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Abstract. Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic
response and stability behaviour. The Young's modulus and mass per unit length of the pipe material
have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus
and mass density are characterized through their respective means, variances and autocorrelation functions
or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential
equation is solved for the moments of characteristic values, by treating the point fluctuations to be
stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are ob-

tained. The critical flow velocity is first evaluated using the averaged eigenvalue equation. Through the
eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity
statistics. Expressions for the bounds of eigenvalues are obtained. which in turn yield the corresponding
bounds for critical flow velocities.
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1. Introduction

Flow-induced vibrations in closed conduits such as pipe lines in hydroelectric and nuclear
power plants, pipe lines in process industries, suction and pressure pipes before and after pumps,
fuel feeding lines of aerospace vehicles and rockets, tube arrays in steam generators, etc. need
to be studied using the kinetic method of stability investigation. Significant research activity
has taken place in this area and detailed investigations are available in abundance (Ashley
and Haviland 1950, Benjamin 1961, Gregory and Paidoussis 1966, Paidoussis and Issid 1974,
Ariaratnam and Sri Namachchivaya 1986, Chen 1972).

The dynamic response of such coupled systems has been shown to be highly sensitive even
to a small fluctuation in the design variables (Pauli and Seyranian 1983, Rajan, er al. 1986).
In real life mechanical industry, many factors like non-uniform material density, hardness of
workpiece, machining and manufacturing errors, variations in sizes of bolts, rivets, etc., lead
to different levels of uncertainty in respect of system parameters. As a result, the probabilistic
description of strength parameters, material properties, geometric boundary conditions and exter-
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nal loadings is to be adopted that leads to a safer and reliable design of such important systems.

Further, the usage of modern construction materials like RCC in civil engineering and fibre
reinforced composites in aerospace engineering has further underlined the need for a probabilistic
description of system parameters. New analysis procedures have been developed on a probabilistic
framework (Vanmarcke 1983, Shinozuka and Lenoe 1976, Ibrahim 1987) and these employ the
stochastic process modeling of system parameters. As far as random eigenproblems are ‘considered,
only self-adjoint systems have been analysed to obtain the response moments (Soong and Cozza-
relli 1976, Vom Scheidt and Purkert 1983, Collins and Thomson 1969, Shinozuka and Astill
1972, Boyce 1968). In the area of stochastic stability analysis, research activity has been directed
along the following two lines: (1) Deterministic systems subjected to random loading in time
which is a classical random vibration problem (Kozin 1988, Herrmann 1969. Plaut and Infante
1970) and (2) Stochastically parametered and conservatively loaded systems (Collins and Thomson
1969, Shinozuka and Astill 1972). The present authors have investigated the dynamics and stability
of both self-adjoint and non-self adjoint structural systems (Anantha Ramu and Ganesan 1992,
1993, Ganesan, et al. 1992, 1993). Regarding the flow induced vibrations, the published work
in this context deals only with the dynamic stability of fluid conveying pipes with a stochastic
flow velocity (Ariaratnam and Sri Namachchivaya 1986) and the random fluctuations of material
properties have not been considered in the analysis.

In this paper, a probabilistic analysis is presented for tubular cantilevers conveying a fluid,
when the Young’s modulus and the mass per unit length of the pipe have a stochastic distribution.
The fluctuations of Young's modulus and mass per unit length of the pipe are treated to constitute,
independent one-dimensional univariate, homogeneous real stochastic fields in space.

2. Mathematical formulation
The equation of small lateral motions, for a tubular cantilever of length L, mass per unit

length m and flexural rigidity EI, conveying a fluid of mass per unit length M that flows axially
with velocity U and discharges at the free end can be written as (Refer Fig. 1)

Fig. 1 Cantilever pipe conveying fluid
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4 5 0? 0’ V74 0"
EI-S 2+ [MU*—(M+ m) (L~ g5 y+2MU S M mg =0 (1)
subject to the boundary conditions,
wo)=y'(0)=y"(L)y=y"(L)=0 )

The primes in the above equation and in the sequel, denote differentiation with respect to x.

When the fluctuations of Young’s modulus and mass per unit length of the pipe material
are considered to constitute random fields in space, as in the authors’ earlier publications (Anantha
Ramu and Ganesan 1992, 1993, Ganesan, ef al. 1992, 1993)

E(x)=E[1+a(x)] 3
m(x)=m[1+b(x)] “)

where a(x) and b(x) are two, independent, one-dimensional, univariate, homogeneous, real, zero-
mean stochastic fields in space.
The solution of the above mentioned differential equation is assumed to be of the form,

yx. H=Y(x) T@) ’ )

where it is implicit that the spectrum is discrete. Y(x) and 7(¢) are the space dependent normal
modes and time dependent amplitudes respectively. Substitution of this solution into the differen-
tial equation and the boundary conditions yields a differential equation for any Y,(x) which
can be solved by the standard perturbation procedure. The details of such a procedure as exactly
as in the earlier publication (Anantha Ramu and Ganesan 1992) and hence they are not repeated
here. It is sufficient to note that after substituting

A

G=-%. L) GL=y, and a= "0 ang =M =X (=03 T, and 2 —)
the following the perturbational expansions are employed for the output parameters:
A=At aAy,+BAr,+ ©)
Un= MonT Qi+ Bto,+ o )
and
Y (D=Y,(D+aY (O+BY:(D+ " ®

Following the perturbation procedure outlined in (Anantha Ramu and Ganesan 1992), the
generating solution is obtained by equating the terms associated with perturbing parameters
of power zero, as

YI(+MUGY ! (D—MGLg(1— 9 Y, (t)—mGLg(1— DY, (9)

+2MU, Y (D + { M+m} GELY [, (D=~ (14 {) Ao Yorl D) ©)
subjected to the boundary condition,
Y,,(0)=0
Y., (0)=0

EIY! (D=1 =0
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EIY"(D].-,=0 (10)

In a similar manner, the differential equations for Y,(7), i=1, 2 can be obtained by considering
terms of like powers in @ and S. Thus the mode shapes Y,(7), i=0, 1, 2 are obtained. Further,
the equations for obtaining A,, and A,, in terms of input parameter randomness can also be
obtained (See Appendix I)

Using the generating solution, Y,(7) and A,, and subsequently A,, and A,, can be obtained.
Back substitution of these A,, and A,, into the differential equations for Y;, and Y5, will yield
their solutions when solved for boundary conditions. Thus, complete solutions for vibration fre-
quencies and mode shapes can be obtained for any sample set of values of g;(t) and b;(1)
from the ensemble a(7) and b(7) respectively. But, our interest is to get the response moments
which can yield the statistical information about the dynamic response parameters. To this end,
expressions for A,, A,, and A,, are substituted in the perturbation expressions Eq. (6).

3. Eigensolution statistics

The mean value of any vibration frequency is obtained after some simplification, as

<An>:A’0n (1 1)
since the random fields a(7) and b(r) have zero means. So the vibration frequency obtained
from the generating solution becomes the mean value of A, and it is independent of any random
input.

The covariance between any two normalized vibration frequencies A; and A, is given by (using
functions defined in Appendix I1)

1 1
COV (A,,', A‘/): (1 + C) \2F| ( Yoi~ Yol){J j Rau (f] - .L-Z)Fl( Yoi 5 Y{gf)drl dt2
0Jo

1 1
fbeb(tl_r2)F3(Yt)is Yuj)dfldfz
0J0
1 1
+(f7’lGLg)2f f (1—'L'])(l_'Tz)th(fl_'Tg)F4(Y(,,-, Y(?,')dﬁdl'g
0Jo

1 1
‘+‘(WIGLg)2f0 J'()th(fl" 'L'z)Fs(Y,,,‘, Yqj)dl'ldfz‘*‘"‘ (12)

Expansion functions for the mode shapes that correspond to A; and A; are identified by the
subscripts i and j.

The variance of any eigenvalue A, is thus given by setting i=j=n in the above expression.

If the correlation functions of the input stochastic fields are denoted by p,.(ty— ©) and py (71— ©)
respectively, so that —1<p,(n—u)<+1 and —1<p,(ri— )<+ 1, the above equation can be
given in terms of normalized spectral density functions, normalized with respect to the respective
variances. Thus, the variance of any ecigenvalue is obtained to be

Var(/l,,):(l + §) 72H1 (Yon)

! ! 1 1
{oi‘f f Paa (Ti— ) F2(Y o, Yan)dudrz—FG,Z,J J o (Tt — ) F3(Y,,. Y, drdo
0J0 oto
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| 1
+(mGLg)20,2,j j pw(ti—)(I—)(1—n)F (Y, Y,)dudn
0 0

1l
+(’;7GL8)2U§f f Pon (T — ) Fs(Y o Yo )drdnt-ooe } (13)
0J 0

4. Bounds for eigenvalue statistics

Having established the covariances and variances in terms of normalized spectral density
functions (or correlation functions), one can proceed to establish the bounds for covariances
and variances. Here, the bounds for variances are established, for clarity.

It is now very clear that the variance of any eigenvalue is function of normalized spectral
densities s, and sy, for a system with known variances of material properties £ and m. If each
of the stochastic fields describing the material property fluctuations has a pertect correlation
regardless of the physical separation, i.e., 0, (71— )= oy (ti— )=, the normalized spectral densi-
ties s..(f) and s, (f) are dirac delta functions and further s,,(f) and s, (f) concentrate around
the point f=0. In this case, the variance of any eigenvalue becomes as,

]
(1+ ) f Y2, (9dd

{aﬁ[f [an(r)]_dr]h-kl;’naﬁ[f Yfm(f)df];

+<mGLg)2ob[ (-9 Y(,,,<r>Yon(r)dr]"+(ﬁ1 GLg)Zoi[ f Y5, xm(r)dr]* b s

Var(A,)=

The other extreme is to consider a perfectly random case, which is known to be a white
noise. In that case, the correlation function is a spike function at the zero separation distance
and the normalized spectral density function is a straight line parallel to the wave frequency
axis. If the two fields are simultaneously considered to be the white noise fields, we have,

Saa(f):sa,,:—?ﬁ
Sbb(f):sha:—zﬁ; a5 fiimo

Two different cutoff frequencies can also be used, ie. f,; and f,, for s, and sy respectively
(The limiting case that £,—0 is what we discussed previously). The corresponding correlation
functions are, in the limit,

pua (t) = 5(0)» Phb (t): 8(0)

Using these, the variances of eigenvalues can be found out easily. But, these correlation functions
result in infinite total power in the wave frequency domain of the random fields. So, a realistic
model is to account the spectral density function as a finite power whitenoise or band-limited
whitenoise. In such cases, we have
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.. _sin fl(ti—w)
B)=25, (rl—lrg)

ie., sinc functions and not exponential functions. Now, it can be shown that, with i=j=n

sin f,(t— 1) (15)

and pbh(rl - rl): 2.S0 (‘C’] _ l—})

jo ('L'] -

» 1
Var(A,)=(1+¢) Hi( Y,,n){zoz s f Mt‘——’ﬁ LY @PLY () dude,
0

(n—w)

F22, ol f f ME—LYU,,(Q)YM(B)dmdu

1
+2(mGLgy o3+, f f S0 LB =) (| (1 - o) Y7 (5) Y0 (7))
0 (f—f)

Y’ (D), (p)drdn+2AmGLg) ks, J f M—B)Y,,,,(n) Y, (%)

on

on (r7) on (rZ)dtl dr2 Raliie } ( 16)

However, exponential correlation with one parameter can also be assumed wherein the first
order autoregressive models could be accommodated to evaluate the bounds. Now, it is very
clear that the limiting case of this sinc correlation yields the lower bound for eigenvalue statistics.
that is zero.

5. Statistics of critical loads

From the results obtained in the previous sections, one can get the statistical information
about the vibration frequencies and mode shapes. To ascertain the stability limits of the system.,
using the more general kinetic method, the nature of the vibration frequencies is important.
Depending upon the nature of the real and imaginary parts of the vibration frequencies, conclu-
sions about the stability of the system can be drawn. For a stochastically parametered system,
for a sample set of random parameters, a sample set of eigensolution can be obtained. A set
of values of the system parameters obtained from individual realizations of the stochastic fields
involved, thus constitutes a deterministic occurrence of the vibration frequencies. So, the conditions
for the stable or unstable states of the system can be expressed exactly for a deterministic occurre-
nce of vibration frequencies which in turn yields a deterministic occurrence of flow velocities.
Since, the critical flow velocity itself is a random quantity when the system parameters are
constituting an ensemble, only for a particular and individual set of realizations of critical flow
velocities and system control parameters stability conclusions can be drawn.

To solve the stability problem of the system, the averaged eigenvalue equation is sought. For
any set of individual realizations of system parameters, the equation giving the vibration frequency
as a function of flow velocity can be obtained from the solution of generating differential equation
and the boundary conditions for Y,,. This averaged equation yields averaged, complex eigenvalue
®, consisting of an averaged real part , and an averaged imaginary part @;, Here, it is assumed
that @ is that particular vibration frequency, which has got the maximum real part. Employing
the kinetic method of stability investigation for the averaged system and further noting that
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any set of averaged parameters is an individual realization of the ensemble of the system parame-
ters, we can write the following conclusions regarding the stability of the system:

For @,<0 system is stable;

For @,=0 system is critical;

For ®,>0 and ®,,#0. system is unstable and the type of instability is flutter.

For @,>0 and w,,=0, system is unstable and the type of instability is divergence, i.e., Euler
buckling.

The particular and deterministic flow velocity (which is the lowest) corresponding to the instabi-
lity of the system is the averaged critical flow velocity. This is the mean value of the critical
flow velocity which is a random variable.

To obtain the variance, covariance, etc., of the critical flow velocity, the eigenvalue equation
is considered:

U.= F(w)= Fx(4)

If the individual and point statistics of vibration frequencies are known, it is possible to derive
the statistical description of critical flow velocities either through explicit analytical relationships
F, and F, or through Monte Carlo simulations. So, if the monotonic unique relationship between
the vibration frequencies and critical flow velocity exists as F, or F», an unique inverse relationship
can be obtained as,

w=Fy(U) and A= Fy(U))

where
Fi()=F '(-) and F,()=F;'(")

In such cases. closed form analytical relationship can be written for the probability density
function of U., using the standard procedures of transformation of random variables, as

fu(.(U):fw(w)g% Fy(U,) and fy,(U) zfux)d% Fy(U)

In a similar manner, the distribution functions are obtained as,

Fy (Uy, Uy, U,)=PL{F (0)SUL A Fl(@)SUs} e Fi(@,)SUL = Fo(F3(U), FxU)++- FYU,))

and

Fu (Ui Us - U)=PURA)SULA Fy(A)SU} oo { Fo(A)SUN = Fu(FoU), FAUY -+ F(U,)

When the probability density functions or probability distribution functions are obtained from
these equations, the »™ moment of critical flow velocities can readily be calculated. To obtain
the bounds for critical flow velocities, the bounds for variances of eigenvalues are obtained
as shown in the previous section. Those values are used as the input for the nonlinear transforma-
tion to get the bounds for critical flow velocity statistics.

6. Numerical example

A cantilever pipe of unit length which has a stochastically distributed Young’s modulus and
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mass per unit length is being considered. Flow velocity of the fluid that flows through the pipe
is deterministic. The theory for deterministic material properties and fluid flow properties is
given in Gregory and Paidoussis (1966), Paidoussis and Issid (1974). To determine the conditions
of stability for such systems, two methods have been suggested in Gregory and Paidoussis (1966).
Method 1 is adopted for the deterministic case and for the averaged problem in the present

case. So,
UM M \" ) M+m\"* .
B= i+ myU, ”:<'ET> (UUYEL; w:( E/"> oL
J

The notations are in accordance with that of Gregory and Paidoussis (1966).

Five different correlation models are considered and these correlation models are the most
commonly observed and efficient ones.

(1) The triangular correlation function:

[T %}

|1:1—7:3|Sa
a

pli—w)=1—

=0 It —nl2a

where a is a constant.
(2) The first-order autoregressive correlation function:

p(t—n)=expl—lt,— nl/bl. b=constant=f(¢).
where g=correlation length, corresponding to the prescribed level of statistical dependence.
(3) Second-order autoregressive correlation model:

p(ti— )= [1 + _’l’l_zﬂ_] expL—lt—mnl/c], ¢ is a constant.

(4) Gaussian correlation model:
p(i—w)=expl—(li—nl/dy ], d is a constant.

(5) Finite power white noise field:

Table 1 Variances of A, for u,.=5.5 and =02, when F and m are gandom fields. a=b=c=d=15

Input variance Correlation models

x 10
ol=0;=0" Triangular  First-order AR Second-order AR Gaussian Finite power white
noise f,=10
0.1 400.7474 400.9061 360.5261 400.7474 400.7474
02 801.4940 801.8114 720.4780 801.4940 801.4940
0.3 1202.2409 1202.7171 1077.7997 1202.2409 1202.2409
04 1602.9683 1603.6032 1436.5708 1602.9683 1602.9683
0.5 2003.7104 2004.5040 1795.6957 2003.7104 2003.7104
0.6 24044319 2405.3843 2154.4466 2404.4319 24044319
0.7 2805.1705 2806.2815 2513.4997 2805.1705 2805.1705
08 3205.9092 3207.1790 2872.5712 3205.9092 3205.9092
09 3606.6477 3608.0763 3231.3147 3606.6477 3606.6477

1.0 4007.3846 40089719 3590.1656 4007.3846 4007.3946




Vibration and stability of fluid conveying pipes 321

Table 2 Variances of A, for u,=5.5 and p=0.2, when E is a random field. a=b=c=d=15

Input variance Correlation models

x 10

c.=0" Triangular  First-order AR Second-order AR Gaussian F1mte.powe1 white
a noise f,=10
0.1 397.5819 397.7402 357.6639 397.5819 397.5819
0.2 795.1661 795.4827 714.6736 795.1661 795.1661
0.3 1192.7491 1193.2240 1069.1285 1192.7491 1192.7491
04 1590.3321 1590.9653 1425.0166 1590.3321 1590.3321
0.5 1987.9152 1988.7066 1781.2708 1987.9152 19879152
0.6 2385.4983 2386.4480 2137.1540 23854983 23854983
0.7 2783.0505 2784.1585 2493.3270 2783.0505 2783.0505
0.8 3180.6292 - 3181.8955 28494912 3180.6299 3180.6290
09 3578.2077 3579.6323 3205.3526 3578.2077 35782077
1.0 3975.7863 3977.3692 3561.3219 3975.7863 3975.7863

Table 3 Variances of A, for u,=5.5 and =02, when E and m are random ficlds. a=b=c=d=10

Input variance

Correlation models
x 10
ol=oi=0" Triangular  First-order AR Second-order AR Gaussian Fmﬁgisio}vei 1V(V)h1te
0.1 396.1960 396.5507 3494371 396.1960 396.1960
0.2 792.3908 793.1003 698.2487 792.3908 792.3908
03 1188.5861 1189.6504 1046.8082 1188.5861 1188.5861
04 1584.7630 1586.1819 1395.3901 1584.7630 1584.7630
0.5 198(9538 1982.7275 1743.8411 1980.9538 1980.9538
0.6 2377.1234 2379.2519 20925713 23771234 2377.1234
0.7 27733105 27757938 2441.0245 27733105 27733105
0.8 3169.3467 3172.1847 2789.5625 3169.3467 3169.3467
09 3565.5149 3568.7077 3137.9751 3565.5149 3565.5149
1.0 3961.6816 3965.2291 3486.6390 3961.6816 3916.6816

plai—ry=2s, 0 L0 =8)

(ti— 1)

where S, 1s the strength of white noise and f, is the upper cut-off frequency of the power spectral
density given by

O.Z
S()=s4 ¥
0. |1 >f.

First. both £ and m are treated to be random fields. The variances of normalized frequencies
A for different correlation structures of the input fields and input variances are given in Table
1. Then, only E is treated random and the results are given in Table 2. In these two cases,
a=b=c=d=15 and S,=0.001. Subsequently, for a=b=c=d=10 and S,=0.001, the results are

Lf1<f.
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Table 4 Variances of critical flow velocity when @, is normally
distributed and w.=45

Input variance Variance of u. Variance of u,

oG, when p=18 when p=25
1.0 (1818 23071 X102
1.1 0.2380 3.0518X 10 °
1.2 0.3078 3.8940 <10 -
1.3 0.3939 4.8279X10°*
1.4 04996 6.0486 <10 °
1.5 0.6306 74279X 102
1.6 0.7909 9.0515X 107
1.7 0.9908 0.1102
1.8 1.2437 0.1320
19 1.5747 0.1577

given in Table 3 when E and m are random. This study shows the effect of randomness in
different system parameters and the.type of correlation of the random fields, on the vibration
frequency statistics.

To find out the variances of critical flow velocities, a Monte Carlo simulation technique is
formulated using the frequency equation relating the normalized parameters # and @ with the
exponents of the trial solution,

x)(r):Aeiar

where,

172
52( il ) (UU)" L.

- M+m "2 Rl
w—(——-—EI ) 0L

constant ¢ in Egs. (23) in Gregory and Paidoussis (1966) is taken to be zero. The variances
of critical flow velocity U. when o.=w.=(1+®,) and @, is normally distributed with variance
1 are given in Table 4. for 200 simulations.

7. Conclusions

The foregoing has described an effective means of integrating the concepts of probability theory
and structural dynamics to analyse coupled systems with uncertain parameters. A general method
of analysis for stochastically parametered fluid conveying tubular cantilever pipes is demonstrated.
Fluctuations of material properties, Young’s modulus and mass density of the pipe material,
are modeled through continuous independent one dimensional invariate real homogeneous spatial
random fields. Complete.eigenvalue statistics are obtained in terms of input parameter statistics
through approximate closed-form relationships. Critical flow velocity statistics are also obtained.
To enhance the practical use, bounds for eigenvalue statistics and critical velocity statistics are
obtained. These avoid the difficulty of extracting the appropriate correlation functions of the
input random fields from experimental data and so remains as a useful design input.
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Numerical results are presented employing five different and commonly-used correlation mo-
dels. Sensitivity of response moments to the distribution of correlation properties has been ob-
tained through these numerical results. Such an information is critical while selecting appropriate
spectral distributions to model the field data, for a fixed value of accuracy. A particular value
of operational safety and design life dictates this value of accuracy through the sensitivity of
response moments obtained earlier.

The general treatment permits direct simplifications to such cases as the vibration of the classical
Euler column and stability of Beck’s column, etc. Bounds and covariances are directly derived
herein, unlike the limited scope of earlier works like in Collins and Thomson (1969), Shinozuka
and Astill (1972) even as they treat simple conservative systems. So the present work also provides
the complete covariance structure of both frequencies of oscillation as well as buckling loads
of conservatively-loaded columns and beam-columns.
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Appendix |

{=aOY5LOYL0-aO)YLO Y0+ ] a0 Vo9 Vde

— 2J‘:) a(r)[ YZ::(T)- Yon(t)]’dt+J:)a(r) YZY’,(-L-) Yon(l')dl'}

! 2
(1+9] ¥2,(9de

Aln:

In a similar manner, we can get,

{=Aun :)b( Y2, (ddet mGLg [, (1= Db V(D) ¥or(Dde—mGgL [ BV YD)
1+0[ ¥2(0ds
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Appendix Il

F(Ya Y= 1A([, Ya(od] Vo)
FAY o Yo)=LY5(m) PLY () ]
Fy(Yo, Y=Y (m) Y o(w)] Aui Ao
FYo Yo)=Y (2)Yu(m) Y () Y (1)
FS(Y.. Y)=Y (0)Y(r)Y ()Y, (1)
H( Y(,,,):{f:) Y2(9dd





