in-pipe systems are investigated from the viewpoint of both analytical

and experimental aspects by Kyriakides (2002). Oslo and Kyriakides (2003) and Kyriakides and

Netto (2004) considered the dynamic propagation and arrest of buckles in pipe-in-pipe systems.

Moreover, Han et al. (2004) and Kardmateas and Simitses (2005) analytically investigated the

buckling of long sandwich cylindrical shells under external pressure. Da Silva (1997) studied the

structural properties of multi-layered pipelines. The oil and gas industry has carried out much

internal work on pipe-in-pipe cross sections including the conduct of several joint industry projects

– see BPP et al. (2001) as an example.

On the other hand, it is empirically known that there can be several kinds of local buckling for

pipe-in-pipe cross-sections that can not exist in single wall pipes because the core supports both the

outer and inner pipes elastically. It is quite important to estimate the buckling strength and the

corresponding buckling modes for the structural design of pipe-in-pipe systems; however, previous

research has only an dealt with only overall buckling with relatively thin-walled structures and such

an interactive buckling phenomenon between the pipes and the core has not been well understood

so far.

The purpose of this paper is to investigate the interactive behaviors between the pipes and the

thicker core in pipe-in-pipe cross-sections under external hydrostatic pressure in terms of static

displacements and elastic buckling characteristics. To do this, the formulations and the elasticity

solutions based on the variational principle of minimum potential energy are developed. The effect

of transverse shear deformation on the structural properties for this type of composite cross-sections

is more significant than that for single wall cross-section especially when the core is relatively thick.

In order to evaluate this effect accurately, the core is modeled by using the two-dimensional theory

of elasticity.

Distinctive properties of pipe-in-pipe cross-sections are found from investigation of the static

displacements. In elastic buckling analysis, the characteristic equations governing buckling are

developed in terms of the stiffness and thickness of the core and of the outer and inner pipes.

Critical pressures and mode shapes characterizing the elastic buckling phenomena of the pipe-in-

pipe cross-section are investigated for various stiffness and thickness parameters. In addition, a

simplified formulation for estimating the elastic buckling pressure based on the theory of “Ring on

an elastic foundation” by Brush and Almroth (1975) is proposed and its applicability limits are

discussed.
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2. Mechanical properties of the annulus filler material

A key to the design success of structural pipe-in-pipe cross-sections is the range of materials

available for use as the annulus filler. These can range from elastomers and plastics which have the

overall characteristic of low elastic modulus but combined with low density (weight) and high

insulation performance. At the other extreme of potential filler materials are ceramics which exhibit

high elastic modulus but combined with higher densities (weight) and moderate insulation

performance. Other material types include advanced composites that have elastic modulus properties

around those of ceramics but with different combinations of density and insulation performance.

BPP et al. (2001) have given a very comprehensive overview of potential filler material properties

by carrying out a survey of over 3000 possible material types. However, for the purposes of this

paper, only the elastic moduli of these material types are significant. Table 1 and Fig. 1 present an

overview of the range of elastic (Young’s) Modulus exhibited by three different material groups in

terms of Ec/Ep, the ratio of the Young’s Modulus of the material to that of steel. 

3. Analytical model of the pipe-in-pipe cross-section

Fig. 2 shows the configuration of a perfectly cylindrical pipe-in-pipe cross-section that is analyzed

here. The geometric variables are the thickness of the outer pipe, h1, that of the inner pipe, h2, the

outer radius, a1 and the inner radius, a2. The pipe-in-pipe cross-sections under consideration have an

annulus fully filled with a material that provides continuous structural support to both the thin-

walled outer and inner pipes. This system is idealized as a two-dimensional plane strain problem for

very long pipe lengths. The core material is isotropic and elastic with Young’s modulus EC and

Poisson’s ratio νC. Both the outer and inner pipes are assumed to be very thin compared with their

diameters and the thickness of the core (h1, h2 << a1, a1 − a2). For this reason, the outer and inner

pipes are modeled as thin-walled rings and the core is treated as a thick hollow cylinder; moreover,

the outer and inner surfaces of the core correspond to the middle surfaces of the outer and inner

pipes (r = a1, r = a2). Static deformation and elastic buckling behavior are investigated with a

uniform external pressure q acting on the outer pipe.

Fig. 1 Ranges of Young’s modulus ratio for different material types

Table 1 Young’s Modulus of the cores

Core material Young’s modulus range [GPa]

Ceramics 2.5 to 800 GPa

Polymers 25 to 2500 MPa

Advanced composites 30 to 190 GPa
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4. Formulation

The governing equation of the core is expressed in polar  coordinates as (see Timoshenko

et al. 1961)

 

(1)

where φ is the stress function in the core material. This can be expressed as follows

(2)

where superscript (0) and (1) denotes the circular and noncircular configurations. Under uniform

external pressure,  and  relate to the static and buckled state, respectively.

Displacements of the outer and inner rings in the radial directions u1 and u2, and circumferential

directions v1 and v2 are expressed by circular and noncircular configurations, as

(3a)

(3b)

4.1 Circular configuration (Static deformation)
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Fig. 2 Geometry of a pipe-in-pipe cross-section
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(5)

where  are arbitrary constants. The corresponding stress components are

(6a)

(6b)

and . Moreover, the strain components for the plane strain problem are derived from the

strain-stress relationship as
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(7b)
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(11)

where
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From the principle of least work
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3.2 Non-Circular configuration (Elastic buckling)

In order to obtain the periodic displacement in θ,  is assumed as follows

(17)

where n is a mode number. Substituting Eq. (17) into Eq. (4), we obtain

(18)

The general solutions are
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where  are arbitrary constants. In the case of n = 1 (Eq. (19a)), the corresponding

displacement mode represents a rigid body translation. For this reason, Eq. (19b) should be used

here.
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(21b)

(21c)

The radial and circumferential displacement  and  can be obtained from the

displacement-strain relationship

  (22a)

  (22b)

where P and Q are integral constants. In this problem, the boundary conditions are

Outer pipe: (23a)
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where
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The constants dij  in the matrix [K] are the stiffness coefficients due to core

elasticity, which are defined in the Appendix. For a nontrivial solution, the characteristic equation is

obtained by

(29)

The relationships between the critical load qcr and some parameters, for example EC/EP, a2/a1 and

so on, can be obtained by solving Eq. (29). In detail, the value of n is determined by trial to give

the smallest eigenvalues for the given nondimensional parameters of EC/EP, ν, a2/a1, h1/a1 and h2/a1.

4. Results and discussion

 

In this section, analytical results for h1/a1 = h2/a1 = 0.01,  and  regarding both

the static deformation and elastic buckling under external fluid pressure are introduced and the

effects of the relative stiffness of the core to the pipe, EC/EP, and the ratio of the inner radius to the

outer one, a2/a1, on the structural properties of the pipe-in-pipe cross-sections are discussed in detail.

4.1 Circular configuration (Static deformation)

 

Figs. 3(a) and (b) show the effects of a2/a1and EC/EP on the normalized radial displacements of

the outer pipe,  and that of the inner pipe, ; Here  is the displacement of the outer

pipe without any core given by

(30)

In the case of EC/EP < 10−5,  and  regardless of the core thickness. This means that

the outer pipe behaves as if it is single walled. When EC/EP = 10−4 and 10−3,  decreases and 

increases as the core becomes thinner. 

On the other hand, the tendency for the case of EC/EP = 10−2 is different from that for EC /EP < 10−3

i j, 1 2 3 4, , ,=( )
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Fig. 3 Effects of a1/a2 and EC/EP on the displacements of pipes
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mentioned above.  almost remains constant up to about a2/a1 = 0.4 and increases as the core

thickness decreases. 

Fig. 4 illustrates the structural property classified by the displacements of the both outer and inner

pipes. This a1/a2 − log10(EC /EP) plane is divided into the following three regions as follows:

(A): The outer pipe behaves as if it is single walled .

(B): Displacement of the outer pipe decreases as the core becomes thin. This means “thin core =

hard core” and the core acts as if it is a linear elastic foundation.

(C): Displacement of the outer pipe increases as the core becomes thin. This means that “thin core

= soft core” and pipe-in-pipe cross-section behaves as if it is a “single combined pipe”.

For practical ranges of the Young’s modulus ratio shown in Fig. 1, the cases of (B) and (C) are

applicable. These characteristic properties of pipe-in-pipe cross-sections mentioned above are very

different from the behavior of a single walled pipe. 

4.2 Non-circular configuration (Elastic buckling)

Fig. 5 shows the normalized critical buckling pressure of the pipe-in-pipe cross-section for

practical ranges of the relative stiffness parameter described in Fig. 1; Here q* is the critical

pressure of the outer pipe without any core, given by

(31)

In Fig. 5, the solid lines express the critical pressures that can be obtained from Eq. (29) and the

dotted lines indicate simplified approximations of the critical buckling pressures based on the theory

of a “Ring on an elastic foundation”, given by

(32)

Eq. (32) is a simple formulation obtained by introducing the influence of the core on the buckling
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Fig. 4 Structural property (classified by the displacements of the both outer and inner pipes)
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characteristics of the outer pipes by treating it as an uncoupled radial spring, that is, a Winkler

foundation.

As shown in Fig. 5, the critical buckling pressure qcr increases as EC /EP increases. For all cases of

EC /EP > 10−4, when the core thickness is relatively large (i.e., a2/a1 is small), it is found from Fig. 5

that the critical buckling pressures are almost constant regardless of the core thickness. In this

range, there is extremely close agreement between the exact and the simplified approximation based

on the assumption of “Ring on an elastic foundation”. Moreover, when the core is relatively hard,

higher order buckling modes can occur due to interactions between the core and the outer pipe.

In contrast to this, when the core thickness is small (i.e., a2/a1 is large), the buckling modes

correspond to n = 2 and the critical buckling pressure decreases as the core thickness decreases, as

in the case of single wall pipes. It is apparent that the outer and inner pipes and the core behave as

a combined pipe in this range. Thus, Fig. 5 indicates that the two buckling phenomena can also

occur for these ranges; one is the overall buckling as a combined pipe, and the other is the local

buckling of the outer pipe. From the structural design point of view, it should be noted that the

crossing points between the line for n > 2 and n = 2 indicate the optimum core thickness ratio. In

addition, as the core elastic modulus becomes smaller, the effect of transverse shear deformation

becomes significant. For this reason, the buckling modes correspond to n = 2 in spite of the thick

core when EC /EP is 10−4. 

From Fig. 6 to Fig. 8 show the critical elastic buckling modes of the pipe-in-pipe cross-sections.

The values of EC /EP and a2/a1 in these figures are chosen to represent the ranges of applicability in

practical design. These figures indicate that the buckling characteristics drastically change as the

relative stiffness and the core thickness change. In the following, the structural properties within the

ranges of 10−4 ≤ EC /EP ≤ 10−2 and  shown in Fig. 6 to Fig. 8 are discussed here.

Higher order buckling modes which correspond to modes greater than 2 are observed when

0.7 a2/a1 0.9≤ ≤

Fig. 5 Critical buckling pressures
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a2/a1 = 0.7 and EC /EP > 10−3. In these cases, deformations of the inner pipe due to buckling are

negligible. This means that the buckling behaviors can be determined only by the material

properties and geometries of the outer pipe and the core in this range. Moreover, this corresponds to

the fact that there is close agreement between the critical pressure obtained from Eq. (29) and

Eq. (32) based on the assumption of “Ring on an elastic foundation” for the parameter ranges

shown in Fig. 5. For EC /EP = 10−4, the pipe-in-pipe cross-section behaves as if it is a single wall

pipe regardless of the core thickness.

On the other hand, in the case of n = 2 for small core thickness, not only the outer pipe and the

core but also the inner pipe are deformed as a combined pipe. 

5. Conclusions

The structural properties of pipe-in-pipe cross-sections which consist of thin-walled outer and

Fig. 6 Buckling modes (a2/a1 = 0.7)

Fig. 7 Buckling modes (a2/a1 = 0.8)

Fig. 8  Buckling modes (a2/a1 = 0.9)
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inner pipes and a much thicker core between the outer and inner pipes have been analysed from the

viewpoint of static deformation and elastic buckling under uniform external pressure. For practical

ranges of material properties and geometries of pipe-in-pipe cross-sections, two typical deformation

characteristics can exist; (1) Displacement of the outer pipe decreases as the core becomes thin,

which means “thin core = hard core” and the core acts as if it is a linear elastic foundation and (2)

Displacement of the outer pipe increases as the core becomes thin, which means that “thin core =

soft core” and pipe-in-pipe cross-section behaves as if it is a “single combined pipe”.

Similarly, two buckling phenomena can also occur for these ranges; one is the overall buckling as

a combined pipe, and the other is the local buckling of the outer pipe. These buckling characteristics

strongly depend on the relative stiffness ratio and the thickness of the core. Accordingly, the

collapse modes also drastically change corresponding to changes in the relative stiffness and the

core thickness. 

 The analysis presented in this paper is based on the theory of elasticity and has considered pipe-

in-pipe cross-sections with a perfectly circular shape. This is a useful formulation for carrying out

preliminary design and optimization on pipe-in-pipe systems for underwater applications. It is, of

course, the case that plastic behavior will occur especially when the core is thicker and of greater

stiffness. In addition, initial imperfections will reduce the critical collapse pressure from that of the

idealized structure. Both of these issues need to be the subject of further study. 
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Appendix

The constants dij  are defined as follows:i j, 1 2 3 4, , ,=( )
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