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Abstract. The static response of a finite beam resting on a tensionless Pasternak foundation and
subjected to a concentrated vertical load is assessed in this study. The concentrated vertical load may be
applied at the center of the beam, or it may be offset from the center. The tensionless character of the
foundation results in the creation of lift-off regions between the beam and the foundation. An analytical/
numerical solution is obtained from the governing equations of the contact and lift-off regions to
determine the extent of the contact region. Although there is no nonlinear term in the equations, the
problem shows a nonlinear character since the contact region is not known in advance. Due to that
nonlinearity, the essentials of the problem (the coordinates of the lift-off points) are calculated numerically
using the Newton-Raphson technique. The numerical results are presented in figures to illustrate the
behaviours of the free-free and pinned-pinned beams under symmetric or asymmetric loading. The figures
illustrate the effects of the shear foundation parameter and the symmetric and asymmetric loading options
on the variation of the contact lengths and the displacement of the beam. 
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1. Introduction

The analysis of beams in elastic foundations is very common in engineering. As the mechanical

response of the foundation is governed by many factors and cannot be directly calculated, it is

necessary to idealize the behaviour of the foundation. The Winkler elastic foundation model, which

consists of an infinite number of closed-spaced linear springs, is a one-parameter model used
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extensively in practice. The well known text by Hetényi (1946) provides a thorough treatment of the

Winkler model for elastic foundations. However, interactions between springs are not considered in

this model, so it does not accurately represent the characteristics of many practical foundations. To

overcome this problem, several two-parameter models have been suggested (Filonenko-Borodich

1940, Pasternak 1954, Kerr 1964, Vlasov and Leontev 1966). A comprehensive review of these

models has been presented by Dutta and Roy (2002). In the Pasternak foundation model, which will

be used in this study, the existence of a shear interaction among the spring elements is assumed.

This is accomplished by connecting the ends of the springs to a beam or plate that only undergoes a

transverse shear deformation. There are numerous studies dealing with the response of beams on

Pasternak foundations in literature. Some recent studies in this area include those of De Rosa and

Maurizi (1998), Horibe and Asano (2001), Filipich and Rosales (2002), Rao (2003), Chen et al.

(2004) and Kargarnovin and Younesian (2004). In most of the studies on the static/dynamic

behaviours of beams on an elastic foundation, it has been assumed that the foundation (regardless of

whether the model is of the Winkler or two-parameter variety) reacts in tension as well as in

compression. That is, if a downward lateral load is applied to a beam resting on a foundation, the

beam will be compressed into the foundation. If the direction of the load is reversed, the beam and

the foundation are pulled up, creating tension in the foundation. However, this assumption does not

hold for many practical problems: i.e., while compressive stresses can be transmitted easily, it is

difficult to transmit tensile stresses across the boundary between the beam and the foundation except

when the adhesion between the beam and foundation is assured, and thus, no separation is permitted

between them. Instead, a model in which the foundation reacts only by compression (one-way or

tensionless foundation) would be more realistic. In the case of an absence of tensile forces across

the interface between the beam and the foundation, lift-off regions can develop in the system.

Therefore, the solution to this type of problem is complicated by the need to determine the contact

region, which, in turn, depends on the parameters of the system. 

The static/dynamic behaviour of infinite beams resting on a tensionless foundation has been

studied by Tsai and Westmann (1967), Weitsman (1970, 1971, 1972), Rao (1974), Choros and

Adams (1979), Lin and Adams (1987), Ioakimidis (1996) and Maheshwari et al. (2004). In these

studies, due to the infinite beam assumption, the system is symmetric and the applied concentrated

load must be centered on the beam. Studies involving behaviour of finite beams on tensionless

foundations do appear in the literature. Celep et al. (1989) studied the dynamic response of a finite

beam on a tensionless Winkler foundation by considering eccentric loading. Kerr and Coffin (1991)

studied the static behaviour of a finite beam resting on a tensionless Pasternak foundation subjected

to a vertical concentrated load. Co kun and Engin (1999) and Co kun (2000) studied the nonlinear

vibrations of a finite beam resting on a nonlinear tensionless Winkler foundation subjected to a

vertical concentrated load. Co kun (2003) studied the response of a finite beam on a tensionless

Pasternak foundation subjected to a vertical dynamic load. Zhang and Murphy (2004) studied the

static response of a finite beam resting on a tensionless Winkler foundation subjected to a vertical

concentrated load which could be applied symmetrically or asymmetrically. Celep and Demir (2005)

studied the static response of a circular rigid beam on a tensionless two-parameter foundation

subjected to a vertical load and a moment. The same authors also studied the static response of an

elastic beam on such a foundation by considering a uniformly distributed load and concentrated

edge loads (Celep and Demir 2007). Finally, Lancioni and Lenci (2007) studied the nonlinear

vibrations of a semi-infinite beam on a tensionless Winkler foundation subjected to a uniformly

distributed load. The results of all the studies given above mostly include the determination of the
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coordinates of the lift-off points, i.e., the contact lengths of the beam. On the other hand, there are

only a limited number of studies in the literature that consider the lift-off problem of plates on

tensionless Pasternak foundations. Recent studies in this field include those of Shen and Yu (2004),

Güler (2004), Yu et al. (2007) and Celep and Güler (2007).

In this study, the static response of a finite beam on a tensionless Pasternak foundation subjected

to a vertical concentrated load is investigated. The load may either be applied at the center of the

beam (symmetric loading) or may be offset (asymmetric loading). However, this assumption does

not hold for an infinite beam because the load is symmetric by definition and thus, asymmetric

loads cannot exist. The finite beam assumption permits the off-center loading, which breaks the

symmetry of the system and requires the specification of some appropriate boundary conditions,

which influence the results. For the sake of brevity, this study only investigates the responses of

free-free and pinned-pinned beams.

2. Formulation of the problem

2.1 Definition of the system and governing equations 

Consider a finite beam of length L resting on a tensionless Pasternak foundation and subjected to

a vertical load P such that lift-off of the beam is possible. This situation is shown in Fig. 1. The

distance to the left (right) end of the beam is  and is measured from the origin of the

coordinate system centered at the load. The vertical deflection is given by . The contact region

is defined as , where X1 and X2 represent the lift-off points on the left and right sides of

the beam, respectively. In order to investigate the behaviour in both the contact and noncontact

regions, the vertical deflection  is broken into the following five distinct regions:

(i) in the noncontact region (for foundation surface): , 

(ii) in the noncontact region (for beam): , 

(iii) in the contact region: , 

(iv) in the noncontact region (for beam): , 

(v) in the noncontact region (for foundation surface): , 

L1 L2( )
W x( )

X1– x X2< <

W x( )
W x( ) W1 x( )= ∞– x X1–< <

W x( ) W2 x( )= L1– x X1–< <
W x( ) W3 x( )= X1– x X2< <

W x( ) W4 x( )= X2 x L2< <
W x( ) W5 x( )= X2 x ∞< <

Fig. 1 Finite beam on a tensionless Pasternak foundation subjected to an eccentric load 
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The differential equations governing the vertical responses in these regions are

 

,  (1)

,  (2)

,  (3)

,  (4)

,  (5)

where EI is the beam flexural rigidity,  is the Dirac delta function, k is the Winkler foundation

modulus and G is the shear modulus of the shear layer. It may be noted here that the contact

pressure  is of the form  in the Pasternak foundation model. For

convenience, the nondimensionalized variable ξ, deflection , Winkler foundation constant λ,

shear foundation coefficient λG, lift-off points ξ1 and ξ2, beam length l, and left (right) side beam

length , are introduced as follows

 (6)

Introducing these quantities into the governing Eqs. (1)-(5) produces the following non-

dimensional equations
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2.2 Boundary conditions
 

Eqs. (7) and (11) are second order differential equations and Eqs. (8), (9) and (10) are fourth

order differential equations. Therefore, 16 unknown integration constants will appear in the solution

of these equations. Because the lift-off points (ξ1 and ξ2) are also unknown, there are a total of 18

unknowns to be determined. To obtain these unknowns, there must be an equal number of

boundary/matching conditions. At ξ = −ξ1 and ξ = ξ2, the geometric boundary conditions require

continuity of the displacement and slope. These are expressed as 

, , , (12)

, , , (13)

There are also four natural boundary conditions at , ξ2. These require continuity of the

bending moment and shear force. These are

 

, , , (14)

The displacement  at the foundation surface should be finite as . This gives us two

conditions

, (15)

Four additional conditions arise from the boundaries at , l2. However, these will differ

depending on the types of the boundaries used. In this study, only two cases (free-free and pinned-

pinned) are considered. These are

 (16)

for the free-free beam and

(17)

for the pinned-pinned beam. These are the 18 boundary/matching conditions necessary to determine

the 18 unknown constants. However, in the formulation given above, it is assumed that the load

may either be applied at the center of the beam or may be offset. If the load is applied at the center

of the beam, the number of the boundary/matching conditions reduces to 11 with the use of the

symmetry in the system. If the  region is considered, for instance, the boundary and matching

conditions given above for the right side of the system are still valid. But in addition to these

conditions, one must use the continuity of the slope of the elastic curve and the symmetry in the

system: i.e., in dimensional terms, the slope is zero  and the shear force is

 at the center of the beam. Apart from this, in some cases the beam may

compresses into the foundation completely (no separation develops), or one-sided contact may occur

between the beam and the foundation. In the full contact case, the slopes of the free part of the

foundation and the foundation beneath the beam are not equal at the free ends of the beam. Thus,

w1 ξ1–( ) w3 ξ1–( )= w1
′ ξ1–( ) w3

′ ξ1–( )= w2 ξ1–( ) w3 ξ1–( )= w2
′ ξ1–( ) w3

′ ξ1–( )=

w3 ξ2( ) w5 ξ2( )= w3
′ ξ2( ) w5

′ ξ2( )= w3 ξ2( ) w4 ξ2( )= w3
′ ξ2( ) w4

′ ξ2( )=

ξ ξ1–=

w2″ ξ1–( ) w3″ ξ1–( )= w2″′ ξ1–( ) w3″′ ξ1–( )= w4″ ξ2( ) w3″ ξ2( )= w4″′ ξ2( ) w3″′ ξ2( )=

w ξ( ) ξ ±∞→

w1{ }
ξ ∞→

lim finite→ w5{ }
ξ ∞→

lim finite→

ξ l1–=

w2″ l1–( ) 0 w2″′ l1–( ), 0, w4″ l2( ) 0, w4″′ l2( ) 0== = =

w2 l1–( ) 0= w2″ l1–( ), 0, w4 l2( ) 0, w4″ l2( )= 0= =

ξ 0≥

W3
′ 0( ) 0=( )

W3″′ 0( ) P/ 2EI( )=
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the boundary conditions that will be satisfied at  and  are

,  (18)

Here, the terms on the left and right sides, respectively, show the generalized shearing force in the

foundation beneath the beam and the generalized shearing force in the free part of the foundation. If

one-sided contact occurs in the system, the first or the second sections of Eq. (18) can be used,

depending on the region where separation fails to develop. 

3. Solution

The differential Eqs. (7)-(11) contain only constant coefficients. Therefore, the general solutions

are of the form . Substituting this into Eq. (9) for a homogeneous solution gives

 (19)

The roots of this equation are

 (20)

Since the parameters EI, k and G are rigidity parameters of the beam and foundation, they are all

non-negative and thus the parameter λG is always positive. For this reason, there are only three

possible combinations of λG that need to be considered, i.e., λG larger than, equal to, or smaller than

1. For λG > 1, the general solution of Eq. (9) can be written in the form

 (21)

where , ; and A7, A8, A9, A10, E1, E2 are unknown constants. Now,

consider the functions  and  for the evaluation of the

constants E1 and E2. The second and fourth derivatives of these functions with 

and  are
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By differentiating Eq. (21) with respect to ξ, substituting into Eq. (9) and equating coefficients of

 and  we obtain 

, (22)

The solutions of Eqs. (7)-(11) for  ( ) are now given as follows

 (23)

 (24)

 (25)

 (26)

 (27)

where  and Ai  are the unknown constants. For  ( ), solutions

are similar to those given above except for . So, the general solutions of Eqs. (7)-(11) can be

written as 

 (28)

 (29)

 (30)

 (31)

 (32)

where , , , ,

; and  are unknown constants. It is possible to get the exact

solution for  ( ), but in practice accurate results can be obtained by simply

increasing λG by a very small amount and then using the solution for . For this reason, the

exact solution for   is not presented here.

As mentioned in section two, there are a total of 18 unknowns to be determined (Ai or

 and ξ1, ξ2). Since the case of   is satisfied by most physical

problems (Scott 1981, Zhaohua and Cook 1983), the solution procedure will be discussed only for

this case. Omitting the pinned-pinned beam case for brevity, the constants Ai and the lift-off points

ξ1, ξ2 for the free-free beam are determined as follows. The boundary conditions in Eqs. (15) and
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(16) give  and , respectively. Thus, the number of the

unknown constants reduces to 10. By using the boundary conditions (12), (13) and (14), 12

nonhomogeneous algebraic equations are obtained. In this case, the coefficients of the constants and

the terms that appear on the right hand side of the equations are related to ξ1 and ξ2. Since ξ1 and

ξ2 are not known in advance, the solution is sought by an iterative scheme. First, by choosing ξ1

and ξ2, 10 constants are obtained numerically from the solution of 10 equations at each step and

substituted into the remaining 2 equations. Then, the lift-off points are determined as the roots of

these transcendental equations by using the Newton-Raphson technique. During the solution

procedure, the global equilibrium of the beam is checked by considering the vertical equilibrium of

the forces as

(33)

4. Numerical results and discussion

4.1 The free-free beam

Fig. 2 shows the variation of the total contact length ( ) with respect to the beam length l

for symmetric  and asymmetric  cases. First, the symmetric case is considered.

For short beam lengths (regardless of whether the foundation is of the Winkler or Pasternak type),

the contact length scales linearly with the beam length with a slope of one. This simply means that

the entire beam is in contact with the foundation. When the beam length is increased, the contact

length quickly levels off depending on the values of the parameter λG, and separation develops

A1 A16 0= = A3 A4 A11 A12 0= = = =

F w
1

λG

------w″–⎝ ⎠
⎛ ⎞ ξd

ξ
1

–

ξ
2

∫=

ξ1 ξ2+

l1 0.5l=( ) l1 0.7l=( )

Fig. 2 Variation of total contact length (ξ1 + ξ2) with beam length l for F = 0.1 and some values of λG, for the
symmetric and asymmetric loading in the free-free beam case
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between the beam and the foundation. In this case, the contact lengths (2 × ξ1) are: 2.221 for λG = 2,

2.633 for λG  = 10 and 2.956 for λG  = 100. With further increases in the beam length, the contact

lengths remain constant at these critical values. As seen in the figure, the contact length increases as

λG increases. Also, if the second parameter G in the two-parameter Pasternak foundation model

approaches zero ( ), this model reduces to the Winkler model. For this case, separation

develops after the beam length approaches π (the critical contact length for a Winkler foundation),

and the contact length remains constant at this value as the beam length increases further. This

conclusion is consistent with the infinite and finite beam cases presented by Weitsman (1970) and

Zhang and Murphy (2004), respectively. The deflection curves of the beam and the shear layer are

given in Figs. 3(a) and 3(b) for λG  = 10. In Fig. 3(a), the entire beam is in contact with the

foundation since the beam length is less than the contact length (l = 2.5 < 2 × ξ1 = 2.633). The beam

is compressed into the foundation further when it is subjected to a larger load. The constant contact

length behaviour is shown in Fig. 3(b) for a beam length of l = 3.5 (3.5 > 2 × ξ1 = 2.633) with loads

F = 0.1 and F = 0.2. From Fig. 3(b), it is evident that the contact length is independent of load. In

these figures, the dashed line represents the surface of the shear layer. 

Fig. 2 illustrates the asymmetric case . As in the symmetric case for short beams, the

contact length increases linearly (with a slope of one) for all values of λG ; i.e., the entire beam is in

contact with the foundation. With the increase of the beam length, the contact length (shown by

dashed lines in the figure), continues to increase. However, this increase occurs more slowly than in

the symmetric case. For long beams, the contact lengths level off to the values given for the

symmetric case. To explain the more gradual increase in the contact length, consider Figs. 4(a) and

4(b) which show, respectively, the variation of the left and right contact lengths in relation to the

beam length for λG  = 10 and F = 0.1. For small beam lengths, the left side contact length increases

linearly at a rate of , which is a faster rate of increase than the symmetric case

( ). Thus, ξ1 in the asymmetric case will reach the asymptotic value of 1.3165 more

quickly than its symmetric counterpart: i.e., the left side lift-off occurs sooner than in the symmetric

λG ∞→

l1 0.7l=( )

ξ1 0.7l=

ξ1 0.5l=

Fig. 3 Deflection curves for the free-free beam under two different symmetric loads with λG = 10. (a) l = 2.5,
(b) l = 3.5
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case. In contrast, for short beams, the right side contact length increases linearly as ξ2 = 0.3l, which

is slower than the symmetric case (ξ2 = 0.5l). When the total contact length (ξ1 + ξ2) is considered,

this behaviour (i.e., ξ2 approaches 1.3165 more slowly than ξ1), which accounts for why the net

contact length for the asymmetric case is below the symmetric case (see Fig. 2). At a beam length

of l = 2.5, Fig. 4(a) suggests that the left side contact length should be ξ1 = 1.3165 and that left side

Fig. 4 Contact lengths versus beam length for F = 0.1 and λG = 10, for the symmetric and asymmetric case in
the free-free beam. (a) Left side (ξ1); (b) Right side (ξ2)

Fig. 5 Deflection curves for the free-free beam under
two different asymmetric loads with l = 2.5
and λG = 10

Fig. 6 Variation of total contact length (ξ1 + ξ2) with
the shear foundation parameter λG for F = 0.1
and l = 3.5, for the symmetric and asymmetric
case in the free-free beam
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lift-off should occur. Also, as seen in Fig. 4(b), the entire right side should be in contact with the

foundation and the contact length should be ξ2 = 0.3 × 2.5 = 0.75. These behaviours agree with

Fig. 5, which represents the deflection curves of the beam and the foundation surface for the

asymmetric loading case. From Fig. 5, it is seen that the slope of the deflection of the foundation is

not continuous at the right end of the beam. This is, of course, due to the second of the boundary

conditions (18), which indicates the slope discontinuity of the foundation at the beam end. 

The variation of the total contact length with respect to the shear foundation parameter λG  is

shown in Fig. 6 for F = 0.1. The beam length in the figure is taken to be l = 3.5 in order to clearly

represent the behaviour in both the symmetric and asymmetric cases. From Fig. 6, it can be seen

that the contact length increases as λG  increases for both the symmetric and asymmetric cases. This

is expected as the foundation becomes softer with the increase of λG  (with the decrease of G, in

dimensional terms). 

4.2 The pinned-pinned beam

Fig. 7 shows the variation of the total contact length (ξ1 + ξ2) with respect to the beam length l

for the symmetric case (l1 = 0.5l) with F = 0.1. For short beam lengths, the contact lengths increase

with the increase in beam length in both the Winkler and Pasternak foundations. In the case of the

Winkler foundation, as in the symmetric free-free beam case, the contact curve has a slope of one.

Again, this indicates that the entire beam is in contact with the foundation. However, in the

Pasternak foundation case, the contact curves do not have a slope of one: the beam separates from

the foundation. A comparison of Fig. 2 and Fig. 7 for short beam lengths shows that, at a fixed

foundation rigidity and beam length, lift-off occurs only in the pinned-pinned beam case. This is

because the system is stiffer than the free-free beam case. As seen in Fig. 7, the increase in contact

length with beam length persists until l = 6.187 for the Winkler foundation. This beam length,

Fig. 7 Variation of total contact length (ξ1 + ξ2) with beam length l for F = 0.1 and some values of λG, for
the symmetric loading case in the pinned-pinned beam
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separating the regions of increasing versus shrinking contact length, is the critical length for the

pinned-pinned beams on the tensionless Winkler foundation (Zhang and Murphy 2004). The

corresponding critical lengths for the Pasternak foundation are: l = 6.386 for λG  = 2, l = 6.245 for

λG = 100 and l = 6.196 for λG = 1000. As is expected, the critical lengths decrease with the increase

of the shear foundation parameter and approach the value obtained for the Winkler foundation case.

After the critical values, the contact lengths begin to shrink with an increase in beam length. As the

beam length is increased further, the contact lengths decrease and asymptotically approach the

values obtained for the free-free case; e.g., 2.221 for λG  = 2, and π for the Winkler foundation.

Fig. 8 shows the contact behaviour of the beam for λG = 10 both in the symmetric and

asymmetric loading cases. In the asymmetric case, as in the symmetric case, the contact length

initially increases with the beam length. However, as the beam length is increased, the contact curve

shows two peaks: the contact length increases, shrinks, increases again, and then shrinks again as it

asymptotically approaches the value 2.633, which is obtained for the free-free case. To explain this

behaviour, consider Figs. 9(a) and 9(b), which show, respectively, the variation of the left and right

contact lengths with respect to the beam length. The symmetric case is also shown for comparison.

As seen in Fig. 9(a), the left side contact length initially increases as ξ1 = 0.7l, peaks before the

symmetric case, and then shrinks gradually to its asymptotic value of 1.3165. In contrast, the right

side contact initially increases more slowly as ξ2 = 0.3l and peaks after the symmetric case,

Fig. 9(b). The summation of the left and right contact lengths gives the total contact length for the

asymmetric case, as shown in Fig. 8. The first peak in the figure is due to ξ1 as it increases faster

than ξ2. After this peak, a drop takes place in the contact length because of the decrease in ξ1; ξ2 is

still increasing but not fast enough to offset the decrease in ξ1. The second peak, as expected, is due

to ξ2. Fig. 10 shows the deflection curves for a beam length of l = 20 with two different loads, F =

0.1 and 0.2. As it is seen, both sides have clearly lifted-off. Moreover, an increase in load results in

an increase in displacement without changing the extent of the contact region.

Fig. 8 Variation of total contact length (ξ1 + ξ2) with beam length l for F = 0.1 and λG = 10, for the
symmetric and asymmetric case in the pinned-pinned beam
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Finally, the variation of the total contact length with respect to the shear foundation parameter is

shown in Fig. 11 for a beam length of l = 20 with F = 0.1. It is seen that the increase in the shear

foundation parameter (λG) increases the contact lengths, which is the same as in the free-free beam

case. 

Fig. 9 Contact lengths versus beam length for F = 0.1 and λG = 10, for the symmetric and asymmetric case in
the pinned-pinned beam. (a) Left side (ξ1), (b) Right side (ξ2)

Fig. 10 Deflection curves for the pinned-pinned
beam under two different loads with l = 20
and λG = 10

Fig. 11 Variation of total contact length with the
shear foundation parameter λG for F = 0.1
and l = 20, for the symmetric and asym-
metric case in the pinned-pinned beam
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5. Conclusions

The static displacement responses of free and simply supported finite beams resting on a

tensionless Pasternak foundation under symmetric and asymmetric loadings have been analyzed.

The influences of the shear foundation parameter, beam length and symmetric and asymmetric

loadings on the response have also been studied. The results can be summarized as follows: 

1. The problem shows a nonlinear character due to the foundation lift-off in both the symmetric

and asymmetric loading cases. This fact holds for the free-free as well as for the pinned-pinned

beam cases. Other boundary conditions are expected to only impact the results in a quantitative

manner, without changing the nonlinear behaviour. 

2. The contact length is independent of the amplitude of the load, whereas the deflection profile is

directly proportional to it. However, the contact length depends on the shear foundation

parameter (λG). The increase in the value of this parameter considerably increases the contact

length.

3. In the symmetric loading case, separation does not occur in the system for a Winkler

foundation if the beam length is less than the critical lengths. However, lift-off takes place

below these values in the Pasternak foundation case. The contact lengths are always smaller in

this case as the foundation is stiffer. When the beam length increases beyond the critical values,

constant contact length behaviour occurs in the free-free beam case. However, for the pinned-

pinned case, contact lengths decrease beyond the critical values with the increase of beam

length and asymptotically approach the values in the free-free beam case (i.e., the infinite beam

contact lengths).

4. In the asymmetric loading case, the response for the short beam lengths is similar to the

symmetric case. However, one sided lift-off behaviour develops for the free-free beam case as

the beam gets longer. In this case, contact lengths become smaller than those for the symmetric

case. In the pinned-pinned beam case, a double peak behaviour, which is caused by the

sequential increase and decrease of contact lengths in both sides of the beam, occurs in the

system as the beam length increases. It may be noted here that there is not a physical

mechanism for a third peak to appear in the system. Also, it is found that the effect of the

asymmetry diminishes with the increase of beam length and the system approaches the

symmetric case for both the free-free and pinned-pinned beams. 
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