Structural Engineering and Mechanics, Vol 3, No.5 (1995) 463-474 463
DOI: http://dx.doi.org/10.12989/sem.1995.3.5.463

On the large plastic deformation of tubular
beams under impact loading

B. Wangt

School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 2263

Abstract. When a tubular caatilever beam is loaded by a dynamic force applied transversely at its
tip, the strain hardening of the material tends to increase the load carrying capacity and local buckling
and cross-sectional overlization occurring in the tube section tends to reduce the moment carrying capacity
and results in structural softening. A theoretical model is presented in this paper to analyze the deforma-
tion of a tubular beam in a dynamic response mode. Based on a large deflection analysis, the harde-
ning/softening M-« relationship is introduced. The main interest is on the curvature development history
and the deformed configuration of the beam.

Key words: clastoplastic deformation; dynamic plasticity; large deflection; hardening/softening moment-
curvature relationship; impact; pipe whip

1. Introduction

The response of structures under intense dynamic loading is of practical interest in many
engineering areas, such as crashworthiness, collision protection, etc. The structures usually undergo
large inelastic deformation under large impact loads and this poses significant problems in theore-
tical investigations. Due to the complexity caused by the combination of elastic and plastic
deformations with moving boundaries between these two regions, only few cases are available
for complete solutions. In most cases, the influence of material elasticity is usually neglected
under the assumption that the input energy is many times larger than the maximum elastic
energy which can be stored in the structures, also the strain hardening and strain rate effects
are neglected, thus the material can be regarded as rigid-perfectly plastic and all plastic deforma-
tion can be confined at one or several individual plastic hinges. The hinge(s) may be stationary
or traveling along the structural segments with the rest of the structure remains undeformed
but acquires kinetic energy and moves rigidly. This idealization often allows the development
of simple theoretical solutions which are satisfied for design purposes (Parkes 1955, Jones 1989,
Stronge and Yu 1993, Reid, et al. 1995a, etc.).

For a tubular beam under transverse or bending loads, the ovalization of the cross-section
reduces the bending rigidity of the tube, so that when this reduction overwhelms the effect of
strain hardening of the material, the bending moment decreases from its limit-point maximum.
As far as the moment-carrying capacity is concerned, a tubular beam may display hardening
and softening behavior. Much work has been carried out in an effort to understand this phenome-
non under static pure bending (e.g. four-point bending) conditions and on fully clamped cantilever
tubes, such as Reddy (1979), Calladine (1983). Kyriakides and Ju (1992) and Yu, er al. (1993).
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However few analyses have been seen on the dynamic response of tubes. This paper, based
on a rigid-plastic beam/elastic-plastic root spring model, presents an analysis on a tubular beam
with a hardening/softening M-k relationship under a step load applied transversely at its tip.

2. Theoretical modeling

With energy consideration in mind, it is assumed that the structural model consists of a rigid-
perfectly plastic cantilever beam and an elastic-plastic rotational spring at the beam root (Fig.1).
In other words, the beam itself has no capacity to store any elastic strain energy, but the root
constraint is elastic-perfectly plastic, instead of the usual fully clamped one. This beam-spring
model was first introduced by Wang and Yu (1991) in connection with the Parkes’ problem
(1955), an impulsively (initial velocity) loaded rigid-plastic cantilever beam carrying a tip mass.
It was aimed to investigate the influence of material elasticity and the results showed several
possible modes of response, in contrast to Parkes’ single solution. The multi-mode solution agrees
well with a finite element study carried out earlier by Reid and Gui (1987). This model was
extended by Wang (1994) to a concentrated dynamic force loading resulting in several response
modes with a plastic hinge initiated at a location in the beam a distance from the loading
point, which is different from a velocity input where the hinge is inevitably started at the point
of impact.

The present study is composed of two parts. First the above small deflection beam-spring
model, which is only valid at initial stages of the impact, is extended to a large deflection one,
thus the deformation history and configurations of the deformed beam can be examined. Secondly,
a rigid, hardening/softening model is applied to the beam in which a plastic zone (not a hinge
any more) is formed. With the plastic zone traveling (in a similar way to a traveling hinge)
towards the root of the beam, permanent curvature along the tube is formed. An iterative algorithm
is developed to calculate the exact solution.

2.1. Governing equations of the beam-spring model

Consider a straight beam subjected to a dynamic force F applied at its tip, it is assumed
that there is an elastic-perfectly plastic rotational spring at the root of the beam, as shown
in Fig.l. The beam is made from a rigid-perfectly plastic material and has mass per unit length
4 total length L and a tip mass G. The spring becomes plastic when the moment on it reaches
M, (see Fig. 2), exactly the same value of the dynamic fully plastic bending moment at the
cross-section of the beam. The elastic stiffness K is defined on the basis that all of the elastic
strain energy capacity of the beam is lumped into the root spring. Thus while the beam is
considered to be rigid, the system as a whole has the same elastic energy storage capacity as
that of a fixed-ended elastic plastic beam, which means K=EI/L, where EI is the flexural rigidity
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Fig. 1 The beam-spring model.
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Fig. 2 Characteristics of the rotational spring at the beam root
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Fig. 3 Definitions of coordinates and free body diagram

of the beam as if its elastic properties were not ignored
Static analysis shows that when FSFy=M,/L, there will be no failure anywhere. And when

F>F,, a plastic hinge will appear either at root B or in the beam
Assuming that a hinge H is formed at a distance A from the tip in the cantilever, Fig. 3

shows the coordinates and free-body diagram of beam segments. & is the angular velocity of
the rotational spring at the root, @ is the angular velocity of segment AH at the hinge relative

to segment HB. Derivation of the governing equations of the beam is given in an appendix

and they are listed as follows.
For segment AH
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GU©, M)+u J' AU(s, A)ds= —(Fsin(9+ a)+N,cos9) (1)

A
GW (0, 1)+ u f W(s A)ds=Fcos(9+a)+N,sind )
0

where N, is the axial force at the hinge caused in part by the centrifugal effect of the angular
velocity in segment AH. Since it does not produce any bending moment about the root B, the
rate of change of moment of momentum of segment AH about B is

A
GLU®©, )W, A)—W©O, )T, A))+u| (U WV V)= DU A)lds

=Fcos(8+a)U(0, A)+Fcos(8+a)W(0, A)—M, 3)

M, being the bending moment at the hinge.
For segment HB, it gives

u f U(s)ds=N,cos 9—N, @
,uf W(s)ds=N,sin3—0Q, %)
u f LU W)~ Ws)Uis)lds=M,—M, (6)

where Q, and M, are the shear force and moment at the beam root, respectively. Explicit
expressions of the above governing equations are given in an appendix.
M,

The yield criterion at the hinge are
Ny V'
M, +( N, > =1 @)

Note that at =0, N,, M(=K9 and all angular velocities are zero, and also M,=M, After
a lengthy manipulation, we have

B A IM. U\ My (, (3L N Ad

Thus, with the magnitude of the dynamic force F given, the initial hinge position can be
calculated from Eq. (8). The moment at the beam root is given by its definition:

M= {Kﬁe elastic or unloading
" (£ M, otherwise

©)

There are in total seven unknowns in the above Egs. (1) to (7) and they can be solved with
a standard numerical procedure, such as a fourth order Runge-Kutta method.

2.2. A hardening/softening model
The hardening/softening M-k (bending moment-curvature) relationship of a tube can be deter-

mined experimentally or numerically, provided the stress-strain relation of the material and di-
mensions of the tubular cross-section are specified. Assuming that the tube material obey a
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Fig. 4 Idealized bending moment-curvature relationship.

power law relationship between stress, o, and plastic strain, ¢,, this serves as a good representation
for the mild and stainless steel. Then the critical curvature k., at which the bending moment

attains a maximum, is estimated as |
0.7t/n
KR 3 (10)

where ¢ and a are the wall thickness and the average radius of the tube, respectively, and »
is the index in the power law o=A¢, . By taking the material strain-hardening and the ovalisation
of the cross-sections into account, a three-phase M-k relationship is obtained: (i) rigid phase,
M<M,, =0, (ii) hardening phase, M,.<M<M,,, 0<k<k,; (iil) softening phase, M<M,,, «,<k,
as shown in Fig. 4. The above rigid-perfectly plastic model can be modified to incorporate
this M-k relationship. Computation of the dynamic deformation of a tube can be carried out
in the following steps:

Step 1. At each time instant ¢, assume a value of M,, where M,<M,<M,, M, and M, being
respectively the elastic bending moment limit of the tube and the maximum value of bending
moment at which softening starts in the hardening/softening model. By using M, as M;, Egs.
(1) to (7) can be solved and the bending moment distribution along the tube can be obtained.

Step 2. Calculate curvature distribution in the plastic zone where the bending moment is
higher than M, by using the hardening/softening M-k relationship.

Step 3. Calculate angular acceleration distribution in the plastic zone, then from which, shear
force distribution in the beam.

Step 4. Calculate bending moment distribution along the beam and compare with the original
bending moment distribution in Step 1.

Step 5. Iterate the whole procedure by changing the value of M, until an accepted accuracy
of an “accurate” bending moment distribution is obtained. Then the shear force and curvature
distribution can be settled.

Step 6. Repeat Steps 1 to 5 for the next time interval, z+ ¢ until the hinge reaches the root
or ceases to act.

Step 2 can be performed by discretising the plastic region into small segments, as shown
in Fig. 5, then through pre-defined M-k relationship one can get rotational angles then angular
accelerations over each individual segment. Since the material is assumed rigid-hardening/soft-
ening, there is no spring-back. Thus as long as the maximum bending moment during the
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Fig. 6 Development of plastic zone. Step loading, F=17000 N.

entire response for every cross-section is recorded, the final curvature distribution can be determi-
ned.

3. Numerical results

Calculations were carried out on a two inch bore mild steel specimen. It has an outside
diameter of 50.8 mm, a wall thickness of 2.6 mm, a total length of 3 m and a mass per unit
length of 322 kg/m. The tip mass is 1.8 kg on which a step force was applied transversely.
For this tube, M-k relationship is approximated by

(i) in the rigid phase

3

k=0, M<M,= 52-M,=1050 Nm;

(ii) in the hardening phase
M(x)=1050+920x— 3002, 0Lk<K,
(iii) in the softening phase
M(x)=1900(1 —0.031 «?), K>«

Different load magnitudes were used to examine the effect of the amount of externally supplied
energy on the response of the tube. For a step loading of magnitude F=17,000N, Fig. 6 shows
the plastic region formed along the pipe at various time, which is clearly different from the
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Fig. 7 Curvature evolution along the tube. Step loading, F=17000 N.
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Fig. 8 (a) Development of plastic zone. Step loading, F=8000 N;
(b) Curvature evolution along the beam. Step loading, F=8000 N.

plastic hinge in a rigid-perfectly plastic model as discussed by Reid and Wang (1995b). Note
that the energy is dissipated in all the plastic zone in this model while in the rigid-perfectly
plastic one, only the hinge consumes energy. The plastic region expands while it moves towards
the root of the tube, and the boundaries of the plastic region indicate the loading and unloading
fronts in the pipe. Curvature develops along the tube as the plastic region moves. Fig.7 gives
the curvature distribution history of the pipe under the same load. Clearly, the value of curvature
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Fig. 9 Comparison of deformed tube on hardening/softening, rigid, perfectly plastic models and test
results (Reid, et al. 1995a)

increases while the deformation progresses. According to the rigid-perfectly plastic model, the
beam root is not disturbed until the traveling hinge reaches there and makes a transition for
the dynamic response from a transient phase to a model phase. In the present hardening/softening
model, however, the root begins its plastic deformation much earlier, and sustains more plastic -
deformation when the peak of bending moment approaches it.

Fig. 8 shows another example. The step load is F=8,500 N, beam parameters being the same.
Compared with the above case, the loading is much less and so is the curvature. Fig. 9 gives
the comparison amongst the deformed beam configurations based on the hardening/softening
model, the rigid-perfectly plastic model and experimental results (Reid and Wang 1995b) under
the same load magnitude. The improvement of the deformed beam shape under the hardening/so-
ftening model is clearly illustrated.
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4. Discussions

Based on a large deflection, rigid-perfect plastic model, an analysis on the hardening/softening
characteristics of a tubular beam under a transversely applied dynamic load has been performed.
The elasticity of the beam is lumped to a rotational spring at its root. It shows that the curvature
distribution along the tube due to its dynamic plastic deformation can be calculated through
iteration of bending moment distribution thus an exact solution was achieved. The nature of
the large deflection analysis makes it possible to compare the deformed configurations of a
dynamically deforming tube with those of tested specimens. Improvements in the deformed shapes
are clearly demonstrated.

In the present model, the beam root remains elastic-perfectly plastic. Yu, et al. (1993) studied
the deformation of the end portion of a fully clamped tubular cantilever under a tip force loading.
Incorporation of their finding may further improve the current hardening/softening model.
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Appendix

Derivation of governing equations of the beam-spring model



472 B. Wang

Assuming that under the dynamic tip load, a plastic hinge H is formed at a location in the beam
measured A from the tip. Fig. 3 shows the definition of the coordinates. System XBY is fixed at B with
X in the undeformed direction of BA and system X,HY, has its origin at the current hinge H with
X, in the direction of the rigid segment BH. With the hinge moving towards B and segment HB rotating
about the root, system XHY, is a local moving frame. And frame XBY can be regarded as a global
static one. Denote & the angular rotation of the rotational spring at the root, and « the angular rotation
of segment AH at the hinge relative to segment AB. For an arbitrary point S in segment AH, its coordinates
in system X\HY, are

u@s 1)=[cosa(é, Ad¢ (Al)
and
A
wis, A)= josin a(& ANVdéE (A2)
In global system XBY, they become
U, A)=U,+u(s, AcosF—w(s, A)sind (A3)
Wis, MD=Witu(s, Asind+w(s A)cosd (Ad)

where U, and W, are coordinates of hinge H in system XBY which are obtained by putting {=A in
the following coordinates of an arbitrary point, distance ¢ from A in segment HB in global XBY system,

U($)=(L—{)cosd (A5)
W({)=(L—¢)sind (A6)

¢ being within the region [ A L] and L being the total length of the beam. Thus coordinates of point
S can be written as

Ui, DA)=LL—A+u(s A)lcosd—w(s Asind (A7)
W, A)=[L—A+u(s A)lsind—w(s, A)cosd (A8)

Differentiating Eqs. (AS5) to (AS8) twice with respect of time produces the corresponding accelerations,

U(&)=—(L~¢)sin 99— (L—¢)cos 99 (A9)
W(&)=(L—¢)cos 39— (L—¢)sin 99 (A10)
U, A)=—L(L~Nsind+u(s Asind+w(s AcosI] I
—[(u(s Asin9+w(s A)cosIa
- [(L—A)cos d+u(s, Acosd—w(s, A)sind] P>
~Lu(s, Acosd—w(s, A)sind] P
—2[(u(s. AycosI—w(s, AsinF] Ja—sin FAx (A11)
W, A)=[(L—A)cosI+u(s, AcosI—w(s A)sind]
+[u(s, Acosd—w(s Aysindla
—[(L—A)sin 8+u(s, sind+w(s A)cosd] P
—[u@s, Asind+tw(s, A)cosd]a?
—2[u(s, A)sind+w(s Acosd] da+cos I (A12)
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Substituting the above accelerations into Egs. (1) to (6) gives the explicit form of the governing equations.
For segment AH, the equation of translational motion in X direction is

{G[(L-/l)sinf}wLu(O, A)sin 3+w(0, A)cosI] }
+ ul(L—A) Asin §+ii(A)sin 9+ir(A)cos §]
+{GLu(0, A)sin 3+w (0, A)cosF]+ ulii(A)sin F+i(A)cosF}a

+{G[ (L—A)cos 9+u(0, A)cosF—w(0, 1)sinJ] } 9
+ ul(L—A)Acos 3+ii(A)cos §—ir(A)sin §]

+{GLu (0, A)ycos I—w(0, A)sin ]+ ulii(A)cos §—ir(A)sin I}

+2{ GLu (0, Aycos 9—w(0, A)sin ]+ ulii(A)cos §—ir(A)sin I} da

+(G+ pA)sin §ad

= Fsin(§+a)+N,cos I (Al13)

A A
where ilzfou(s, Ads and L= fow(s, A)ds are the first moments of the deformed segment about

the local frame X.HY,.
The equation of translational motion in Y direction is

{G[(L—A)cos I+ u(0, A)cos 3—w(0, A)sinF] };-9
+ (L —A)Acos §+i1(A)cos §—i(A)sinF]
+{GLu(0, A)cos 3—w(0, A)sin ]+ ulii(A)cos d—ir(A)sin I} a

H{G[ (L—A)sin 9+u(0, A)sin 3+w(0, A)cos ] } g2
+ ul(L— A)Asin §+ii (A)sin 3+i2( A)cos 9]

—{GLu (0, A)sin9+w(0, A)cos I+ ulii(A)sin d+i(A)cos I} &
—2{ GLu(0, A)sin 9+w(0. A)cosF+ ulis(A)sin I+i(A)cos 9} da
+(G+pd)sin dad
= Fcos(3+ a)+N,sind (Al4)
The rotational equation of AH about B is
{G[(L—/l)z‘l-uz((), A)+wi0, A)+2(L—ADu(, )] }8
+ul(L=AY A +ig(A)+2(L—A)ir ]
F{GLL—D)u(0, A+u20, H)+w(0, M)+ ulio(A)+2AL—A)i 1} &
—[G(L—2yw(0, A)+u(L—N)ix]a>—2LG(L—)w(0. A)+pu(L—A)i]da
{GOL—A+u(0, )]+ ul(L—A)A+i 1} ad
=F[L—A+u(0, A)]cosa+Fw(0, A)sina—M, (A15)
A
where = f 0[uz(s, A)+w?(s, A)lds is the second moment of the deformed segment about the current
hinge.
For segment HB, the equations of translational motion in X and Y directions are, respectively,

g-(L—x)z sin 99+ }21—(L-/1)2 cos FF=N,—Nycos d (A16)

and
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{;“—(L—A)Z cos 99— 121—(L—A)2 sin §F= —Q,+Nycos & (A17)
The equation of rotational motion about B is
3A(L—/1Y=Mh—M,. (A18)

There are in total seven unknowns, ie., A, &, a, My, N,. N.. Q,. Combined with Egs. (7) and (9), Egs.
(A13) to (A18) can be solved numerically.

Let the root rotation be zero, then 9=3=9=0. This is equivalent to a fully clamped beam. Then
Egs. (A13) to (Al5) become identical to the governing equations in a large deflection, rigid-perfectly
plastic analysis of a straight cantilever. as discussed by Reid, et al. (1995a).





