Structural Engineering and Mechanics, Vol 3, No. 6 (1995) 529-539 529
DOI: http://dx.doi.org/10.12989/sem.1995.3.6.529

Automated vyield-line analysis of beam-slab systems
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Abstract. The rigid-plastic yield-line analysis of isotropically reinforced concrete slabs acting in conjunc-
tion with torsionally weak supporting beams is developed as the lower-bound form of a linear program-
ming formulation. The analysis is extended to consider geometric variation of chosen yield-line patterns
by the technique of sequential linear programming. A strategy is followed of using a fine potential
yield-line mesh to identify possible collapse modes, followed by analysis using a coarser, simplified
mesh to refine the investigation and for use in conjunction with geometric optimization of the yield-
line system. The method is shown to be effective for the analysis of three slabs of varying complexity.
The modes detected by the fine and simplified analyses are not always similar but close agreement
in load factors has been consistently obtained.

Key words: reinforced concrete; slab-beam systems; automated yield-line analysis; sequential linear
programming

1. Introduction

The author’s previous work on the automated yield-line analysis of reinforced concrete slabs
(Johnson 1995) has extended a linear programming formulation, originally proposed by Anderha-
ggen and Knopfel (1975). to allow for the geometric variation of a proposed yield-line pattern,
so that its optimum geometry can be determined. The geometric optimisation was formulated
as a sequential linear programming problem by linearising the effects of geometrical variation
at any individual iteration. This approach proved convenient, since it made repeated use of
the linear programming solution, which was central to the basic automated yield-line algorithm.

The problem of determining the critical collapse mode ab initio has also been examined (John-
son 1994). The approach recommended in this instance was to use a fine ‘finite element’ type
(Fig. 1b) of triangulated mesh initially to provide a variety of positions and directions along
which yielding can potentially occur. This net is analysed without geometric optimisation (which
would be too complex in such a case) in order to establish the likely collapse mode. Based
on the results of the fine net analysis, a simplified triangulation is devised which is suitable
for geometric optimisation and which is capable of modelling the expected form of collapse
(Fig. 1c. for example).

The work reported so far has been based on the assumption of rigid edge supports and the
intention of the present paper is to extend the formulation to flexible boundary conditions in
the form of edge beams. Consistent with the rigid-plastic behavioural model adopted for the
slab response. the beams are also presumed to be rigid until an ultimate moment of resistance
M is attained, at which stage a plastic hinge is formed and rotation may occur without further
increase in moment. Beams are further assumed to be perfectly flexible in torsion.
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Fig. 1 a. Propped cantilever slab; b. yield-line system for half-slab.
c. simplified mesh; d. yield-line system for simplified mesh.

Fig. 2 a. Triangular region; b. statics of region; c. statics of beam element.

2. Theory

The slab to be analysed is meshed into triangular regions. a typical such region being shown
in Fig. 2a. In Fig. 2b, the slab moments/per unit length m,. m,, m,; are assumed uniform
along the edges of the triangle. These moments are further assumed to be in equilibrium with

nodal vertical forces f,. fo. fi3. so that by statical considerations:
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If beams are included in the formulation, then similar equilibrium considerations need to
be applied to relate the contributions to the nodal forces arising from beam moments. Thus,
if the moments at the ends of a beam segment are m; and m,, (Fig. 2¢), then the end forces
fn and f,, may be related to the beam end moments by equilibrium considerations such that:

Cimi=f} @

4 e 1 ¢ — 1 1 - l
where mi={my, mpn}l', fi={fn. fr2}' and Cb_—l; [_1 1]
Summing contributions from all the ne regions and nbe beams to the forces at all the nj
nodes. due to the moments along the total number of boundaries nb and at the total number

of distinct beam end positions nbep gives the complete set of equilibrium conditions:
Cm=f 3)

where m={my, =+, Mgy, My, ***, Mpapep }'={m,, mp}' and f={fi, -, f;}'

To account for the imposed boundary conditions, it should be noted that, in forming Eq.
(3). equilibrium equations are not formed at nodes which are restrained against vertical displace-
ment and moment variables are not included in respect of zero moment (free or simply supported)
edge boundaries or zero moment beam ends (simple supports).

Under isotropic conditions, all the moments/unit length will be bounded by the constant plastic
moments of resistance/unit length in positive and negative bending m™* and m~, respectively,
such that:

um <=m<=um"* “)
where #={1, -+, 1}’ is the unit vector.
Furthermore, the beam moments m, will be limited such that:
M <=m,<=M"* )

In Eq. (5), M*, M~ are the vectors of ultimate moments of resistance in positive and negative
bending, respectively, of the beam sections at the distinct beam positions.

In the interests of simplicity, uniform loading conditions will be presumed. Under the action
of a uniform load of intensity ¢ the statically equivalent nodal forces for a typical triangular
element (Fig. 2a) are given by:

et 4 ®

hl,

where A= 5

Summing nodal loading contributions of the form given by Eq. (6), results in a set of total
nodal loads f, which are statically equivalent to the nodal loads f which were ((Eq. (3)) derived
from equilibrium slab and beam moment considerations. Thus, at a load factor A the final
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equilibrium equations becomes:
Cm=Af, ()

Egs. (7) and (4-5) represent the conditions of equilibrium and yield, respectively, for the slab.
By the lower bound theorem of plasticity, the collapse solution may therefore be obtained by
maximising the load factor A subject to the linear conditions expressed by the above equations.
This is a linear programming problem and may be solved by standard techniques (see Garvin
1960).

2.1. Displacement and rotation solution

The linear programming solution will provide the collapse load factor and the slab boundary
and beam moment values at collapse. To obtain the yield-line pattern at collapse, it is necessary
to determine the rotations along the specified boundaries and at the beam nodal positions,
since only boundaries and beam nodal positions with non-zero rotations will represent yield-
lines and beam hinges, respectively. Boundary rotations, 6, and nodal displacements w may
be conveniently determined by application of the ‘dual’ properties of linear programming (see
Munro and Da Fonseca 1978 and Garvin 1960).

2.2. Variable yield-line geometry

If variation in yield-line geometry is considered, then Eq. (7) becomes non-linear since both
C and f, are geometry dependent. The technique of sequential linear programming relies on
an iterative process in which linearised approximations are used in any particular iterations,
Eq. (7) may be linearised by replacing each term by its first-order Taylor series approximation
to give:

Cm+Jo A=A+ AT A, ®)

where A,=x—x and x is the geometric variable vector.
In Eq. (8), - indicates evaluation with respect to the current geometry, and such terms therefore,
remain constant during the succeeding iteration. Also, the Jacobian matrices J, and J,, are

given by:
; C . ; of
JC,[—['“, gx,- m, ] and J[x—_‘|:"'. ?‘% , ] )]

The derivatives required for the construction of the Jacobian matrices of Eq. (9) may be obtained
analytically and appropriate expressions have been provided previously for the pure slab situation
(Johnson 1995). In the case of beam-slab systems, the same Jacobian matrices have been utilised
on the assumption that movement of beam hinge positions is a secondary feature which will
not significantly affect the iterative procedure. Appropriate contributions to the relevant Jacobian
matrix, due to variation in the beam hinge positions, could, however, be incorporated if so
desired.

The previous equilibrium constraints, Eq. (7), are replaced by Eq. (8) and the linear program-
ming solution is repeated. At the conclusion of the programming procedure, the ‘objective func-
tion’ values corresponding to the geometric variables A, will indicate the sense in which the
variables need to be amended in order to appropriately modify the load factor. At this stage,
reductions in the load factor are sought since geometric variation represents an upper-bounded
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solution.
2.3. Bounds on geometric variations and convergence

The magnitudes of the changes to the geometric variables cannot be obtained from a linear
solution and must be enforced by the imposition of suitable bounds. Clearly, the geometric
variables will need to be constrained by lower bounds x and upper bounds x which are designed
to ensure that the confines of the slab and its basic topology are not altered. In addition, however,
geometric variation at any iteration must be limited so that unacceptable linearization errors
do not occur. The errors incurred by geometric linearization have been taken to be dependent
on the fineness of the local triangulation, on the premise that the linearization will remain
effective if all amendments to the areas of the triangular regions and the orientations of the
boundaries remain within a specified tolerance. Thus, if, for all the boundaries meeting at node
i, the average, absolute value of the projection of the triangle edges in respect of geometric
variable x; is X, then the bounds are given by:

max(x, [(1—B)]%)<=x<=min(x, [(1+B)I%) (10)

where [(1% B;)] are the diagonal move limit matrices.

All the individual move limits §; are initially taken to be 0.25 to allow reasonable geometric
change but not so as to produce undue distortion of the sub-division. Subsequently, the move
limits are expanded such that §,=1.1 jB; if the three previous iterations indicate a consistent
direction of variation in a given parameter. If the three previous iterations indicate an oscillation
in a parameter, this is taken as indication that a critical value has been passed and the bounds
are tightened by setting 8;=0.5 j; so that the solution is driven towards the critical value.

Convergence of the sequential linear programming process is based on successive changes
in load factor. A stipulation that none of the latest three load factor values vary by more than
0.1% has generally been found to be effective in ensuring reasonable accuracy, and in preventing
accidental termination due to coincidentally similar successive values.

3. Examples

In the following examples, uniform loading of intensity ¢ and uniform, isotropic top and
bottom reinforcement have been assumed for simplicity throughout. The ultimate moment capaci-
ties of supporting beams M have been expressed, numerically, as multiples of the characteristic
slab moment of resistance m. In the first two examples, the ultimate loads have been determined
in terms of a load factor A and a characteristic dimension L, such that g,=Am/L> In the
final example, the ultimate load has been determined in terms of a load factor A, such that
g.=Am. A load factor which is subscripted as A indicates that the value has been obtained
as the result of a converged geometrical optimization process. Point and line loading, or variable,
orthotropic reinforcement obviously complicate the procedures used, but do not, in principle,
pose insuperable obstacles.

3.1. Propped cantilever slab

The rectangular, uniform slab shown in Fig. la is fully fixed at its left-hand side and propped
by columns at its righ-hand corners. The three unrestrained sides are supported on beams
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Fig. 3 Propped cantilever slab
a. fe collapse mode (M=2m, 025m); b. s collapse mode (M" =2m, 025m)
c. fe collapse mode (M* =2m, 025m. M~ =3m, 025m); d. s collapse mode (M =2m, 025m,
M =3m, 0.25m)

of flexural capacity M~ =2m along the longer sides and M* =0.5m along the shorter side. The
columns are presumed to offer point support only and to be adequately reinforced against local
failure. Making use of symmetry and adopting the fine ‘finite-element’ type of mesh shown
in Fig. 1b, the ‘propped cantilever’ form of collapse shown in Fig. 1b is predicted at a load
factor A=15.1. A further analysis has been undertaken, using the simplified mesh shown in
Fig. 1c. For this mesh, geometrical optimisation was performed, using x;, x4 and x; as the geometric
variables, with a ‘linkage’ (Johnson 1995) being enforced such that x,=x;. The yield-line pattern
at collapse obtained from this analysis is quite different (Fig. 1d). A Y-type collapse mode is
predicted, which is characteristic of slabs supported on three sides only. Despite the distinct
collapse mode, there is little change in load factor, the value determined by the simplified mesh
being A=150.

Previous investigations (Johnson 1994) have shown that finite element type meshes generally
do give reasonable indications of collapse modes in pure slab situations. Clearly, this is less
likely if competing mechanisms exist at similar load factors. Once edge beam collapse is introdu-
ced into the system, the number of potential modes increases significantly and the likelihood
of competing modes existing at virtually the same load factor similarly increases. It might be
expected, therefore, that situations such as that experienced in the present example will occur
reasonably regularly.

To examine the finite element/simplified mesh comparison further, the shorter edge beam
capacity was reduced to M* =025 m (Fig. 3a). The results for the finite element and the simplified
meshes are shown in Figs. 3a and 3b, respectively. It may be seen that the modes still differ,
although the finite element meshing has produced a combined 'Y’ and propped cantilever
mode, which now incorporates a hinge in the weakened end beam. The simplified mesh continues
to suggest a Y type mode at a load factor, A=13.8, which shows a slightly more pronounced
reduction on the finite element mesh value (A=14.5) than in the pr —ious case.

Finally, to encourage both meshes to avoid hinge formation in the longer edge beams, the
negative bending capacity of these members was raised to M~ =3m. The finite element (fe)
mesh mode is now a modified Y type (Fig. 3c) and does bear some resemblance to the simplified
(s) mesh result (Fig. 3d). The relevant load factors are A=150 (f¢) and A=13.8 (s) (unchanged
from the previous analysis since negative hinges in the longer edge beams are not involved).
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Fig. 4 a. Two-bay slab; b. simplified mesh; c. fe collapse mode; d. s. collapse mode.

Thus, rather similar modes have given rise to an enhanced load factor variation. This is probably
a vagary of the modelling employed, however, and the difference of 9% is distinct but not large.
The fe mode does resemble ‘corner lever’ (Wood 1961) action, but care is needed in drawing
such a conclusion. In some cases, diagonal negative yield-lines in corners may be indicative
of a corner lever. In others, however, it can be symptomatic of the inability of a fe mesh to
accurately model the geometry of the collapse system (Fig. 3c) and therefore be a feature of
the meshing rather than a manifestation of a physical property of the collapse mode. In the
present case, the fe mesh does not allow a sagging diagonal yield-line to propagate from the
restrained corner of the slab close to the geometry suggested by the simplified analysis. The
function of the diagonal negative yield-line is therefore to allow a positive line to form in the
vicinity of the simplified mode line (Fig. 3d).

3.2. Two-bay beam slab system

The two-bay system shown in Fig. 4a consists of uniform, isotropic slabs supported by edge
beams. The smaller, right-hand bay supports a uniformly distributed load which has two and
a half times the intensity of the load carried by the larger, left-hand bay. The system has again
been analysed by both a fe type mesh (Fig. 4c) and a simplified mesh (Fig. 4b). For the purposes
of geometric iteration, the geometric variables were taken to be x3, x4(=Xs), X9(=xs=X10), X13
and ys.

If the edge beams are presumed to possess ultimate moments of resistance which are
numerically equal to that of the slabs, then both analyses indicate the ‘propped cantilever’
mode of collapse shown in Fig. 4c. The relevant load factors are A=880 (fe) and A=8.79 for
the simplified (s) mesh. On reducing the moments of resistance of the edge transverse beams
to M* =0.5m, however, the load factors drop slightly to A=8.52 (fe) and A=849 (s). The mode
predicted by both analyses is quite different to the first case (Fig. 4d) and involves the collapse
of both bays (Fig. 5). Clearly it is difficult to anticipate a mode such as shown in Fig. 5 and,
for the construction of appropriate simplified meshes, it is necessary to rely on trial-and-error
and on the results provided by fe type meshes.

If the beams are strengthened relative to the slab, as shown in Fig. 6a, then yet a further
mode is encountered -in this case a ‘Y’ type mode involving both bays and two of the transverse
beams- at a load factor of A=102. Further strengthening of the central transverse beam results
in the Y mode being restricted to the smaller span (Fig. 6) and increases the load factor to
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Fig. 6 a. fe collapse mode; b. s collapse mode.

A=115. In both these cases, there is good agreement between the fe and s type mesh solutions.
It has also been shown that further increase in the capacity of the outer two transverse beams
to M* =2m results in a pure slab collapse mode, which occurs in the left-hand bay at a load
factor of A=158.

3.3. Interconnected beam-slab system

The beam-slab system shown in Fig. 7a is a adaptation of an interconnected slab arrangement
previously considered by Munro and Da Fonseca (1978) in which supporting beams are employed
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Fig. 8 Isometric views of interconnected slab collapse modes
a. fe mode in view direction A of Fig. 7c; b. s mode in view direction A of Fig. 7d.

in place of the original simple edge supports. Predicting a likely critical yield-line pattern for
such a complex system is virtually impossible and guidance from a fe mesh solution is essential
before attempting to construct a simpler meshing for geometric optimisation purposes. For the
beam capacities indicated, Fig. 7c shows the mode predicted by an Je mesh based on 1.875X1.25m
modules. The collapse mode is difficult to categorize simply but clearly incorporates a propped
cantilever mode in the largest. left-hand slab. This feature continues into the upper, right-hand
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Fig. 9 Interconnected slab system with strengthened beams
a. modified simple mesh; b. fe mode: c¢. s mode.
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Fig. 10 Interconnected slab system with strengthened beams: isometric views of collapse modes
a. fe mode in view direction A of Fig. 9b: b. s mode in view direction A of Fig. 9c.

slab by means of a ‘fan’ type system (Wood 1961) centred on the corner of the internal beam
supports. Collapse was at a load factor A=0312. which is a 22% reduction on the pure slab
value of A=040 calculated by Munro and Da Fonseca.

Based on this solution, the simplified mesh shown in Fig. 7b was adopted. For the purpose
of geometric optimization, variations in xs(=xs=X¢), X7, X14. Xiss Vs. Vo, Yi2. Y7 WeIC allowed.
The resulting solution is illustrated in Fig. 7d, where it is compared with the fe solution (fine
lines). The simplified mesh solution confirms the presence of the fan system, an indication
of which may also be gained from the isometric views of the collapse modes provided in Fig.
8. The load factor achieved by this simpler mesh was 4=0.304, which was only a slight (3%)
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reduction on the fe value.

If the beam capacities are enhanced to the values shown in Fig. 9 then the fe solution gives
a load factor of A=0.367. The relevant collapse mode is shown in Fig. 9b and it may be seen
that the mode is now of a Y form. Also, there is some evidence of collapse around the central
column along the left-hand slab edge, which is the pure slab mode (Munro and Da Fonseca
1978). To incorporate this latter possibility, it was necessary to extend the simplified meshing
to the form shown in Fig. 9a, for which the geometric variables were taken to be x4, xs, X,
X7, X9, X14, X15, X24, X25, X2, X2, X30 and Vss Yo. Yia, Yizs V22, V23, Vo, Vas. Voo V3o The resulting
mode (Fig. 9¢) shows enhanced collapse around the central left-hand side column and less
participation of the upper right-hand slab portion. The basic Y type system remains however,
as may be verified from the comparative isometric plots (Fig. 10). Once again the load factor
achieved by the simplified mesh (4=0.355) was only 3% less than the fe value.

4. Conclusions

(1) The use of sequential linear programming together with a strategy of initial use of a fine
(fe) meshing verified by a simplified (s) mesh provides a systematic and robust procedure
whereby mechanisms and load factors for beam-slab yield-line collapse may be determined.

(2) Since beam-slab systems commonly exhibit a multiplicity of potential yield-line mechani-
sms, the probability of two or more different mechanisms having similar load factors is
greater than for pure slabs. There is therefore an increased likelihood of a fe mesh producing
a different mechanism to that derived from a simplified mesh. It also follows that more
care is needed in the construction of simplified meshes since mechanism possibilities other
than those directly suggested by the fe solution need to be considered. A certain degree
of trial-and-error may be required.

(3) Fe collapse mode solutions may be complex and possibly present difficulties of interpretation
if the selected mesh does not allow the accurate representation of the critical mechanism.
Rerunning with a varied mesh density and/or proportioning can be helpful in such cases.

(4) In the examples considered, differences in load factor between fe and s based mesh solutions
did not exceed 10%, although quite different mechanisms could be involved. Furthermore,
the reductions in load factors produced by geometrical optimisation were also modest-again
less than 10%.
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