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Abstract. The application of adaptive finite element method to dynamic problems is investigated. Both
the kinetic and strain energy errors induced by space and time discretization were estimated in a consistent
manner and controlled by the simultaneous use of the adaptive mesh generation and the automatic
time stepping. Also an optimal ratio of spatial discretization error to temporal discretization error was
discussed. In this study it was found that the best performance can be obtained when the specified
spatial and temporal discretization errors have the same value. Numerical examples are carried out
to verify the performance of the procedure.
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1. Introduction

Since the early development and application of the finite element method, attempts have been
made to obtain the information about finite element discretization errors for better solutions.
Accompanying the efforts to evaluate the discretization errors, the adaptive finite element method
for more effective solution became one of the popular branches of the finite element method
during the last decade. Especially for the finite element analysis of dynamic problems, it is
not reasonable to proceed with a fixed mesh and fixed time step as the locations of steep stress
regions or damping out of the energy is changing from time to time.

There are two basic issues for the adaptive finite element analysis, ie. the error estimation
and the adaptive control of the error. For elliptic problems the discretization error occurs from
spatial discretization and the control of the error is effectively achieved by an adaptive mesh
generation. To date a considerable success has been achieved on the problems of elliptic type,
such as linear elastostatic problems (Zienkiewics and Zhu 1987, Babuska and Reinboldt 1979).
Unlike the adaptive methods in elliptic problems in which only the spatial discretization error
of displacement is concerned, more error sources such as the truncation in a time integration
have to be considered for hyperbolic problems such as dynamic problems. Therefore for hyperbo-
lic type problems a combined posterion error estimate including both space and time discretization
is needed (Zeng and Wiberg 1992). The adaptive control of the error performed by the adaptive
mesh generation and automatic time stepping has been suggested by Choi and Chung (1994).
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There is already a rich literature on adaptive methods for transient problems, but almost
all works deal with the estimation and the adaptive control of either the spatial or the time
discretization error only. Among the works on adaptive control of the spatial discretization error
Probert, et al. (1991, 1992) proposed an adaptive finite element method which controls the spatial
discretization error to the solution of transient heat conduction problems and compressible flow
problems. Zeng and Wiberg (1992) extended an a posteriori error estimator developed by Zienkie-
wicz and Zhu (1987) for elliptic problems to the dynamic analysis to estimate the spatial discretiza-
tion error at a certain time and attempted to make the adaptive analysis by an automatic reme-
shing scheme. Bajer, et al. (1991) studied an adaptive technique in the dynamic elastic-viscoplastic
problem by space-time elements with moving spatial nodes, where the modification of spatial
meshes is made according to an interpolation-based error indicator. Joo and Wilson (1988) solved
the structural dynamic problems by an adaptive mesh refinement based on Ritz vectors and
a posteriori energy norm of residual errors.

For the condltlonally stable time integration schemes, such as those used in explicit methods,
the proper time step is primarily related to the stability criterion, as represented by a critical
time step. Methods for automatic selection of time steps for the central difference method have
been proposed by Park and Underwood (1980). The situation is more complicated when an
unconditionally stable integration scheme, such as the Newmark method, is used. Bergan and
Mollestad (1985) suggested an objective criteria for the performance and guidelines for making
an adaptive time stepping algorithm for practical applications. Zienkiewicz and Xie (1991) propo-
sed an error estimator by comparing the Newmark solution with the exact solutions obtained
from the expanded Taylor series. They also proposed an adaptive time stepping procedure which
uses the time discretization error estimator for dynamic analysis. Wiberg and Li (1993) developed
a more precise error estimator which can evaluate the errors of displacement and velocities
by a post-processing technique.

There is virtually no works reported in the published literature on the simultaneous considera-
tion of the effects of space and time discretization which is desirable for the analysis of transient
problems. In this study both the kinetic and strain energy errors induced by the space and
time discretization were estimated in a consistent manner. These temporal and spatial discretiza-
tion errors are controlled by the simultaneous use of adaptive mesh generation and automatic
time stepping at every time stage. The optimal ratio of spatial and temporal discretization error
to the total error is also discussed.

2. Discretization errors

To solve a dynamic problem by finite element method, the domain of interest is subdivided
first into a number of elements. Then the semidiscrete Galerkin approximation can be used
to obtain an integral formulation which is usually referred to as the weak form.

After evaluation of the integrals, a set of algebraic equations with initial conditions in a matrix
form is obtained as follows.

MUA+CU+KU=F, r(0, T) (1a)
Uf(x, O)=U, U,(x, O):Uo (1b)

where M is the mass matrix, C is the vjscops damping matrix, K is the stifiness matrix, F,
is the vector of applied forces, and U,, U,, U, are the displacement, velocity and acceleration
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vectors, respectively. The aforementioned discretization of continuous spatial domain during the
formulation of finite elements induces the spatial discretization error, es(x, t,) which can be
written as follows:

es(x t)=u(x 1,)—u"(x t,) @)

where u(x, t,) is the exact solution of dynamic problem and u”(x, t,) the solution to semidiscrete
Galerkin approximation.

To obtain the transient responses, Eq. (1) is solved with certain time integration scheme. In
the direct time integration, the approach is to write Eq. (1) at a specific instant of time r=n Az,

MU, +CU,+KU,=F, 3)

where subscript » denotes the number of time steps, n At and Ar are the current time and
the size of time step, respectively. Generally, when a single-step scheme like the Newmark method
is used for the direct time integration, the variation of the acceleration in each time step is
assumed to be either constant or linear. This approximation yields a discontinuous distribution
for the acceleration in the time domain and induces the temporal discretization error, er(x,
t,) as follows:

er(x, t)y=u"(x t,)—U,(x) 4

where U, (x) is the solution to Eq. (3) at time r=¢,.
The total discretization error which contains both the spatial and temporal discretization errors
in the finite element solution can be expressed as

e(xx tn):u(x' tn)_Un(x) (5)

Then, for any choice of norm (Oden and Reddy 1976)

le(x £l =lu(x t.)=U(x)+u"(x t)—u"(x 1)l
=les(x t,)ter(x tII<les(x 1)l +ler(x 1)l ©)

Therefore the spatial discretization error and time discretization error can be estimated separately
and the upper bound of the total discretization error can be evaluated by adding up both errors.
This can be more clearly illustrated by Fig. 1.

3. Error estimates

In this study, for the consistent measure of the temporal and spatial discretization errors,
an energy norm is taken. Let the total energy of the body be denoted by

Eu =4[ pi+atu ] )

And replacing the displacement u by the error of displacement e and the velocity & by the
error of velocity é, the total energy of the error is obtained as follows:

E(e =10 poytale, o] (8)

The square root of E(-,+) defines an energy norm and from Eq. (6) the following energy norm
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Fig. 1 Errors for dynamic analysis.

of the error is obtained.

E(e &)*<E(es, é5)*+E(ern én” )
‘The upper bound of total energy norm of the error can be obtained by adding the energy
norms of spatial discretization error and temporal discretization error.

3.1. Estimate of temporal discretization error

In dynamic analysis the methods of direct time integration are popular and the choice of
method is strongly problem-dependent. Most of the useful implicit methods including the New-
mark method are unconditionally stable and have no restriction on the time step size other
than as required for accuracy. The Newmark method uses following two basic assumptions:

Un+I:Un+UnA[+[(1—2ﬂ)Un+2ﬂU"+1]A2!: (103)

Uy =U,+[A—pU, +yU,.. At (10b)

where U,.,, U,,, and U,., are respectively the displacement, velocity and acceleration vectors
at time r=r,+ At, At is the time step size, f and y are parameters. The Newmark method
contains, as special cases, many widely used practical methods. When the average acceleration

method (B:%, }c%) is used, the variation of acceleration in each time step is assumed

to be constant and equal to the average of the accelerations at the two ends of a time step.
. . 1 . . .

And when the linear acceleration method (f= 5 = %) is used, the acceleration is as-

sumed to vary linearly. In fact, since the acceleration varies continuously at the entire time

domain, these assumptions yield a discontinuous distribution for the acceleration and the tem-

poral discretization error which can be reduced by the choice of smaller time step size may
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occur.
Let us consider a time interval [4 t+Ar] and assume that t&[r, t+Ar]. The temporal
discretization error of acceleration at time rt is

HD)=i"— i () (1)

where ii" is the assumed acceleration and #* is the real acceleration which varies continuously.
Suppose that the solutions at time station 7 are exact. Then, the time discretization error of
velocity solution at time t and r+Ar can be estimated by

& t):fé( t)dt’ (12a)
! t+ Al

é(t+At):i2""A1—J' u(cHdr' (12b)

where
i" =(1—ypii,+ yil+ a, (13)

And the error of displacement solution can be estimated by
e r):f e(thdt' (14a)
- nd t+Ar fitT

i+ An=-5 Arz—f f i“(c)dr'de (14b)

where
it"=(1-2P)it,+2Pii,+ 4, (15)

Since, the exact value of the acceleration #®(7) cannot be obtained in most real problems,
it is desirable to approximate the acceleration by a higher order function than the order of
the assumed acceleration function in the Newmark method.

Zienkiewicz and Xie (1991) proposed a local error estimator by comparing the Newmark
solution with the exact solutions expanded in the Taylor series. However, this error estimator
uses the linearly approximated solution as an exact solution. It can only estimate the errors
for displacements and cannot measure the errors for velocities since the positive values and
negative values of acceleration error cancel out during the integration by Eq. (12) (See Fig.
2a). Accordingly, the error estimate in the total energy norm is not obtainable by this method.

Moreover when B:L and yzl, the Newmark scheme itself is equivalent to the linear
6 2

acceleration method in which the acceleration is assumed to be linear. This error estimator
can measure neither the strain energy of error nor the kihetic energy of the error. Also if
this estimator is used for an adaptive time stepping, the time step size may be changed too
frequently. A step size change usually requires an inversion of a new effective stiffness matrix,
which is expensive for implicit schemes. Wiberg and Li (1993) derived a formulation for linearly
varying third-order derivatives and, based on this, they obtained a posteriori error estimates
for displacements and velocities.

In this study, a quadratic function is used for the approximation for i*( 7) and the correspon-
ding parameter for the function is obtained from accelerations at three time stations; r— Ar,
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Fig. 2 Accelerations assumed in the Newmark time integration (constant average acceleration) and
a post-processed continuous accelerations: (a) Linear and (b) Quadratic approximation.

t and t+ At This approximation for the acceleration gives a more accurate error estimation
than a linear approximation of acceleration since it consists of connecting the successive three
points as a group on the curve expressed by a second-degree parabola. (See Fig. 2)

A pointwise definition of error, as given in Eq. (11), is generally difficult to use in the
measure for adaptive control, and the energy norm is more conveniently adopted. Therefore,
as a posteriori error estimate, the energy norm of temporal discretization error can be obtained
as follows:

1

1/2
E(ET, er 10:(3 'TTMéT+ %eTTKeT> (16)

3.2. Estimate of spatial discretization error

Among the types of error estimators on spatial discretization, the simpler one presented
by Zienkiewicz and Zhu (1987) in plane elasticity problems was shown to be effective. Its
application to plate bending analysis using transition element has also been reported (Choi
and Park 1992). Ewing (1990) pointed out that the error estimate in strain energy norm for
elliptic problems could be extended to the dynamic problems. In addition, Zeng and Wiberg
(1992) extended this error estimate to dynamic analysis. According to them, if a sufficiently
small time step size is chosen, the total energy of the error is mainly due to the strain energy
of the error at most stages. Hence, the total energy norm of the spatial discretization error
is given approximately as follows

E(es. é5)'”ZE(es)"” (17)

Eq. (17) implies that the spatial discretization error in dynamic problems can be approximately
estimated by ignoring the kinetic energy of the error. The spatial discretization error estimator
lledl in the displacement for an element / is defined as follows:

172 1/2
ekl = ( j eSTKeSd.Q) (f (6—0,)' D '(o— o;,)d.()) (18)
2 2

where o is the smoothed stress which is an approximation to the exact stress, o, is the finite
element approximation for stress and D is the elasticity matrix. To obtain the continuous
stress o based on ¢, the global stress smoothing procedure by the least square method was
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used in this study. The energy norm of the spatial discretization error for the whole solution
domain can be calculated approximately by summing up the squares of the local error estima-
tors in Eq. (18) over individual elements, that is,

n

172
E(es)‘”:{ Z (lesl )2} (19)

=

where n is the total number of elements.

4. Combined adaptive procedure

An adaptive analysis should find a discretization in the least cost, such that the local error
is uniformly distributed and within a given tolerance over the entire spatial/time domain. To
control the relative error which is defined as an error norm of energy divided by the total
energy norm, the time step size and the mesh distribution should be modified at the same
time based on the local error estimate and the prescribed error tolerance.

From Egs. (9) and (17) the total energy norm of the discretization error can be estimated
by simply combining the energy norms of the spatial discretization error and time discretization
error, that is,

E(e é)?=E(er,én)' > +E(eg)”? (20)

On the other hand, nevertheless the user specifies the relative error tolerance n, the portion
of the spatial discretization error out of the total error and that of the temporal discretization
error should also be specified. Accordingly, parameters can be defined as follows

g:—”ni and 5:—’nt Q1)

where 75 and ny are the prescribed relative energy norm of spatial and temporal discretization
errors, respectively, and the sum of two parameters is 1.0 (¢+86=1.0). Optimal values for this
parameters will be discussed in the numerical studies.

The combined spatial and temporal adaptive procedure proposed in this paper can be sum-
marized as follows:

(1) Step 1

Carry out the finite element analysis with the initial or previous mesh and the time step
until the prescribed termination time is reached.

(2) Step 2

Estimate the temporal discretization error and check whether the value of temporal discreti-
zation error is within the range of specified error tolerance. If the error is not within that
range, change the current time step size and go to Setp 1. Otherwise go to the next step.

(3) Step 3

Estimate the spatial discretization error and check whether the value of the spatial discretiza-
tion error is within the range of specified error tolerance. If the error is not within the range,
change the mesh distribution and go to Step 1. Otherwise forward one time step and go
to Step 1. For practical reasons, when there is no change in the mesh distribution after mesh
generation, forward to the next time stage.

Overall adaptive procedure which is proposed in this study is symbolically depicted in Fig.
3.
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Fig. 3 Adaptive procedure.

4.1. Control of temporal discretization error

If error estimate does not satisfy the given error tolerance, the time step size is updated
according to the local refinement index until the required accuracy is achieved. As many
other studies (Zienkiewicz and Xie 1991) in which the error per step is used for error control,
a lower error limit and upper error limit are introduced by

E L é 1/2
YISUS%S%M (22)

where 0<y;<1 and =1 are two parameters. Whenever Eq. (22) is satisfied, the solution is
accepted and the time integration is proceeded to the next step without changing the time
step size. However, if the upper limit is violated, reject the solution, update the time step
size and perform a re-calculation for the current time.

For the Newmark integration, the rate of convergence of the local error should achieve
O(A?). Therefore when Eq. (22) is not satisfied a new time step size A/ may be predicted

as
N2 \173
Az’:< S nE(u, i) ) At (23)

E(erép)'?
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where Ar is the current time step size.
4.2. Control of spatial discretization error

For each time station, the estimation of spatial discretization error as described in the prece-
ding section is made first. If the given error tolerance is not satisfied, the mesh is updated
according to the local refinement parameter until the required accuracy is achieved. In order
to perform the computation more efficiently and economically for a given tolerance, a lower
error limit and an upper error limit are introduced as

12
i 6nSE—(EIE% <pen (24)

If this condition is not satisfied, the spatial mesh needs to be updated and a re-calculation
for the current time should be performed. Based on the optimal mesh hypothesis, in order
that the energy norm of the error for an element should be within a prescribed error bound,
the critical error is defined as

enk(u, u) 25)

Jeg) = —EMEL

This critical error measure provides a refinement criterion, that is, any element for which
the energy norm of the error calculated from Eq. (18) is greater than the critical error norm
should be refined. A new element size required over the domain of each present element
can be predicted by the use of the well-known fact that the convergence rate of the error
is O(h”) for optimal mesh. Thus in each subdomain the predicted mesh size 4 is required
as
lesh\"”
=(¢Sn—) hi 6)

where £, is existing mesh size.

Because of the mesh modification by adaptive methods, the value of all history dependent
. variables must be remapped to the location of new nodal points. The variables defined at
nodal points, such as accelerations and displacements, can be easily remapped using the shape
functions of an element such that

x(a)=N;(a)x; 27)

where x(a) is the value at the location of new nodal points, x; is the value at the ith node
(in local numbering) of the element to which the new point belongs and a is the position
of the new point in the parametric coordinate system. If the problems without damping subjected
to a shock-like external load and the corresponding meshes are modified too frequently or abrup-
tly, the remapping error becomes considerably large.

There are generally two approaches for the mesh modification in an adaptive analysis. The
one is the element refinement/coarsening approach and the other is remeshing approach. With
the element refinement/coarsening approach, the element that violates the allowable error range
is subdivided into smaller elements or merged into a bigger element. The remeshing approach
involves completely regenerating a new mesh, either in regions of high error only, or over
the entire domain. Unlike the element refinement/coarsening approach, the remeshing approach
changes the location of the whole nodes. Therefore, from the view point of minimizing the
remapping error, the element refinement/coarsening approach is more efficient than the reme-
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Fig. 4 A single-degree-of-freedom model.
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Fig. 5 Exact and estimated local error for constant average acceleration method:
(a) At=02; (b) Ar=0.1; (¢} At=005.
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401

shing approach. For this reason, the element refinement/coarsening approach is used in this

study.

5. Numerical examples

A single-degree-of-freedom problem was solved to evaluate the accuracy of the proposed
time discretization error estimate. And to demonstrate the performance of the proposed adaptive



402 Chang-Koon Choi and Heung-Jin Chung

0.02

exact

o estimated

0.015

0014

P —

RELATIVE ERROR N TOTAL ENERGY NORM

0.002

0.0015

0.001

0.0005

exact
s estimated

0 T T N T

0 1 2 3 4 5 6

RELATIVE ERROR IN TOTAL ENERGY NORM

° estimated

T —T T T T 1
2 3 4 5 6

TIME
©)

Fig. 7 Relative error of energy norm for constant average acceleration method:
(a) Ar=02; (b) Ar=0.1; (c) Ar=0.05.
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procedure, uni-dimensional tests were carried out since the results can be verified intuitively
with ease. Several test problems with different error tolerances 5, and parameters ¢ and &
were analyzed to obtain the reasonable value of ¢ or 6.

5.1. Estimate of time discretization error

To investigate the performance of the proposed time discretization error estimate, a SDOF
model (Fig. 4) for which an exact solution can be obtained analytically is considered. This
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Fig. 8 Relative error of energy norm for linear acceleration method:
(a) Ar=02; (b) Ar=0.1; (c) Ar=0.05.

~ dynamic system subjected to a sinusoidal loading can be presented by the following second
order differential equation:

d+0.19596d+ 6d=sinr 28)

When the Newmark integration step forwards from a time station #, to t,+,, the exact local
error of displacement and velocity for this time step is obtained respectively by

Eex :d}r\rl+ 1 _d(tn+ l) (293)
éex:dlr:,-f-l_d(tni'l) (29b)
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Fig. 9 One-dimensional model (Material properties are: £=10.0, 4=10,0, p=5.0)

Table 1 Conventional analysis

NDOF Time step size  Computing time

(sec)
Case A 300 0.01 592.09
Case B 30 0.03 24.16

where d7,, and d7,, are respectively the displacement and velocity given by Newmark's scheme
at time t,4,, and d(t,+,) and d(t,+,) are obtained by integrating Eq. (28) analytically from
t, to 1,4, taking the values d” and d/ as initial conditions (Zeng, er al. 1992). The exact and
estimated local errors of displacements and velocities using the three different time step size
Ar=02, 0.1 and 005 are shown in Fig. 5 for the constant average acceleration method and
in Fig. 6 for the linear acceleration method. From Figs. 5 and 6 it is seen that the local
error estimates for displacement perform very well while the local error estimate for velocities
is not so good as for displacements. Nevertheless, the local error estimate for velocities is
asymptotically convergent in most stages. The relative error distributions for the energy norm
with different time step sizes and integration schemes are shown in Figs. 7 and 8. Noting
that the proposed estimate gives an accurate measure of the relative energy norm of exact
error induced by time discretization, this scheme can be used in the following example.

5.2. Adaptive analysis of one-dimensional problem

An one-dimensional elastic bar (Fig. 9) subjected to a sinusoidal pulse is analyzed to demon-
strate the effectiveness of the proposed adaptive analysis progedure. The sinusoidal pulse is
given by

f(t):{sin2 8mt if 0<1<0.125
0 if £>0.125 (30)

The Rayleigh damping is assumed and Rayleigh damping coefficients are set to 0.02.
Two uniform meshes and constant time step sizes are used for the conventional analysis.
The first one which consists of 300 degrees of freedom is analyzed with a constant time step
size of Ar=001. In the second, a mesh consisting of 30 degrees of freedom is used and
the time step size is set to 0.03 (Table 1). And as an adaptive analysis, the dynamic responses
in a time interval of [00, 10.0] are to be computed with parameters y,=0.5, y,=1.5 and =05
(6=0.5) and two different relative error tolerance n=001 and 002. Cases E and F are partial
adaptive analyses with the control of time discretization error only and space discretization
error only, respectively. Detailed conditions and computing times of each cases are shown
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Table 2 Adaptive analysis

n £ 6 Initial Initial time Computing
NDOF step size time (sec)
Case C 002 05 05 100 0.01 19.11
Case D 001 05 05 20 0.01 4251
Case E 001 - 1.0 70 0.01 2191
Case F 001 10 — 20 0.03 21.10
8
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» Fig. 10 Stress wave propagation.

in Tables 1 and 2. It should be noted that the optimal values of & and § are not known
yet. In Fig. 10, it can be observed that the shape of stress wave varies from a sharp peak
to a rather smoothed shape as the energy is being damped out. Also observed are the reflections
of stress wave at the free and fixed ends. In Figs. 11 and 12, the variation of time step sizes
and the mesh adaptation for two different cases are plotted. The element refinement/coarsening
algorithm used in this study is not affected by the initial meshes which the user defined
(Cases C and D) and both cases show a virtually the same variation of meshes after a first
few iterations. The relative errors adaptively controlled within the allowable range are shown
in Figs. 13 and 14.

The comparison between the solutions of conventional and adaptive analysis is shown in
Figs. 15 and 16. It is noticed that the adaptive analysis gives more accurate results than conven-
tional analysis with same computing time. The Newmark's average acceleration method is
non-dissipative and unconditionally stable, but its accuracy in the transient analysis of wave
propagation problems depends not only on the spatial discretization but also on the temporal
discretization (Wang, Murti and Valliappan 1992). Figs. 15 and 16 show that the solutions
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Fig. 11 Variation of time step size and mesh evolution in the bar (Case C).
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Fig. 12 Variation of time step size and mesh evolution in the bar (Case D).

of Case C (simultaneous adaptive control of spatial and temporal discretization errors) are
more accurate than the solutions with either of Case E (adaptive control of temporal discretiza-
tion error only) and Case F (adaptive control of spatial discretization error only). Therefore
the simultaneous control of spatial and temporal discretization errors is more practical than
the adaptive control of only one of those errors.
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Fig. 13 Relative error achieved in the adaptive computation (Case C).
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5.3. The optimal value of the parameter, € or &

In order to find the optimal value of ¢ or 8 a parametric study on the problem used
in section 52 is carried out with various ratio of spatial and time discretization error tolerance.
In Fig. 17 the relationship between the total computing time and & or & is shown. It is seen
that when a proper value of £ or § is selected, the total computing time can be reduced
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greatly at the same error tolerance. In this study it can be observed that the reasonable value
of € or 8§ is about 0.5 in the aspect of computing time which is also the value used in the
preceding example. For two and three dimensional problems, however, it would not be the
case because, unlike the control of the temporal discretization error, the control of the spatial
discretization error is more expensive and time consuming than the one dimensional case.

6. Conclusions

In this study the spatial discretization error and the temporal discretization error were estimated
consistently and an effective algorithm which controlls the errors automatically and simultaneou-
sly by adaptive modification of the mesh distribution and the time step size is proposed. In
such a way, the best performance attainable by the finite element analysis of dynamic problems
can be obtained.

The temporal discretization error can be estimated simply by comparing the solutions obtained
by the Newmark method with solutions obtained by the locally exact quadratic function. This
error ¢stimate converge to the exact error as the size of time step is decreased. Since the error
estimate by quadratic function is not affected by the specific time integration method used,
the temporal discretization error estimate proposed in this study can be applied to the various
single step method.

The remapping error occurred in control procedure of spatial discretization error becomes
considerably large for the problems without damping. Therefore more extended studies are needed
on the remapping technique.

Based on the parametric studies a reasonable ratio of spatial and time discretization errors,
which should be specified by the user in an adaptive analysis of dynamic problem is also
proposed.

The adaptive procedure in this study can be extended to two dimensional and three dimen-

sional problems directly. For this, however, the use of an effective automatic mesh generator
is recommended.
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