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Dynamic characteristics of structures
with multiple tuned mass dampers
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Abstract. Effectiveness of multiple tuned mass dampers (MTMD) in suppressing the dynamic response
of base excited structure for first mode vibration is investigated. The effectiveness of the MTMD is
expressed by the ratio of the root mean square (RMS) displacement of the structure with MTMD to
corresponding displacement without MTMD. The frequency content of base excitation is modelled as
a broad-band stationary random process. The MTMD’s with uniformly distributed natural frequencies
are considered for this purpose. A parametric study is conducted to investigate the fundamental characteri-
stics of the MTMD’s and the effect of important parameters on the effectiveness of the MTMD’s. The
parameters include: the fundamental characteristics of the MTMD system such as damping, mass ratio,
total number of MTMD, tuning frequency ratio, frequency spacing of the dampers and frequency content
of the base excitation. It has been shown that MTMD can be more effective and more robust than
a single TMD with equal mass and damping ratio.
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1. Introduction

The concept of vibration control has been accepted and is widely applied to civil engineering
problems (Brock 1946, Tsumura 1991). The tuned mass damper (TMD) is a classical engineering
device consisting of a mass, a spring and a viscous damper attached to a vibrating main system
in order to attenuate undesirable vibration at a particular frequency. Because the natural frequency
of the damper is tuned to a frequency near to the natural frequency of the main system, the
vibration of main system causes the damper to vibrate in resonance, dissipating the vibration
energy through the damping in the tuned mass damper. The solution of determining the optimum
tuning frequency and the optimum damping of the tuned mass damper for undamped main
systems subjected to harmonic external forces over a broad band of forcing frequencies is descri-
bed in Brock (1946) and Den Hartog (1956). Using Den Hartog’s procedure Warburton and
Ayorinde (1980) have derived the optimum damper parameters for the undamped main system
subjected to harmonic support motion where the acceleration amplitude is fixed for all input
frequencies and other kinds of harmonic excitation sources. The explicit formulae for the optimum
parameters of a tuned mass damper and its effectiveness are available for different types of
excitation (Thompson 1981, Tsai and Lin 1993, Warburton 1982). Using the perturbation technique
for optimum TMD parameters under various types of loading were derived by Fujino and Abe
(1993). .

One of the disadvantages of single tuned mass damper is its sensitivity to the error in the
natural frequency of the structure and/or that in the damping ratio of the tuned mass damper.
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The effectiveness of a tuned mass damper is decreased significantly by mistuning or off-optimum
damping in TMD. As a result, the use of more than one tuned mass damper with different
dynamic characteristics has been proposed in order to improve the robustness to uncertainties
in the primary system or the TMD’s. Iwanami and Seto (1984) have shown that two tuned
mass dampers are more effective than a single tuned mass damper. However, the improvement
on the effectiveness was not significant. Recently, a multiple tuned mass damper with distributed
natural frequencies was proposed by Xu and Igusa (1992, 1994) and also studied by Yamaguchi
and Harnpornchai (1993), Abe and Fujino (1994), Jangid and Datta (1994) and Abe and Igusa
(1995). It was shown that the optimally designed MTMD’s are more effective and robust than
an optimally designed single tuned mass damper. However, there is less discussion on the physical
interpretation of the dynamic behaviour of a system with MTMD’s under important parametric
variations.

In the present paper, the effectiveness of MTMD’s in suppressing the response of base excited
main system is investigated. The frequency content of the base excitation is modeled as a broad
band stationary random process specified by its power spectral density function. In specific terms,
the objectives of the study are (i) to study the dynamic behaviour of a system with MTMD,
(ii) to distinguish between the response characteristics of a system with MTMD and a single
TMD and (iii) to study the effect of important parameters on the effectiveness of MTMD for
isolation of the main system. The effectiveness of the MTMD is expressed by the ratio of root
mean square (RMS) displacement of the main system with MTMD to the RMS displacement
of the main system without MTMD with respect to ground.

2. Structural model
The system configuration consists of a main system supported by #» number of multiple tuned

mass dampers with different dynamic characteristics as shown in Fig. 1. The main system is
characterised by natural frequency w,, damping ratio ¢, and mass m, The main system and

Xg
—l—» k1
MW Tm

N k I 1

i__.wv&/w\_ kp ¢

N Y VYV S—

N mz

N —

N Mg €2
Cg

N T

N kn

N 3 S

N Cn —

Fig. 1 Structural model.
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each TMD is modeled as a single degree-of-freedom system. As a result, the total degrees-of-
freedom of the structural system is n+1. The natural frequencies of the tuned mass dampers
are distributed around the average natural frequency of the MTMD. The various assumptions
made are: (i) natural frequencies of the main structure are well separated, (ii) the vibration
of the main system to be suppressed is a single mode, (iii) the stiffness and damping constant
of each TMD is the same and (iv) the natural frequencies of the MTMD are uniformly distributed
around their average natural frequency. The distribution of natural frequencies of the MTMD
can be made either by varying the stiffness or mass of each TMD. However, manufacturing
of TMD with uniform stiffness and damping constant is simpler than varying stiffness and
damping properties (the mass remains unchanged). It is to be noted that MTMD’s with identical
dynamic characteristics are equivalent to a single TMD. The damping ratio and natural frequency
of the equivalent single TMD are the same as those of individual MTMD. However, the mass
is the sum of all the MTMD’s mass.

Let wr be the average frequency of all MTMD’s (ie. wr= Z w;/n) and n be the total num-
=
ber of MTMD. The natural frequency of j* TMD is expressed as

. . ntl
o=or 1+(j~ 254 1] m
where the parameter 8 is the non-dimensional freqhency spacing of the MTMD defined as
p=- )

@r

If k 7 and cr are the constant stiffness and damping of each TMD, then the mass and damping
ratio of j* TMD is expressed as

kr
m;=—> 3
= ©
¢ _ _fr
S ame, 2k @
The average damping ratio of MTMD is expressed as
=34 - e

The ratio of total MTMD’s mass to the main system’s mass is defined as the mass ratio
ie.

X m; m
=&« 1T
4 m; m ©)

where my is the total mass of MTMD; and m, is the mass of main system. The ratio of total
mass of MTMD to mass of main system is taken as 1% which is the standard value of mass
ratio for a single TMD in civil engineering problems (Brock 1946, Tsumura 1991).

The constant stiffness required for designed MTMD can be evaluated by the following formu-
lae

kT:—Y—i’"sl_ ™

J=1 j
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The ratio of average frequency of MTMD to the natural frequency of main system is defined
as the tuning frequency ratio ie.

f=" 8)

(OR
2.1. Equations of motion

The (n+1) equations of motion for the structural model shown in Fig. 1 are expressed in
the following matrix form

M) X}+[CI{X}+[KI{X}=—[M]{1}%, ©

in which, {X}={xg, x1, x2, ***, x,}7 is the vector of displacements of the structural model;
x ¢ is the displacement of the main system relative to the ground; x;(j=1, 2, -*-, n) is the displace-
ment of the j* tuned mass damper relative to the ground; %, is the ground acceleration; {1} ={1,
1,---,1}7; [M], [ C] and [ K] are the mass, damping and stiffness matrices of size (n+1) X (n+
1). The matrices [M], [C] and [K] are expressed as

[M:l__—diag[:mAa nmy, my, °*°, mn:] (10)
[ cﬁ—ch —¢  —C . —Cy]
C 0 ¢ * 0

[Cl= @ -0 a1
Lsym Cn=
kY k; —k —k —k,1
ki 0 0

(K= k2 0 12)
Lsym ki

The steady state harmonic response of the system to harmonic excitation ¥ ,=e '’ (where
w is the circular frequency and i=y/—1) will be {X}=X(w)e”'®". The amplitude vector of
the steady state response, X(w) is given by

—[m11{1}
—w*(M]+iwlCl+[K] (13)

The mass matrix, [M] is diagonal, [C] and [ K] matrices have non-zero terms only along
the diagonal, the first row and the first column. As a result, the matrix in denominator of
Eq. (13) can be inverted using the Cramers rule. The first element of vector, X(w) which is
the amplitude of the displacement of the main system is given by

m,—(iw) 'Z(w)
k,—iwc,—0*m,—i 0Z ()

X(@)=

x (@)= 149

where,
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_ < mi(ki—iwc))
Z(w) zcoj; k—iwo—o'm) (15)

If the base excitation is modeled as a stationary random process characterised by its power
spectral density function (PSDF) then the PSDF of the displacement of main system (Nigam
1983) is given by

S,,(@)=1x,@)S;, (o) (16)

where S;;g(co) is the PSDF function of the ground acceleration.
The mean square displacement of the main system is

oi= f °S, (@)do (17)

3. Numerical study

In this section, the effectiveness of MTMD in suppressing the dynamic response of main
system is analysed under the important parametric variations. The parameters include: (i) damping
ratio of MTMD (&), total number of MTMD (#), mass ratio (y), frequency spacing parameter
of MTMD ( f), tuning frequency ratio ( /) and frequency content of ground excitation. In addition,
the effect of the distribution of frequencies of the MTMD around the mean frequency is
investigated. The damping ratio of the main system is taken as 2% of critical. The system is
subjected to a base acceleration ¥, and its PSDF function is modeled as a stationary
white-noise random process ie.

E[%,(0%,(t+91=278,8(2) 18)

where E is the expectation operator; S, is the intensity of white-noise excitation; 8(*) is delta-
diarc function. However, the effect of frequency content of ground excitation is also investigated.

The response quantity of interest is the root mean square (RMS) displacement of the main
system. In order to study the effectiveness of MTMD, it is convenient to express the response
in terms of the response ratio, R, defined as:

R= RMS displacement of main system with MTMD
RMS displacement of main system without MTMD

19

The response ratio R is a measure of the effectiveness of MTMD. The ratio being less than
unity implies that the RMS displacement of the main system with MTMD has been reduced
in comparison to the response without MTMD and effective in reducing the dynamic response
of the system. The effect of parameters, {7, n, 7, B8 and f is investigated for white-noise excitation
and uniform variation of frequencies of the MTMD. However, the effect of the distribution
of frequencies is investigated separately. '

3.1. Effect of damping ratio of MTMD (&)

Fig. 2 shows the variation of response ratio R against the damping ratio of the MTMD for
n=1 and 21. The frequency ratio and frequency spacing parameter of the MTMD are taken
as 1 and 0.2, respectively. At sufficiently high damping, the response ratio R slowly increases
with the increase of damping. However, at low damping there is a significant difference between
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Fig. 2 Variation of response ratio R against damping ratio of MTMD (&7) y =1%, =02 and /=1
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Fig. 3 Variation of response ratio R against total number of MTMD (n) and non-dimensional frequency
spacing, B for {r=1%, y =1% and f=1.

the effectiveness of a single TMD and the MTMD. The single TMD provides the minimum
response at approximately 5% damping which confirms the conclusion of Warburton (1982).
For lower value of damping the single TMD loses all of its effectiveness the response ratio
R approaches unity which corresponds to response of the main system without a tuned mass
damper. Further, the MTMD is significantly less sensitive than the single TMD at low value
of damping ratio. Fig. 2 also shows that the MTMD can be more effective than a single TMD,
the difference being more pronounced at low damping. Thus, the MTMD can provide better
attenuation of base excited vibrations, and can do so with a smaller damping ratio of each
auxiliary mass, than the damping ratio of an optimal single TMD.

3.2. Effect of total number of TMD (n)

In Fig. 3, the variation of response ratio R is plotted against the total number of MTMD
for f=0.1, 02 and 04. The damping ratio of each TMD is taken as 1% and tuning frequency
ratio is unity for all cases. As the total number of MTMD increases the effectiveness of MTMD
in suppressing dynamic response of main system increases. It is to be noted that n=1 indicates
isolation of the main system by a single TMD and the figure shows that the response ratio
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Fig. 4 Variation of response ratio R against mass ratio (y) &=1%, =02 and f=1.
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Fig. 5 Variation of response ratio R against frequency range of MTMD (f) n=21, y =1% and f=1.

R is maximum for all values of frequency range parameter. Thus, the MTMD is more effective
than a single TMD. Further, the increase in the number of TMD’s beyond a certain value
(in this case n=11), the effectiveness of MTMD remains almost invariant.

3.3. Effect of mass ratio (y)

In Fig. 4 variation of the response ratio R is plotted against the mass ratio y for n=1, 11
and 21. The value of other parameters taken are: &=1%, f=02 and f=1. The figure indicates
that the response of the system with MTMD is more sensitive to the mass ratio as compared
to the response with a single TMD. The optimum value of mass ratio is around 1% for a
single TMD. However, for the MTMD it is in the range of 2 to 3%. Further, for all values
of the mass ratio MTMD are more effective than a single TMD.

3.4. Effect of frequency spacing parameter of MTMD (f)

In Fig. 5, the variation of the response ratio R is plotted against the non-dimensional frequency
spacing, f of the MTMD for damping ratio ¢ equal to 1%, 2% and 5%. The total number
of MTMD’s is 21 and tuning frequency ratio is equal to unity. Fig. 5 shows that the frequency
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Fig. 6 Variation of response ratio R against tuning frequency ratio (f) &=1%, y=1% and $=02.

spacing of the MTMD significantly influences the effectiveness of MTMD. There exists an opti-
mum value of the frequency spacing parameter (in the range of 0.1<8<0.2) which provides
maximum effectiveness of the MTMD for a given damping ratio of MTMD. This optimum
value of frequency spacing parameter decreases with the increase of the damping ratio of the
MTMD.

3.5. Effect of tuning frequency ratio (f)

In Fig. 6, the variation of response ratio R is plotted against the tuning frequency ratio (f)
for total number of TMD equal to 1, 11 and 21. The frequency spacing parameter, f, of the
MTMD is taken as 0.2. The damping ratio of MTMD is taken as 1%. Fig. 6 shows that there
exists an optimum value of tuning frequency ratio at which the response of main system becomes
minimum for both single TMD and MTMD. The optimum value of the frequency ratio occurs
in the vicinity of unity (0.99 for single TMD). It is to be noted that response ratio R remains
almost invariant for a wider range of tuning frequency ratio where maximum effectiveness occurs.
This implies that if there is an error in the natural frequency of the main system (in this case® 5%)
the MTMD is still effective.

4. Effects of distribution of frequencies of MTMD

The parametric variation investigated earlier is based on that the natural frequencies of the
MTMD are uniformly distributed around the mean frequency of the MTMD. This implies that
the natural frequency of MTMD varies uniformly as shown in Fig. 7 by Type-I and expressed
by Eqg. (1). However, it will be interesting to study where the frequency of MTMD are varied
non-uniformly (parabolic) as shown in Fig. 7 by Type-Il and Type-IIl. The natural frequency
of the j* TMD for Type-II and III variation of frequencies of the tuned mass damper, respectively
is expressed as

w,=wr[1+—’ﬁ2—]"1\,‘—”'l —2%] | 0)

_ Jl
wj—wT[H—N— —2%] 21



Structures with multiple tuned mass dampers 505

Natural frequency of TMD, v
£

I X t
1 (n+)/2 n
TMD number, |

Fig. 7 Distribution of the frequencies of the MTMD.
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Fig. 8 Variation of response ratio R for different distribution of frequencies against number of MTMD
for £&=1%, y=1% and =02, and f=1.

where the parameter J and N are related to j and n by the relation

J=j—211 22)
n=-2—1 (23)
)

Fig. 8 shows the variation of the response ratio, R, for the different distributions of TMD
natural frequencies against the number of MTMD, n for {r=1%, y=1%, =02 and f=1. Fig.
8 indicates that as the number of MTMD increases the effectiveness increases for the three
types of the frequency distributions. The uniform distribution of frequencies of the MTMD (Type-
I) performs best of the three. Fig. 9 shows the variation of the response ratio R for different
distribution of frequencies against frequency spacing of MTMD for &=1%, n=11, y=1% and
f=1. Type-I provides maximum effectiveness for optimum frequency spacing. However, for freque-
ncy spacing lesser (greater) than the optimum value Type-II (Type-III) performs better than Type-
I, respectively. Further, the effectiveness of MTMD with Type-IlI distribution is relatively insensi-
tive to the variation of the frequency spacing in the higher range. In Fig. 10 the variation of
the ratio R for different frequency distributions is plotted against tuning frequency ratio, f for
&=1%, n=11, y=1% and B=0.2 which also shows the similar trend. Thus, an optimally designed
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Fig. 9 Variation of response ratio R for different distribution of frequencies against frequency spacing
of MTMD for &=1%, n=11, y=1% and f=1.
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Fig. 10 Variation of response ratio R for different distribution of frequencies against frequency ratio
(f) for &=1%, n=11, y=1% and =02

MTMD system with a uniform distribution of frequencies is more effective than other non-uni-
form distributions.

5. Influence of frequency content of ground excitation

In order to study the effect of frequency content of ground excitation on optimum damping
of isolator the ground acceleration is modeled as filtered white-noise (Kanai-Tajimi spectrum).
The power spectral density function of the ground acceleration is expressed as

1+4& (0/ wg)
(ol o FHaE @,y @4

where S, is the intensity of input white-noise; ¢, is the damping ratio of the ground filter; and
w, is the predominant ground frequency.

Fig. 11 shows the effect of excitation frequency on the variation of the response ration R,
for different numbers of MTMD for &=1%, y=1%, =02 and f=1. The damping constant
of the ground filter is taken as 0.5. Fig. 11 indicates that the effectiveness of the MTMD is
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Fig. 11 Effect of excitation frequency on the variation of response ratio R for different number of MTMD
for &=1%, y=1%, p=02 and f=1.
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Fig. 12 Effect of excitation frequency on the variation of response ratio R for different frequency spacing
of MTMD for &=1%, n=21, y=1% and f=1.

reduced for low frequencies of excitation (®,/ @,<1). However, it remains constant for the variation
of w,/w, beyond unity. Similar effects of excitation frequency can also be observed in Fig.
12 where the variation of the response ratio R is plotted for different frequency spacings.

6. Conclusions

The effectiveness of MTMD in reducing the dynamic response of a base excited system is
investigated. The responses of the system with MTMD are compared with those of the same.
system without MTMD. A parametric study is conducted to investigate the fundamental cha-
racteristics of the MTMD’s and the effect of important parameters on the effectiveness of the
MTMD’s. Further, the difference between the performance of a single TMD and MTMD is
also investigated. From the trends of the results of this parametric study, the following conclusions
may be drawn:

(1) The optimum designed MTMD is more effective for vibration isolation of a system than
the optimum single TMD. Further, the increase in the number of TMD beyond a certain
value (in this case n=11), the effectiveness of MTMD remains almost invariant.

(2) The optimum damping ratio in MTMD is significantly lower than optimum damping
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ratio for a single TMD. For MTMD it is less than 1%.

(3) The mass ratio influences the effectiveness of the MTMD significantly. The optimal mass
ratio for the MTMD is in the range of 2 to 3%.

(4) There exists an optimum value of frequency spacing parameter (in the range of 0.1 to
0.2) for which the effectiveness of MTMD is maximum. This optimum value decreases
with the increase of the damping ratio of the MTMD.

(5) The optimum value of the tuning frequency ratio for MTMD is in the vicinity of unity.

(6) The effectiveness of MTMD is not much influenced by the changes in, or estimation
errors in, the natural frequency of main system (in the range oft 5%).

(7) An optimally designed MTMD system with a uniform distribution of frequencies is more
effective than other non-uniform distributions.

(8) The effectiveness of MTMD is reduced for low frequency excitations (w,/@,<1).

Notations
c; damping of j* TMD
cr damping constant of each TMD
[c] damping matrix
E expectation operator
f tuning frequency ratio
J parameter defined in Eq. (22)
k; stiffness of the j* TMD
kr stiffness of each TMD
[K] stiffness matrix
m; mass of j* TMD
mr total mass of MTMD
my mass of the main system
[M] mass matrix
n number of the tuned mass dampers
N parameter defined in Eq. (23)
R the response ratio

Si, (@) PSDF function of the ground acceleration
o the intensity of white-noise excitation
Sy (@) PSDF of the displacement of main system

X displacement of the main system relative to ground
X, displacement of the j* tuned mass damper relative to ground
Xg ground acceleration

X(w) amplitude vector of the steady state response

{X} the vector of displacement of the structural model
Z(w) defined in Eq. (15)

B non-dimensional frequency spacing

Y mass ratio

@ circular frequency

@ average natural frequency of the MTMD

®, natural frequency of the j* TMD

W, predominant ground frequency

ON natural frequency of the main system

& damping ratio of the ground filter

& damping ratio of the main system

& damping ratio of j* TMD
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ér damping ratio of each TMD
8(¢) delta-diarc function
o3, mean square response of the main system
{1} vector of unity
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