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A finite element algorithm for contact
problems with friction
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Abstract. A finite element algorithm for consideration of contact constraints is presented. It is characteri-
zed by introducing the geometric constraints, resulting from contact conditions, directly into the algebraic
system of equations for the incremental displacements of an incremental iterative solution procedure.
The usefulness of the proposed algorithm for efficient solutions of contact problems involving large
displacements and large strains is demonstrated in the numerical investigation.
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1. Introduction

Within the framework of the finite element method formulations for problems involving contact
constraints can be classified into constraint minimization formulations (Lagrange multiplier me-
thod (Hughes, er al. 1976, Bathe and Chaudhary 1985, Chaudhary and Bathe 1986). penalty
method (Kikuchi and Oden 1984, Oden and Pires 1984, Peric and Owen 1992, Papadopoulos
and Taylor 1992), perturbed Lagrangian method (Ju and Taylor 1988, Simo, er al. 1985, Chang,
et al. 1987), augmented Lagrangian method (Landers and Taylor 1985, Simo and Laursen 1992,
Wriggers and Zavarise 1993)) and methods, characterized by imposing the geometric constraints
resulting from contact directly on the equilibrium configuration (Chandrasekaran, er al. 1987).
For an extensive list of references we refer to Zhong and Mackerle (1992).

In what follows, a relatively simple yet efficient method for the solution of contact problems
at finite strains, taking into account friction in the contact zone, is presented. The proposed
algorithm is characterized by directly enforcing the displacement constraints, resulting from the
contact conditions, in the algebraic system of equations for the nodal incremental displacements.
Advantages of the proposed algorithm are its simplicity, the exact enforcement of contact constrai-
nts, a well-conditioned stiffness matrix and even a small reduction of the number of the degrees
of freedom in consequence of the constraints. In the numerical investigations, comparisons with
numerical solutions in the literature are included, which demonstrate the efficiency of the proposed
algorithm.

2. Formulation of the algorithm

Within the framework of an incremental-iterative finite element formulation the equilibrium
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configurations of two bodies B' and B’ are assumed to be known up to load step n. Thus,
the displacement field of the two bodies u,=[u, : u} 1" is known. The algebraic system of equations
for the vector of incremental nodal displacements, Au, ., =[Au},,: Au’,, 1", for load step n+1,
resulting from the linearized principle of virtual displacements, is given as

KnAun+I:AEz+l (l)

In Eq. (1) K, denotes the tangent stiffness matrix at the known configuration, depending on
the displacements u,; AF, ., is the vector of incremental nodal forces for load step #+ 1. Obviou-
sly, because of the linearization on which Eq. (1) is based, Au,., is an approximation to the
incremental displacements for load step n+ 1. Hence, an iterative technique has to be employed
for each load increment to obtain the solution of the respective nonlinear problem. To this
end, Eq. (1) is replaced by

1) ) — )
Kn+| Aun(p+l g)+l« 2

where p denotes an iteration step within load step n+1 and RY), stands for the vector of re-
sidual nodal forces. For p=1, K =K, and R!’.,=AF,., Consequently, the total displaceme-
nts are obtained as

ug)}rl_un+ ZAM(,;LI (3)

Fig. 1 shows those par[s of two deformable bodies B' and B°, which, upon examination of
the displacement field u¥), have come into contact. The bodies are discretized by means of
isoparametric finite elements. For simplicity the subsequent derivations are restricted to two--
dimensional problems. In what follows the subscript #+ 1 for the load increment and the supersc-
ript p for the iteration step will be omitted. The applied contact kinematics are based on the
condition to prevent a penetration of body B into body B'. As can be seen from Fig. 1, this
condition is violated by node s of body B°. The normal projection of node s of body B® to
the boundary of body B' yields point k. According to the isoparametric concept, the position
vector x, referred to body B' is given as

n=ﬁM@m. @)

where N and x{ denote matrices of suitable shape functions and the vectors of nodal coordinates
in the current conﬁguratlon of element ¢ and ¢ is a local coordinate which will be defined

Fig. 1 Contact kinematics.
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in the following. In Eq. (4) the summation extends over those m nodes of element e, which
are located on the contact surface. The tangent vector ¢ and the normal vector n to the boundary
of element ¢ at point k are given as

< ON§ 0 1] ¢
= ———L (_ _= —
t 27 5¢ x; and n [_1 O] TR ()
respectively. & is computed from the condition
t-g=0, g=x;,—x, ©)
yielding, e.g. for a bilinear 4-node element
fz,zi%;_xl_) —1 0

with a=x$—x{. For quadratic elements Eq. (6) can be solved by an iterative technique. The
penetration g of node s into element e is obtained as

g=n"g ®)

Hence, if g>0, then the contact constraint will be violated (see Fig.1). Consequently, geometric
compatibility has to be restored in the subsequent iteration step.

For sticking contact, the position of node s is assumed to be at point k on the boundary
of element e. Hence, for the subsequent iteration step the condition

X, — X, (9)
holds, where
Xx=x+Au;. (10

with x; as the known position vector from the previous iteration step. Substitution of Eq. (10)
into Eq. (9) and use of Au;=Z Ni({)Au, following on the basis of the isoparametric con-
cept from Eq. (4), yields

Au,= iNj(f)Aub‘,f +g (1

In a local coordinate system, defined by the axes ¢ and n at point k, the component of g=x;—x,
in the directions of ¢ and n are given as 0 and g=|gl, respectively. Hence, by means of a
suitable transformation matrix A the relation between the local and the global coordinate system
is obtained as

0
:A{_}’ 12
g=A, (12)
For sliding contact, Eq. (12) is replaced by
Au
:A{ _ '}, 13
g g (13)

where Au, denotes the unknown displacement component of node s, in the tangential direction
to the boundary of element e at node k.
Note that modelling of sticking contact in this way involves an inaccuracy, because the assumed
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position of node s at point k is not necessarily the point, where node s touches the boundary
of element e.

Making use of Eq. (11), the global vector of nodal displacement increments Au can be rewritten
as

( Au 1 ” I ) —1Au 1
Aut I Aut
Aul 1 Aus
Au: E = .', E :C\lAu.\l'
Au 1 Au,
Au, NY NS -+ NS A g
: - R | (14)
Application of Eq. (14) to all nodes of body B®, which have penetrated into B' in the previous
iteration step, by replacing the subscript s, in Eq. (14) consecutively by s,, s3, -, s;. where [
denotes the number of nodes with active contact constraints, yields
Au: C\l Au.\l :C\l C\’ZAuQ: o :C\I C\Z'” C\IAu.\IZ CA".\I-» (15)
with
C:C\'IC\'Z'“C\'I' (16)

Substitution of Eq. (15) into Eq. (2) and pre-multiplication of the resulting system of equations
by C7 yields

C"KCAu,=C'R. (17

Because of the time-consuming matrix multiplications involved in Eq. (16) and in Eq. (17) and
the memory requirements for the matrix C at a first sight the proposed algorithm seems to
be inefficient. However, in practice, the matrix C as well as the matrices C, (i=1, ---, [) are
not computed explicitly. Rather, CTKC and C"R are computed by employing the recursive scheme

WK=CT WKC, WR=CT OR, (18)
QK=CT VKC, MR=C!, "R, (19)
WK=CT " IKC, OR=CT VR, for i=3, -, L. (20)

where K=K, “"R=R and, finally, "K=C"KC, "R=C'R.

Note that the vector Au,, contains both, unknown and prescribed nodal displacements. The
latter result from the contact constraints. For the prescribed nodal displacements the corresponding
nodal reaction forces converge to the nodal contact forces. Transformation of the reaction forces
at node s into components parallel to ¢ and n yields the tangential component f; and the normal
component f,. The pressure in the contact zone is computed according to Bathe and Chaudhary
(1985). According to Coulomb’s law, sticking occurs, if | f;1 <yl f, . where u denotes the coefficient
of friction. Otherwise sliding is assumed. For sliding, because of the absence of a constraint
in tangential direction, the respective component f, of the reaction force will converge to zero,
representing frictionless sliding. Frictional sliding, however, is characterized by a non-zero tangen-
tial component of the reaction force. For this reason a set of equilibrium forces is added, consisting
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Fig. 2 Rubber cylinder, squeezed between two rigid plates
(a) Cross section: (b) FE-mesh; (¢) Deformed structure (K= 1128 MPa); (d) Deformed structure
(K=1410 MPa).

of f,=uf,. applied at node s. This set of forces is balanced by forces of equal magnitude, but
acting in the opposite direction, applied at the nodes of element e as work equivalent nodal

forces.

3. Numerical examples

The proposed contact algorithm is tested for contact problems involving either a deformable
body and a rigid body or two deformable bodies. In both cases large displacements and large
strains are taken into account.

The first example is characterized by the squeezing of a rubber cylinder between two rigid,
frictionless plates, assuming plane strain conditions (Fig. 2(a)). This is a standard example to
test contact algorithms (Simo and Taylor 1991, Sussman and Bathe 1987). The diameter of the
cylinder is 0.40 m, the material parameters of the Mooney-Rivlin material model are given as
C,=0293 MPa and C,=0.177 MPa, respectively. The bulk modulus K is 1410 MPa. Hence,
because of G=2(C,+ (). the ratio of K over the shear modulus G is equal to 1500, yielding
nearly incompressible material behavior. The FE-mesh of one quarter of the cylinder is shown
in Fig. 2(b). Following Simo and Taylor (1991), a total relative displacement of the plates of
v=025 m is applied in one step. The solution of the problem is split into two increments.
In the first increment K is set to 11.28 MPa to avoid problems resulting from nearly incompressible
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Fig. 3 Load-deflection diagram for the rubber cylinder. squeezed between two rigid plates.

material behavior. The respective deformed structure is shown in Fig. 2(c). In order to account
for the nearly incompressible material behavior. in the second increment K is increased up
to the final value of 1410 MPa, yielding the deformed structure, shown in Fig. 2(d). Altogether,
16 iteration steps are needed to obtain a value of the norm of the residual energy, which is
less than 1-10~"" MNm/m. Inspection of Fig. 2(d) and of the respective figure in Simo and
Taylor (1991) reveals excellent agreement of the computed deformed configuration. The load-
deflection diagram for this example is shown in Fig. 3. Up to a total deflection of 02 m it
can be compared with the respective diagram, contained in Sussman and Bathe (1987). In this
reference a total displacement of 0.2 m was applied in 10 equal steps. For this range of deflection
the two load-deflection curves are identical. The vertical load, corresponding to the deflection
of 02 m, is equal to 140 MN/m. The vertical load. corresponding to the final deflection of
025 m, shown in Fig 2(d). is equal to 3.64 MN/m.

The second example is dealing with a cylindrical ring, squeezed between two elastic plates
(Fig. 4(a)). This example has been solved in Papadopoulos and Taylor (1992) on the basis of
a mixed penalty formulation, neglecting friction between the ring and the plates, and in Wriggers
and Zavarise (1993), employing a nonlinear contact law within the framework of an augmented
Lagrangian technique. Following Papadopoulos and Taylor (1992), the geometric and material
parameters are chosen without referring to particular physical dimensions. A uniform vertical
displacement v is applied to the top surface of the upper plate. In Papadopoulos and Taylor
(1992) this problem has been analyzed up to v=4. Because of symmetry conditions, only one
quarter of the structure needs to be discretized (Fig. 4(b)). (In Papadopoulos and Taylor (1992)
and Wriggers and Zavarise (1993) the results are referred to one half of the value of the prescribed
displacement v, applied on the horizontal symmetry plane of the ring)

The ring and the plates are assumed to be made of materials, obeying Neo-Hookean constitutive
relations. For the former, the bulk modulus and the shear modulus are chosen as K =833 and
G =385, respectively, for the latter K=383300 and G=38500, respectively.

Firstly, frictionless contact is considered. A displacement of v=38 is applied in 4 equal incre-
ments. Fig. 4(c) and Fig. 4(d) show the deformed structure, corresponding to v=4 and v=3_,
respectively. In Fig. 5 the pressure distributions in the contact surface are plotted for several
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Fig. 4 Cylindrical ring, squeezed between two elastic plates
(a) Cross section: (b) FE-mesh; (c) Deformed structure (v=4); (d) Deformed structure (v==§).

levels of v. For v=2 and v=4 the pressure distributions in the contact region can be compared
with the results reported in Papadopoulos and Taylor (1992). The length of the contact region,
the peak pressure in the vertical symmetry plane as well as the distribution of the pressure
in the contact region are in good agreement with the results contained in Papadopoulos and
Taylor (1992).

For vertical deflections larger than v=4 Fig. 5 shows a decrease of the contact pressure in
the region close to the vertical symmetry plane until, finally, the contact pressure is reduced
to zero in this region, indicating tension release. Remarkably, quite large displacement increments
may be chosen. Even application of the total displacement of v=8 in one single step yields
convergence within 11 iteration steps. The convergence tolerance is chosen in terms of the norm
of the residual forces to be less than 1-107° MN/m. In Wriggers and Zavarise (1993) this example
was analyzed up to a vertical deflection of v=6, taking into account a nonlinear constitutive
law in the contact interface. In spite of this difference a similar qualitative behavior in the
contact region is observed.

Secondly, frictional contact is investigated, assuming the coefficient of friction y to be equal
to 0.2 and 04, respectively. Compared with frictionless conditions, the displacement steps have
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Fig. 5 Pressure distribution in the contact surface for different values of v.
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Fig. 6 Comparison of the pressure distribution in the contact surface for different values of u

to be chosen considerably smaller in order to properly account for the path-dependence of such
problems. In particular, a total vertical displacement of v=4 is applied in 20 equal steps. A

comparison of the pressure distributions in the contact surface for different values of y at v=4
is contained in Fig. 6.

4. Conclusions

On the basis of the proposed finite element algorithm for contact problems the geometric
constraints, resulting from contact conditions, are accounted for directly in the algebraic system
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of equations for the incremental displacements in the context of an incremental-iterative solution
procedure. An advantage of the proposed algorithm is its conceptual simplicity. Nevertheless,
the introduction of constraints into the global system of equations may prove to be difficult
in large FE-codes. In the numerical study it was shown that the proposed algorithm is capable
of efficiently solving contact problems, involving large displacements and large strains.
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