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Abstract. The most known continuum damage theories for brittle structures are suitable to model
the degradation of the material due to the deformation process and the consequent initiation of a macro-
crack. Nevertheless, they are not able to describe the propagation of the crack that leads, eventually,
to the breakage of the structure into parts that undergo rigid body motion. This paper presents a theory,
formulated from formal arguments of Continuum Mechanics, that may describe not only the degradation
but also the fracture of elastic structures. The modeling of such a discontinuous phenomenon through
a continuous theory is possible by taking a cohesion variable, related with the links between material
points, as an additional degree of kinematical freedom. The possibilities of the proposed theory are
discussed through examples.
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1. Introduction

In the last few years, many different continuum theories have been proposed to describe the
behavior of brittle materials. Among others we can refer to the studies developed by Bazant
and Pijaudier-Cabot (1988), Bui, er al (1981), Marigo (1985), Quoc Son (1984), Simo and Ju
(1987), Florez (1989), Fremond, et al. (1990), Costa Mattos, er al. (1992).

It is generally accepted that continuum damage theories are suitable for the prediction of
the degradation of the material due to the deformation process and the consequent initiation
of a macro-crack. Nevertheless, even the theories that perform a mathematically correct and
physically realistic description of the degradation of an elastic structure (including the strain-
softening and localization behaviors) generally are not able to describe the evolution of a macro-
crack and, consequently, the process that leads to its complete rupture.

It is also generally accepted that the evolution of a macro-crack can be reasonably described
by theories developed within the framework of Fracture Mechanics, where an initial crack is
assumed to exist (Liebowitz 1968-1972, Boeck 1974). Hence, in order to study:

(i) The degradation of a brittle structure due to the elastic deformations;
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(ii) The initiation of a macro-crack;

(tii) The propagation of the crack until the structure is broken into parts that undergo rigid
body motion.

It is usually necessary to use a continuum damage model to describe the degradation of
the body until a macroscopic crack initiation and then to use a fracture mechanics model to
describe the propagation of the crack. The gap between Continuum Damage Mechanics and
Fracture Mechanics has been pointed out by many authors (e.g, Lemaitre 1984, Lemaitre and
Chaboche 1990).

This paper presents one model that describes both the degradation and the fracture of elastic
structures which is formulated from formal arguments of Continuum Mechanics. The two main
features of this model are:

(i) The governing equations are obtained within the framework of a micro-structure theory
since a scalar variable S (called cohesion variable and related with the links between material
points) is introduced as an additional kinematic variable.

(ii) The constitutive equations are developed within a thermodynamic framework. The basic
assumption is that the thermodynamical state of a given material point at a given instant
is a function not only of the strain £ and of the absolute temperature 6 but also of the
cohesion variable B and of its gradient Vp.

It is worth recalling that, in general, the continuum damage theories are not micro-structure
theories. Besides, they do not consider the gradient of the damage variable as a state variable.

The possibilities of the proposed theory are discussed through the simulation of a rectangular
plate submitted to prescribed displacements. The role of the material constants that appear in
the constitutive equations is discussed and analysed. In this case there is a unique solution
of the problem until the complete rupture of the plate into two parts that undergo rigid body
motion. A predicted macrocrack is the set of points in the structure where the cohesion has
reached its critical value. An approximation of the solution is easily obtained using classical
finite element techniques. The proposed model describes the phenomenon of strain localization
due to strain-softening. In the present study the presence of the term A f in the balance equation
that governs the evolution of the variable B prevents the occurrence of discontinuous cohesion
gradients and, consequently, the occurrence of discontinuous displacement gradients. This fact
allows an adequate simulation of severe local deformations without the numerical difficulties
of mesh-dependence (Needleman 1987) that arise in others continuum damage models (Sampaio
and Martins 1992)..

2. Preliminary definitions

A damageable body is defined as a set of material points B which occupies a region {2 of
the euclidean space at the reference configuration. In this theory, besides the classical variables
that characterize the kinematics of a continuum medium (displacements, velocities and accelera-
tions of material points), an additional variable &[0, 1], called cohesion variable, is introduced.
This variable is related with the links between material points and can be interpreted as a
measure of the local cohesion state of the material. If p=1, all the links are preserved and
the initial elastic properties are also preserved. If =0 a local rupture is considered since all
the links between material points have been broken. Since the degradation is an irrevers-
D(e)

ible phenomenon, the cohesion variation rate BZ—DE ( D

Dr is the material time derivative
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of (e )) must be negative or equal to zero. It is important to remark that the links between
material points can be broken by a deformation (variation of the distance between material
points) or by non mechanical actions (chemical or electromagnetical actions, for instance).

In the next sections the basic principles that govern the evolution of this kind of continuum
is presented. For the sake of simplicity the hypothesis of small deformation will be assumed
throughout this work. Hence, the density p is assumed to be constant in time and the conservation
of mass principle is automatically satisfied.

The proposed principles may be regarded as a special case of the theories of micro-structures
(Mindlin 1964, Toupin 1964). In particular these governing principles are very close to those
proposed in the theory of elastic materials with voids (Cowin and Nunziato 1983). Nevertheless,
the definition and the physical interpretation of the additional kinematic variable and also the
proposed constitutive equations make both theories very different. In the theory of elastic materials
with voids the additional variable is related with the change in solid volume fraction. The present
theory assumes that the damage is related with micro-cracks and not with micro-voids, and
hence the damaged brittle material is not considered a porous medium and the cohesion variable
is not directly related with a volume change.

3. Summary of the basic principles
3.1. The virtual power principle

In this work an arbitrary part P of the body B that occupies a region RS2 at the reference
configuration is taken as a mechanical system. By definition, the boundary of the region R
will be called I It is considered with respect to P the space V, of all fields u of possible velocities
and the space V; of all fields B of possible cohesion variation rates. V, is called the space
of virtual velocities and ¥} the space of virtual cohesion variation rates.

The power of the external forces Ppy(P, 1, u, ) for a given virtual field of velocity u ey,
and for a given virtual field of cohesion variation rate BEV; is defined as:

PerP. 1 u, B)=Pra(P. 1 0)+Phy(P ¢ B) (la)
Pt fl)=f (b-fz)dV+f(g~fc)dA (1b)

R r
PLA(P 1 P= f (pB)dV+ f (gB)dA (lc)

R r

where (b, g) are called the external forces and (p, ¢ ) the external microscopic forces. The external
forces are of two kinds: contact forces g acting on the boundary I" and volume (or body) forces
b acting on R. Similarly, the microscopic forces are of two kinds: contact microscopic forces
g acting on I' and microscopic volume forces p acting on R. The power of the microscopic
forces must be introduced in the theory in order to take into account the non mechanical actions
that affect the cohesion state of the material even if there is no mechanical deformation.

The power of the inertial forces Pn(P. t u, B) for a_given virtual field of velocity u <V,
and for a given virtual field of cohesion variation rate fEV}, is defined as:

Pn(P. t, u, B)=P(P 1 )+ Pi(P 1 B) (2a)

Pn(P 1, ,}):f (p it-u)dv (2b)
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Pi(P 1 P= f (p1 B Bav (2c)

2
and pB= —E. u is the actual displacement field, 8 is the actual cohesion

where i= g 3
field and [ is the microscopic inertia. The role of / in this theory is controversial and maybe
the term (2c) is unnecessary. Nevertheless, since the microscopic inertia is considered in all
the basic works concerned with microstructure theories (Goodman and Cowin 1972, for instance),
it will be taken into account in the development.

In Continuum Mechanics it is usual to consider a first order gradient theory in which the
power of the internal forces is supposed to be a function of the velocity and its gradient. In
a continuum with microstructure the power of the internal forces is also supposed to be a function
of B and V. On the assumption that, for a fixed instant ¢, the power of the internal forces
can be expressed as a linear functional on ¥, XVj, it may be shown that Ppr(P ¢ a, B) must
have the following form:

Por(P. t, i, B)=Ppy(P. 1 &)+ Pir(P. 1, B) (3a)
Ph(P t W)= f (o Va)dV (3b)
Pi(P &t P)= f (H-VB+FB)dV (3c)

with o being a second order tensor, H a vector and F a scalar. o is the stress tensor and (H,
F) are the internal microscopic forces. Using the previous definitions, the virtual power principle
may be stated as follows:

(P1) For a given part P of B that occupies region R of the space at the reference configuration,
the stress tensor o, the internal microscopic forces (H, F), the external forces (b, g),
the microscopic external forces (p, ¢), the actual acceleration &# and B must be such
that:

Pn(P, t, it, By+Pur(P t &, B)
=Pur(P. t u, B) Y u<V, and VBEVB e))

(P2) Ppr(P. 1 u, B) is zero for a rigid body motion, ie.
PP, ¢ &, B)=0 when a(x)=A(x—x,)+¢o ()

where 4 is an antisymmetrical tensor and ¢, is the velocity of a reference point x, ER.
Under suitable regularity assumption, it can be proved that (P1) implies the following local
expressions:

pu=divo+bh in R (6a)
plB=divH—F+p in R (6b)
on=g and Hn=q in I @)

where n is the unit outward normal to the surface I’ It can also be proved that (P2) implies
the symmetry of the stress tensor.
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3.2. The first law of thermodynamics

In order to postulate the energy balance it is necessary to define the internal energy U(P,
t), the kinetic energy K(P, t) and the thermal energy P (P, t) of the system:

U(P t):f (pe)dV ®)

K(P z):f (%[u-u+zﬂ2]>dV )

Pm(P. t)= —f (q'n)dA+f (pr)dV (10)
r R

where e is the internal energy per unity of mass, # and B are the actual displacement and
cohesion fields, ¢ is the heat flux vector and r is a heat supply or source per unity of mass
and time. The first law of thermodynamics can then be stated as:

L v )+ K )=Pea(P. 1 i, B+Pm(P 1 (1
Dt Dt
If the kinetic energy theorem is assumed to hold:
- K(B )=Pw(P. 1 i, ) 1)

it is possible to prove that /=0 and thus the first law of thermodynamics may be written as:
D

o VB D=Ppr(E 1 &, B)+Pm(P. 1) (13)
The local form of the principle stated above is given by:
pe=o-Va+H-VB+ Fp—divqg+pr (14)

3.3. The second law of thermodynamics

If the first law of thermodynamics states the possibility of convertion of mechanical work
into thermal energy and vice-versa, the second law of thermodynamics makes a distinction bet-
ween possible and impossible processes. In order to postulate a second law restriction it is assumed
the existence of the entropy per unity of mass s and of the absolute temperature 6. The total
entropy S7(P. 1) and the entropy flux Sy(P. 7) are then defined as:

Sr(P, t)=J (ps)dV (15)
R
Sk(P. z):—f (%)dA—I—f (J’QL)dV (16)
r R
The second law of thermodynamics can then be stated as:
D
D7 St(P D2Sp(E 1) (17

Using Eq. (14) to eliminate » and introducing the free energy per unity of volume ¥= p(e— 6s),



416 Heraldo S. Costa Mattos and Rubens Sampaio

and the entropy per unity of volume S=ps, it is possible to obtain the following local form
of the entropy inequality Eq. (17):

d=o-Vi+ H-VB+F - (W+S@)—l9q- v6>0 (18)

4. Constitutive equations

The balance Eq. (6), (14) and the second law restrictions Eq. (18) are valid for any kind
of process in a damageable continuum. A complete modeling requires additional informations
in order to characterize the behavior of each kind of material. In this section it is presented
constitutive equations for an elastic damageable material.

4.1. State variables
Under the hypothesis of small deformations, the local state of a brittle elastic material is

supposed to be a function of the absolute temperature 6, of the total strain e=(1/2)[ Vu+(Vu)"],
of the cohesion variable B and of its gradient V.

4.2. Free energy-state laws

Following the classical assumption of the thermodynamic of irreversible processes, the free
energy ¥ is supposed to be a function of the state variables with the following form:

V(e B, VB. O)=¥(, B. VB, O)+I(H (19)
where ¥ is a differentiable function and I(B) is the indicator function of the set [0, 1]:
_1J0, if pfo, 11;
I(ﬂ)_{+oo, otherwise. (20

The constraint 0<B<1 is taken into account in the theory by the term /(f) in the free energy
function. This non-differentiable term is not classic and follows the idea developed in Fremond
(1987, 1989) and Costa Mattos (1992). R

In this paper, the following particular expression is chosen for the energy ¥:

¥, B, VB, 0)=PB¥ (e, 0)+ B(B)+ ¥ (VH+ ¥i(6) Q1)
with i |
Yi(e, O)y=uee+ El(trs)z— BAF2wa(6—06,)tre (22a)
¥ (B=w(l—p) (22b)
w(vp=Lvpvp (22¢)
()=~ 35~ (0- 6. (22d)

where A, y are the Lame constants, a, C., w, k, ¢ are positive constants of the material and
0, is a reference temperature. The term ¥, is the classical expression for the free energy of
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an isotropic elastic material. The potential ¥, is also commonly adopted in the studies of thermo-
elasticity. The term ¥, is introduced to assure that =0 if ¥,<w (see Eq. (40)) and, finally,
the term ¥; is considered so as to give to f a diffusive behavior, thus smoothing the field
B on 2

The here called thermodynamic forces (o, FX, H, S) related to the state variables (g, 8, V8,
0) are defined from the free energy by the state laws:

=%' =%’ o= BLArE1+2ue]— BGA+2 0 a(6—6,)1 23)
) ) 4 _
H= a(vzz)_“—a(vmc>H kvp (24)
FR= %Mﬁ ¥ (e, O)—w+hy: hy EII(P)
>FR= pyg e+— /l(zrg)z—(3l+2y)a(9 0,)tre—w+hg (26)

It must be noted that the state variables are taken as independent parameters in Egs. (23)-
(26). The set JI(P) is the subdifferential of 7 at B (Ekeland and Teman 1976) given by:

I(B)={hy E(—o, +w); he(B—PB 2P —IB) VBE(—w, +w©)) 27

It is also interesting to remark that the state law Eq. (23) can be written in a alternative
form using the Young’s modulus E and the Poisson’s ratio v instead of the Lame constants:

a:< 1ﬂ+Ev )( - zr(e)1+a>—<—L1a £ )(0 0,)1

To complete the constitutive equations additional informations about the dissipative behavior
must be given. These informations can be obtained from a pseudo-potential of dissipation and
are called complementary laws.

4.3 Pseudo-potential of dissipation - Complementary laws

The pseudo-potencial of dissipation @ for an elastic damageable material is function of j
and V@. Since the internal constraint <0 is a physmal property, it must be taken into account
by the constitutive theory. Hence, the potential @ is supposed to have the following form:

DB, VO, 0)=D(B, VO, 0)+I_(B) (28)

where @ is a differentiable function and 7 —(B) is the indicator function of the set (—oo, 0):
o\ if p<o;

- CB)_{+oo, otherwise. (29)

The constraint <0 is taken into account in the theory by the term /_(f) in the pseudo-
potential of dissipation.
In this paper, the following particular expression is chosen for @:
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&=L p +2—19 (KV6)- V6 (30)

where ¢ is a positive constant and K is a second order symmetric and positive definite tensor
called thermal conductivity tensor.
The thermodynamic force FX:

FR=F—F&k 31
and the heat flux vector ¢ are related respectively to B and V8 by the complementary laws:
FR :g—‘g +hy=cP+hy; hyol_(p) (32)
a__ 0P _
0= d(V0)=>q Kve (33)

The variables 5, VB and 0 are taken as independent parameters in Egs. (32) and (33). The
state laws Eqgs. (23) - (26) and the complementary laws Eqgs. (32) - (33) define a complete set
of constitutive equations for a damageable elastic material.

These constitutive equations are an extension of the theory presented in Fremond, et al. (1990).
The introduction of a “unilateral” behavior in the theory (damage only under tensile loading)
is possible if an additional term [(1—p)¥u ()] is considered in the free energy (similarly as
it was proposed in Costa Mattos 1992):

V(&)= sup { o 6— /ITC @r(o)y—u‘oo—abir (a)} (34

where A and u® are given by:

A S

2uGAT2m ¢ M T A (33)
and X is the set of all second order symmetric tensors with nonpositive eigenvalues. This
additional term will be neglected in the present work because it is not necessary to understand
the basic features of the model and, besides, because it makes the numerical approximation

of the resulting problems much more complex.

AC=

5. Examples

In this section the study is restricted to quasi-static and isothermal processes. The purpose
is to analyse the role of the material parameters w, k and c in the theory.

Under these hypothesis, the balance equations and the constitutive equations can be reduced
to:

divo+b=0 (36)
divH—F+p=0 37D

a=< lliEv )( 1_"2v tr(8)1+8> (38)
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H=k VB, F=¥,(e—w+hg+cB+hy (39)

The substitution of the constitutive Eq. (39) in Eq. (37) gives the balance equation that govern
the evolution of the cohesion variable S

kAB+w—Wi—hs+p=cB+hp (40)
5.1. Bar under prescribed displacement

In this example it is considered an elastic damageable bar of lenght L, initially undamaged,
free at the ends and submitted to a prescribed axial displacement v: v(x=0, )=0 and

at, if 0<s<t,;
v(x=L, t): a(2t1—t), ifIIStStz; (41)
a(t—26+2t), if t20,.

Neglecting the weight of the bar (5=0), assuming that the bar is not submitted to external
microscopic forces (p=0 and ¢=0) it is possible to obtain an analytical solution for the problem
provided an uniaxial state of stress is considered.

Under these assumptions, the equation that governs the evolution of the cohesion variable
B can be reduced to:

k —3—2@+w 2E<M> —hy=cB+hy (42a)
—f?f(xzo, z)z—gf(sz =0, B(x r=0)=1, Vxe&l0, L] @2b)
This problem admits a unique homogeneous solution S(x, t)=p,(#) which satisfies:
ﬂh(t)——< E(M) w>; Bi(1=0)=1 )
with (@y=max{0, a}. From the Eq.(43) it can be verified that 3=0 if the term 5-E(2e-L) ]

is smaller than w. The evolution will begin at the instant #z, where the energy is equal to w.
Hence:

Br=1, for t<t,=[QwLH/E a)]"” 44

As the loading process goes on, for 7,<t<t,, the energy increases and J is strictly negative:
2

Ba()= (m— —é—E(L> 13>+A for 1, <r<1, 45)

where

A=1- - Lk —0‘—2t3 (46)
c\" 4 67\L)""
After the instant t=t,, as the bar is unloaded, (v(L, t) a(2t,—1), the elastic energy decreases.
The cohesion rate Swill be strictly negative while the term 2 E (l&—)) isgreaterthanw.
1

Bi ()= —( t— -6—E< ) (2:,—:)3)+B for 1) <t<t,=Qt,—1,) @7



420 Heraldo S. Costa Mattos and Rubens Sampaio

O.ZST 80.00-
0.204
60.00-
0.5 -
e a
£ = 4000+
> 0.0 ®
20.00
0.054
0.00 : T . : 0.00 T ; T T
000 2000 4000 6000 8000 10000 000 005 O040 015 0.20 0.25
t (sec; € x 100

Fig. 1 Hypothetical tensile test.

where
1 a\
_ 4L a3
B=4 3CE < L) &
) . . . 1 v(L, 1)V
The loading history is such that, for 1, <7<t.=2t,—1t, the value of the term —2—E < 2 )
is smaller than w and thus B=0:
2
Br(t)= i—(wt— é—E(%) (Ztl—zb)3)+B for 1,<t<t1,=Q2t—1,) (48)
Finally, after the instant t=¢., the term %E (4—” II: ! >~ is again greater than w and B de-
creases until the instant ¢, where f=0. The cohesion variable will be zero after #;:
2
B (D)= i—(wr— é—E(%) (1—212+2t1)3>+ C  for .<i<t, 49)
where
_p_lpla i BIPRN
C=B 3cE<L> 2H—1) 50

It is important to remark that the process is always irreversible (B<0). As a con

sequence of the evolution of B, the uniaxial stress cr)a:BEﬂL"—[L will reach a maximum
q L

value and decrease. The Fig. 1 shows the stress-strain curve for the following material constants:
E=50000 MPa, w=025 MPa, ¢=10. The parameters E, w are characteristic of some concretes.
The results show that both the irreversibility of the damage process and the softening behavior
are characterized in the model.

Since it is possible to obtain analytical solutions for uniaxial problems, the constants w and
¢ can then be identified from simple uniaxial tests. w is the elastic energy necessary to begin
the damage process and c¢ is related to the viscosity of the material.
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Fig. 2 Plate with prescribed displacement.
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Fig. 3 Isovalues of B r=25 s.

5.2. Plate under prescribed displacement

In this example it is considered an elastic damageable plate, initially undamaged, clamped
at the ends and submitted to a prescribed axial displacement v: v(x=0)=0 and v(x=L)=2ar.
Neglecting the weight of the plate (=0) and assuming that it is not submitted to external
microscopic forces (p=0 and ¢=0) it is possible to obtain a numerical approximation of the
problem using a Galerkin or Petrov-Galerkin finite element discretization (Fremond, et al. 1990).
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Fig. 5 Isovalues of the vertical displacement v. t=25 s.

In this case a plane state of strain is considered. The symmetry is used to reduce the size
of the problem as it is shown in Fig. 2. This problem is adequate to study the role of the
parameter k in the theory.

The Figs. 3 and 4 show the isovalues of B at different instants for the plate shown in Fig.
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Fig. 6 Isovalues of the vertical displacement v. t=30 s.
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Fig. 7 Deformed mesh. 1=25 s.

2 taking @¢=0.005 mm/s and the following material constants: E=50000 MPa, v=02, w=025
MPa, ¢=10. and £k=10. Due to computational aspects, a minimum value 8,.=1.E—6 was
imposed.
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Fig. 9 Isovalues of the vertical displacement v (k=0.5). =24 s,

As it can be verified in Fig. 4, the plate is completely broken at =30 s. The analysis of
the evolution of the vertical component of the displacement, presented in Figs. 5 and 6, is helpful
to understand how the total failure of the structure is described in this theory.
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Initially, a macro-crack appears on the left corner at the bottom of the plate (=25 s, Fig
5). When the structure is completely broken (=30 s, Fig. 6) it is possible to identify two regions
undergoing a rigid body motion (region I, with a displacement v=0.15 mm and region II with
v=0.). The “crack” is represented by the zone of transition between the regions I and II where
the material cannot resist to any kind of mechanical solicitation. The deformed meshes for
t=25 s and t=30 s are presented, respectively in Figs. 7 and 8.

If a constant k=0.5 is considered instead of k=1, the fracture is more localized as it is shown
in Fig. 9.

Hence, the smaller is the coefficient k, the more localized is the fracture (the transition zone
is thinner). The presence of this parameter in the theory allows the modeling of different kind
of brittle behaviors:

— Materials in which the fracture is not localized and the transition zone represents the portion
of the structure “disintegrated” due to the decohesion of the particles (such as some kinds
of rocks and concretes).

— Materials in which the fracture is very localized (such as the glasses and some kind of
ceramics).

6. Concluding remarks

In this paper it is proposed a consistent framework in which to model the fracture of an
elastic structure (degradation due to the deformation process, crack initiation, crack propagation,
total rupture). The theory allows the modeling of different kind of materials (ceramics, concretes,
rocks, glasses, etc.) and it is valid for any kind of geometry and for any kind of external loading.
The material constants considered in the constitutive equations are simple to be identified experi-
mentally and the resulting mathematical problems can be approximated through standard nume-
rical techniques.
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Appendix

A thermodynamically consistent model

A consistent constitutive theory based on the concept of internal variables must not admit processes
where the dissipation rate d (see Eq. (18)) is negative. Thus, it is very important to verify whether or
not the constitutive equations satisfy the second law of thermodynamics.

Proposition: The constitutive theory defined in section 4 is consistent with the second law of thermody-
namics expressed by Eq. (18) provided the following conditions hold:

(1) &1(13 V@) is a convex and non-negative function.

(ii) ¢(0, 0)=0.

Proof: In order to verify the inequality Eq. (18), it is necessary to compute the term ¥ Since ¥
is a function of the state variables (¢, B, VS, 08), we have:

Y(e(t+Ar), B+ A, VB(t+ A, 6(t+ AN)— Y1), B(1). VB(2), G(z))]
At

= lim | (Al)

A0

This limit is to be computed at instant ¢ with the information which are available, i. e., with the
values of the state variables before the instant 7. Thus At is negative and the derivative with respect
to time is a left den'vative. Hence, using the deﬁnition Eq. (19) of the free energy we have:

a_irf oV 1B+ AN—I(B(2)
Se oG B scop B Gg o+ Im | At ] (A2)

The subdifferential JI(S(r)) is such that:

=

1(B(t+AD)— (B2 he(B(1+ An—B(0). ¥ hy EJ1(B(1)) (A3)
The division of Eq. (A3) by As<0 gives:
The limit of the inequality Eq. (A4) as Ar approaches the value zero leads to:
e 4)

and then using the state laws Egs. (23)26), we have:
di=c-e+H-Vp+ FR-p—¥—S8>0 (A6)

From the definition of 7_ () it is possible to verify that
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Ol —(B={hp&(~w., +w); hy(B— B0, ¥ p<0}
And, consequently:
dr=hpp20 V B<L0 (A7)

Finally, using the following classical result of Convex Analysis:
Let X and Y be elements of a vector space V with an internal product (X:Y).
If @: v—>[0, +oo] is a convex and differentiable function such that @0)=0, then (X-Y)=®P(X)

o ddD
20 if Y—-——dX.
it comes that:
oD, 0P .
dy= B B+ 3o ve20, V(B VO (A8)

if the conditions (i) and (ii) of the proposition are verified.
Using the complementary laws Egs. (32), (33) and combining Egs. (A7) and (A8), we obtain:

ds+dy=F" - V00 (A9)

Hence, from Eqgs. (A6) and (A9) we conclude that in the proposed modcl the dissipation d=d\+d>+d;
is always non-negative provided the conditions (i) and (ii) hold.





