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In-plane free vibrations of catenary arches
with unsymmetric axes
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Abstract. The differential equations governing in-plane free vibrations of the elastic, catenary arch
with rotatory inertia are derived in Cartesian coordinates. Frequencies and mode shapes are computed
numerically for such arches with unsymmetric axes, for both clamped-clamped and hinged-hinged end
constraints. The lowest four natural frequency parameters are reported, with and without rotatory inertia,
as a function of three nondimensional system parameters; the span to cord length ratio e, the slenderness
ratio s, and the rise to cord length ratio f Experimental measures of frequencies and mode shapes
for several laboratory-scale catenary models serve to validate the theoretical results.
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1. Introduction

Studies on the free vibrations of linearly elastic arches of various shapes have been reported
for more than three decades. Such studies were critically reviewed by Laura and Maurizi (1987).
Background material for the current study was summarized by Lee and Wilson (1989). Briefly,
such works included studies of noncircular arches with predictions of the lowest frequency in
flexure by Romanelli and Laura (1972), and in extension by Wang (1972), and Wang and Moore
(1973): studies of circular arches with predictions of higher flexural frequencies by Wung (1967),
Wolf (1971), Veletsos, et al. (1972), and Austin and Veletsos (1973); and studies showing the
effects of transverse shear and rotatory inertia on free vibration frequencies of circular arches
by Irie, et al. (1983) and Davis, et al. (1972). Experimental studies to validate predicted arch
frequencies and mode shapes are rare, although recent such studies on selected arches were
reported by Perkins (1990) and by Lee and Wilson (1989).

This paper has two main purposes: (1) to present for the first time the equations for free,
planar vibrations of arches with unsymmetric axes, variable curvature, and rotatory inertia, where
all equations are derived in Cartesian rather than in polar coordinates; and (2) to illustrate
the numerical solutions to these newly-derived equations for a broad class of catenary arches.
In most previous works on arch vibrations, polar coordinates were employed and the arch shapes
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Fig. 1 Geometry of the catenary arch and its defining variables.

were either circular, parabolic, sinusoidal, or elliptic. The two exceptions were the works of Volterra
and Morell (1961) and Romanelli and Laura (1972) who predicted only the fundamental frequen-
cies for catenary arches hinged at both ends. The results presented herein extend significantly
these latter two works. That is, using the Cartesian formulation together with highly efficient
and convergent numerical methods, the free, in-plane vibration frequencies and mode shapes,
with and without rotatory inertia, are investigated for catenary arches. Such numerical results
are presented for clamped-clamped and hinged-hinged end constraints. The lowest four non-
dimensional frequency parameters are shown as functions of three system parameters: the arch
span to cord length ratio e, the slenderness ratio s, and the rise to cord length ratio f. The
computed results are then complemented with experimental results measured from laboratory-
scale models of catenary arches.

2. Mathematical model

The geometry and nomenclature of the catenary arch are shown in Fig. 1. The geometric
variables are defined as follows.

L span length

) cord length

h rise

Py radius of curvature at the crown

e span length to cord length ratio, e=L/I
X,

y  rectangular coordinates

w, v displacements and rotation of cross-section
P radius of curvature

o) inclination of radius of curvature with x-axis

v,

The shape of catenary is expressed in terms of (/, h, f) and the coordinate x in the range
from x=0 to x=L(=el). That is,
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(1

A small element of the arch is shown in Fig. 2 in which are defined the positive directions
for the axial force N, the shear force Q, the bending moment M, the radial inertia force P,,
the tangential inertia force P,, and the rotatory inertia couple 7. Treating the inertia forces and
the inertia couple as equivalent static quantities, the three equations for “dynamic equilibrium”

of the element are
dN/d ¢p+Q+pPP,=0
dQ/d¢—N+pP,=0
P ldM/dep—Q—T=0

The equations that relate N, M and y to the displacements w and v (Borg 1959) are
N=EAp ' [(v'+w)+r2p 2 (wi+w)]

M= —EAr’p*(wi+w)
y=p"(w'=v)

@
&)
“

)
©)
)

where E is Young’s moduls, 4 is the cross-sectional area, r is the radius of gyration of the

cross-section, and (f) is the operator d/d ¢.

The arch is assumed to be in harmonic motion, or each coordinate is proportional to sin(w?)
where w is the circular frequency and ¢ is time. The inertia loadings per unit arc length are

then
P=mw?*w

P=m®?v

©)
©
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T=mo*’ry=ma*r*p '(w'—v) (10)

where m is mass per unit arc length.
When Egs. (5) and (6) are differentiated once, the results are

dN/d¢=EAP~'[(v"+w))+r2p2(wi+w')
=P P +w) =32 Pl (Wit w)] (11)

dM/d o= —EAP p*[(wi+w') =207 Pi(wi+w)] (12)
When Egs. (10) and (12) are substituted into Eq. (4), then

Q=p"'dM/d¢—RT
=—FEAr?p 3 [(wi+w) =207 P (w +w)]—Rm & r’ P (w'—v) 13)

where the index R is defined as follows.
R=1 if the rotatory inertia couple 7 is included (14a)
R=0 if T is excluded (14b)
The following equation is obtained by differentiating Eq. (13).

dQ/d o= —EAr’p3[(w>+wi)=5071 pi(wii+w")
+2071 (4P~ P2 = piYw i+ w)]

—Rma?’r?p ' [wi—vH)—p 1 pi(wi—v)] (15)
From Fig. 1, it is seen that the arch inclination is related to the coordinate x as follows.
31— -1 ﬂ :-—]—7—-— il _'X_:__Oil
¢ 5 ~tan [ pe ] 5 ~tan [ smh( ) (16)
When Eq. (16) is differentiated, the result is
_ dx
0= £ cosh[x—————o'SI] w0
0 pO
Define the following two arch parameters.
slzcosh[z—ﬂ] (18a)
Po
£2=sinh[x_0'51 ] (18b)
P
From Eq. (17), and with Egs. (18), the following differential operators are obtained.
d _,. _d
do =P & dx (19a)
d> _d [ .d |_ a: , d_
e’ ~ do [ do ]“p°8‘[p°g‘ dx? 8 dx] (19b)

3 2 3 a2
dd¢3 — dd¢ [dd¢2:|:p0£1 |:p02,c;12%3 +3p,8 82:1}—2 +2 gl— l)d;‘;] (19¢)
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d* _d | d°
do* do¢ d¢3

—Poal[Po 8 j4+6po f ezj3 +pye(l] 8 7) +82(681 1)dix] (19d)

The radius of curvature P at any point of the catenary is expressed as follows, where Eq.
(18a) is used.

dy 32
_ [1+( dx ) ]
23]
dx?
Also, P, p* can be expressed in terms of x by using Eq. (20) with Eqgs. (19a) and (19b). That
is

—pyer 0)

pi=28 — e =205 ey
i dpl _ 2
pi= d s =py& —— d (2p0 & 82) 2Py & (3 & _2) (22)

Now cast the differential equations of free vibration for the arch into non-dimensional form
by introducing the following non-dimensional parameters.

x=x/l, y=y/l (23)

E=w/l, n=v/l 24

f=h/l, g=1/p, (shape factors) (25)
s=1/r (slenderness ratio) (26)

Here the coordinates (x, y), the displacements (w, v), and the arch rise # are normalized by
the catenary cord length, /. The non-dimensional equation of the catenary is defined by the
shape parameters f and g as

y=f+g ' —g 'cosh[g(x—05)] (27a)
Substituting =1 and y=0 into Eq. (27a) leads to
fg—cosh(0.5g)+1=0 (27b)

For a given catenary shape factor f, the corresponding g value can be obtained by Eq. (27b)
by using the bisection method, the method used herein.

When Egs. (5), (8) and (15) together with Eqs. (19426) are used in Eq. (3), the result is Eq.
(28). Also, when Egs. (9), (11) and (13) are combined with Eq. (2), the result is Eq. (29). That
is

§"=a) " +(@a,+Ra;C ¢ "+ (as+RasCHE'
+(a6+a7C,-2)f+(ag+Ra9C',~2)77'+RawC',-2n (28)
n"=aué"+@ntRanC?) ¢ +auétaisn' +(astRan)Cin (29)

In these latter two equations, (') is the operator d/dx, and the constants are as follows.
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a=4gh A (30a)
a=—g(A*+1) (30b)
ay= —s A (30c)
A= —g A6 A —17) (30d)
as=s ‘gl A3 (30¢)
ag=—g* ' (P g A4+ 2042 —23) (30)
ar= A’ (30g)
ag=—s"gA (30h)
ay=s"gA; (301)
an=—2"g (30})
an=2"g A A’ (30k)
an=—s A g A" 24 (30D
an=s ‘gh (30m)
au=2"g L AL (g A+ D) (30n)
ais=gAA (300)
ae=—s5""75 (30p)
ap=—s*g A} (30q)
A=sinh[g(x—05)] (31a)
A=sech[g(x—0.5)] (31b)
As=cosh[g(x—0.5)] (3lc)

The non-dimensional frequency parameter is defined as
C=w;r '\P(m/EA)*=w;sl(y/E)? i=1, 2, 3, 4, (32)

where y is mass density and i is mode number.
At a hinged end (x=0 or x=L), the boundary conditions are w=v=M=0 and these relations
can be expressed in nondimensional form as

&=0, at left end (x=0) or right end (x=e¢) (33)
n=0, at left end (x=0) or right end (x=e¢) (34)
E+gAi A, =0, at left end (x=0) or right end (x=e¢) (35)

At a clamped end (x=0 or x=L), the boundary conditions are w=v=y=0 and these relations
can be expressed as the non-dimensional form as

=0, at left end (x=0) or right end (x=¢) (36)
n=0, at left end (x=0) or right end (x=¢) 37
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¢&'=0, at left end (x=0) or right end (x=e) (3%)

3. Numerical results and discussion

A FORTRAN computer program was written to calculate C;, {&=¢&(x), n=n;(x). The numerical
methods similar to those described by Leonard (1988) and Lee and Wilson (1989) were used
to solve the differential Eqgs. (28) and (29), subject to the end constraint Egs. (33)-(35) or (36)-
(38). For the sake of completeness, this numerical procedure is summarized as follows.

(1) Specify R(=0 or 1), the arch geometry (f ¢ s), and the set of three homogeneous boundary

constraints which are either Egs. (33)-(35) or Egs. (36)«(38).

(2) Consider the sixth order system, Eqs. (28) and (29), as three initial value problems whose
initial values are the three homogeneous boundary constraints x=0, as chosen in Step
1. Then assume a trial frequency parameter C; in which the first trial value is zero.

(3) Using the Runge-Kutta method, integrate Eqs. (28) and (29) from x=0 to x=e. Perform
three separate integrations, one for each of the three chosen boundary constraints.

(4) From the Runge-Kutta solution, evaluate at x=e the determinant D of the coefficient matrix
for the chosen set of three homogeneous boundary conditions. If D=0, then the trial value
of C; is an eigenvalue. If D0, then increment C; and repeat the above calculations.

(5) Repeat Steps 3 and 4 and note the sign of D in each iteration. If D changes sign between
two consecutive trials, then the eigen value lies between these last two trial values of C.

(6) Use the Regula-Falsi method to compute the advanced trial C; based on its two previous
values.

(7) Terminate the calculations and print the value of C; and the corresponding mode shapes
when the convergence criteria are met.

For these studies, suitable convergence of solutions was obtained for an increment of Ax=e¢/100.
The convergence criterion was that C; solutions obtained with a more crude increment of e/30
agreed with those obtained with the /100 increment to within three significant figures. The
numerical results, given in Tables 1-3 and Figs. 3-6, are now discussed.

The first series of numerical studies are shown in Table 1. These studies served as an approxi-
mate check on the analysis presented herein. For comparison purposes, finite element solutions
based on the commercial package SAP90 were used to compute the first four frequency parameters
C; for two cases: a hinged-hinged arch with f=0.1, e=0.75, and s=50; and a clamped-clamped

Table 1 Comparison of results between finite element solutions (SAP 90) and

this study

Geomei]ry ; Frequency parameters, C;

of arc SAP 90 This study (R=1)
Both hinged ends 1 38.31 38.07
/=01, e=075 2 6593 65.41
s=50 3 15120 147.11
4 207.67 207.34
Both clamped ends 1 73.10 72,05
f=03, e=0.75 2 130.51 128.80
s=100 3 181.53 17993
4 25643 25211
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Table 2 The effect of rotatory inertia on frequency

. Frequency parameter, C; 0/
Geometry of arch i R=0 (A) R=1 (B Effect(%)

f=0.1 1 38.20 38.07 —0.34

e=0.75 2 66.24 6541 —-127

s=50 3 15144 147.11 —2.94

Eiolfge 1 4 207.57 207.34 —0.11
end f=03 1 46.32 46.23 —0.19
e=0.75 2 107.79 107.30 —046

s=100 3 166.51 . 166.27 —-0.14

4 204.21 202.26 —0.96

f=0.1 1 49.39 49.19 —041

e=075 2 103.36 101.85 —1.48

Both s=50 3 205.73 199.30 —323
clamped 4 207.70 20740 —0.14
end /=03 1 7221 7205 —022
e=0.75 2 129.23 128.80 —0.33

s=100 3 180.57 179.93 —0.36

4 254.69 252.11 —1.02

*Effect (%)=(B—A)X 100/B

Table 3 Comparison of computed and measured results (f=0.25, e=0.75, s=218, R=1)

. Mode no. Theory Experiment o L

End constraint ; C ) + (Hz) % Deviation
Hinged-hinged 1 51.62 477.23 430. -99

2 119.13 1101.36 870. —-210

3 22124 2045.36 (1130.);1790. (—45);,—125

4 311.60 2880.74 - -
Clamped-clamped 1 80.72 746.25 640. —14.2

2 154.55 1428.81 1330. 69

3 276.80 2559.02 2180. —1438

4 314.56 2908.11 3340. +149

configuration with f=03, ¢=0.75, and s=100. The results showed that 100 three-dimensional
finite beam elements (with the omission of the shear areas associated with transverse shear
loadings) were necessary to match within a tolerance of 2% values of C; computed by solving
the governing differential Eqs. (28) and (29) in which rotatory inertia was included (R=1).

All of the numerical results that follow are based on the analysis reported herein. In Table
2, it is apparent that the frequencies increase, respectively, as the end constraints increase from
hinged to clamped, other parameters remaining the same. Further, the effect of rotatory inertia
is to always depress the natural frequencies. In these examples, for the lowest frequency (i=1),
this depression is less than 0.5%. Also, in most of these examples there is a trend of an increased
depression in frequency (3.23% at the most) when arches of like gecmetry but with increasing
end constraint are compared.

It is shown in Fig. 3, for which f=03, s=100, and R=1, that the frequency parameters C;
(=1, 2, 3, 4) decrease as the span to cord length ratio e is increased. This holds true for both
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Fig. 3 The effect of e with f=0.3, s=100 and R=1 on C; for hinged-hinged and clamped-clamped ar-
ches.

the hinged end and clamped end arches. Further, it is observed for these unsymmetric arch
configurations that two modes can exist at a single frequency, a phenomena that was previously
observed only for symmetric arch configurations (Lee and Wilson 1989). For the hinged-hinged
arch, the third and fourth modes have the same frequency at C;=C,=164.0 and e=0.831 (marked
A). Also, for the clamped-clamped arch, the third and fourth modes have the same frequency
at C3=C,=1584 and ¢=0929 (marked as OO in Fig 3).

It is shown in Fig. 4, for which /=03, e=0.75, and R=1, that the frequency parameters increase,
and in most cases approach a horizontal asymptote, as the slenderness ratio s is increased.

It is shown in Fig. 5, for which e=1, s=100, and R=1, that several of the frequency parameters
reach a peak as the rise to cord length ratio f is increased. Further, four pairs of lines cross,
which shows that two mode shapes may exist at the same frequency. That is, the lowest two
modes may exist where C,=C, at f=0.05 for the hinged arch, and at f/=0.08 for the clamped
arch. Also, the third and fourth modes may exist where C;=C, at f=0.2 for the hinged arch
and at f/=026 for the clamped arch.

Shown in Fig. 6 are the computed frequency parameters C; (i=1, 2, 3, 4) and their corresponding
mode shapes for both hinged and clamped end configurations for which f=0.25, e=0.75, s=218§,
and R=1. These arch parameters are those chosen for the experimental arches discussed in
the next section. These mode shapes are defined as A type or B type, analogous to the mode
shapes in symmetric arch geometries in which the A type is the asymmetric mode and the
B type is the symmetric mode. At the A and O points in Fig. 3, either the A or B type mode
may exist. The mode shapes for the present unsymmetric arch geometries are defined quantitati-
vely as follows.

For the hinged-hinged arch:

A type: é:”i:0° ,)?=e<0

B type: {"z=0'{"5=>0
For the clamped-clamped arch:
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4. Experimental results and discussion

Two laboratory-scale catenary arches, a hinged-hinged and a clamped-clamped configuration,
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f=0.25, =075, =218, R=1 f=0.25, e=0.75, s=218, R=1
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Fig. 6 Mode shapes with /=025, ¢=0.75, =218 and R=1 for hinged-hinged and clamped-clamped
arches.

were designed and tested to determine their lowest few natural frequencies and their corresponding
mode shapes. The experimental setup showing the clamped-clamped model only is shown in
Fig. 7. The main purpose of these experiments was to validate the proposed mathematical model
and typical numerical solutions predicted herein.

The experimental models were bent from aluminum bar stock to the catenary shape with
(x, y) coordinates described by Eq. (1). Here, 0,, the crown radius of curvature, was computed
from Eq. (25) with g computed from Eq. (27b). The geometric arch parameters were: L=30
cm, /=40 cm, A=10 cm; and cross section was rectangular: 2.54 cm wide and 0.635 cm thick.
With these dimensions, % =2149 ¢m and the nondimensional arch parameters, computed from
Eqgs. (26) and (27), were f=025, e=0.75, and s=2180.

As discussed above, the first four predicted frequency parameters C, and their respective mode
shapes for the experimental arches are presented in Fig. 6. Using these values of C; with Eq.
(32) and the material properties of the experimental arches, the experimental arch frequencies
f; (Hz) may be predicted. The material properties of the aluminum arches were: E=6.89X 10"
N/m? and y=2680 kg/m’. It follows that fi=w,;/(2m=9.245C; Hz, and these numerical values
are listed in Table 3.

The experimental setup is shown in Fig. 7. The procedures for measuring frequencies and
mode shapes follow those discussed in detail by Lee and Wilson (1989); and the methods for
reducing data follow those discussed by Ewins (1985). For the sake of completeness, those procedu-
res and methods are summarized. At each end, the arch was either hinged or clamped to a
steel connection attached to a 50 kg concrete block. Each block “floated” on a soft rubber
pad to achieve vibration isolation. Including the end points, 17 reference points were chosen
along the hinged arch, and 15 along the clamped arch. As shown in Fig. 7, a miniature accelero-
meter sensitive only to radial acceleration (in-plane bending vibrations) was affixed to the under-
side of the arch at an interior reference point. A small hammer fitted with a miniature accelerome-
ter sensitive to accelerations in the direction of impact, was used to strike each of the reference
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Fig. 7 (a) The experimental setup
(b) The modal analysis system.

points, excluding the end points. The two acceleration time histories measured at each strike
were received by a signal analyzer (Model SD380Z, Scientific Atlanta Corp.) and then processed
by a microcomputer using a fast Fourier transform (FFT) analyzer. Using all of these data,
two types of computations were then performed: (1) the frequency dependent transfer function,
defined as the ratio of the magnitude of the FFT of the arch acceleration to the magnitude
of the FFT of the hammer acceleration; and (2) the mode shape that corresponded to the fre-
quency at each significant peak of the transfer function. The experimental results are summarized
in Fig. 8, Fig. 9, and Table 3.

Shown in Fig. 8 are the transfer functions for the hinged-hinged and clamped-clamped models.
The frequencies for the major peaks of these plots are listed in Table 3. For each of these
frequencies, the measured envelopes of the mode shapes are shown in Fig. 9. These shapes
are somewhat crude since the software simply connects the measured peak node point radial
displacements with straight lines.

For the hinged arch, the three measured frequencies that occurred at the first, second, and
fourth peak of the transfer function, Fig. 8a, were 430, 870, and 1790 Hz, respectively. The measured
mode shapes for these respective frequencies, Fig. 9a, agree reasonably well with the predicted
shapes shown in Fig. 6. These three frequencies average about 14% less than the predicted values.
Natural damping present in the experimental system but absent in the theoretical model contribu-
tes to the depression of the measured frequencies. The inevitable looseness of the end hinges
and the difficulty in maintaining in-plane hammer strikes undoubtedly lead to out-of plane
vibrations, “noise” in the transfer function, and the inability to achieve meaningful results for
frequencies higher than third. Some or all of these factors probably account for the third significant
peak in Fig. 8a which occurs at 1130 Hz. At this frequency, a mode shape similar to that
at 1790 Hz was measured (Fig. 8a), but not predicted. However, the higher value of the transfer
function near zero frequency is easily explained: it is undoubtedly due to the rocking response
of the 50 kg concrete blocks which rested on rubber pads at the ends of the arch. This assembly
has the relatively low natural frequency of about 2 Hz.
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For the clamped arch, the ideal end constraints were more nearly achieved and this is reflected
in the rather “clean” transfer function shown in Fig. 8b. As shown in Table 3, the frequencies
occurring at these consecutive peaks are within 15% of the predicted values. Again, because
of the straight-line software extrapolation of mode shape data, the ends of this arch do not
approach the actual zero slope relative to the underformed arch (the dashed line). However,
at points further than about two reference points from the ends, the mode shapes are appro-
ximately in agreement with the computed ones shown in Fig. 6.

5. Conclusions

By employing the governing equations in Cartesian coordinates, the numerical methods for
calculating the free vibration, in-plane frequencies and mode shapes for catenary arches with
unsymmetric axes were found to be especially robust and reliable over a wide and practical
range of arch parameters. For hinged ends and also for clamped ends, the numerical results
showed that neither pure symmetric nor pure asymmetric mode shapes exist; but such shapes
that nearly fit these categories were identified and precisely defined. Further, at several critical
combinations of system parameters, two mode shapes were found to exist at a single natural
frequency, a phenomenon previously observed for circular arches. The inclusion of rotatory inertia
was found to depress the natural frequencies, particularly the higher ones, but in no case was
this depression higher than 4%. The experimental studies of hinged-hinged and clamped-clamped
laboratory model arches showed that most of the measured frequencies were within 15% of
the predicted ones, and that measured and predicted mode shapes were similar. Thus, these
experiments served to validate the methods of analysis.
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