Structural Engineering and Mechanics, Vol 3, No.2 (1995) 173-183 173
DOI: http://dx.doi.org/10.12989/sem.1995.3.2.173

Vector algorithm for layered reinforced
concrete shell element stiffness matrix

Chang Shik Mint

Dept. of Ocean Cwil Eng., Cheju National Uni., Cheju 690-756, Korea

Ajaya Kumar Guptat

Center for Nuclear Power Plant Structures, Equipment and Piping,
North Carolina State University, Raleigh, NC 27695-7908 U.S.A

Abstract. A new vector algorithm is presented for computing the stiffness matrices of layered reinforced
concrete shell elements. Each element stiffness matrix is represented in terms of three vector arrays
of lengths 78, 96 and 36, respectively. One element stiffness matrix is calculated at a time without interrup-
tion in the vector calculations for the uncracked or cracked elements. It is shown that the present algorithm
is 1.1 to 7.3 times more efficient then a previous algorithm developed by us on a Cray Y-MP supercompu-
ter.

Key words: vector algorithm; element stiffness matrix; inelastic finite element analysis; Cray Y-MP,
supercomputer.

1. Introduction

We are presenting here a vector algorithm for calculating the stiffness matrix of a 4-node
isoparametric element (Ahmad, et al. 1970) to be used to model reinforced concrete shells. In
the previous paper (Min and Gupta 1994a), we considered the effect of inplane-membrane stresses
only on the cracking of concrete and yielding of steel even though the element formulation
includes the bending stiffness terms. The effect of both the bending and inplane stresses is
considered here on the cracking of concrete and yielding of steel. There are other significant
differences also between the previous and the present papers. To take advantage of the vector
computing, in the previous paper all the arrays had a vector length of ne, the number of elements.
For each iteration, the element stiffness matrices were calculated using the vector length ne
and uncracked concrete properties. Scalar operations were performed to recalculate the stiffness
matrices of the elements with cracked concrete. We felt that it was more economical to re-evaluate
the stiffness matrices of the cracked elements than to sacrifice the uniform vector length ne
throughout the stiffness matrix calculations. In the previous algorithm, since the effect of bending
on the cracking of concrete and bending of steel was not considered, the entire element was
treated as “one layer.”

t Lecturer
% Professor of Civil Engineering and Director

174 Chang Shik Min and Ajaya Kumar Gupta

To account for bending on the cracking of concrete and yielding of steel, a layering approach
(Hand, er al 1973, Lin and Scordelis 1975) is used here, in effect, increasing the number of
elements by a factor equal to the number of layers. Doing so also increases the proportion
of the number of cracked element layers averaged over the total number of iterations to be
performed in any analysis. Therefore, the idea of recalculating stiffness matrices of the cracked
elements becomes less attractive in the multi-layer element than in the previous single-layer
element. An alternative vector algorithm for the layered reinforced concrete element is developed
here, and its computational efficiency is compared against the previous algorithm for the single
layer element.

2. Formulation of layered shell element stiffness matrix

As before (Min and Gupta 1994a), the element stiffness matrix [k] is represented in terms
of nnXnn submatrices [k,,] of the order 6 X6, where nn=4, the number of nodes in an element.
Further, a submatrix [k;] is separated into two matrices, [k,] for inplane stiffness, and Lks,]
for transverse stiffness.

In the layering approach, integration along the third isoparametric coordinate, {'can be approxi-
mated by summation on the concrete layers, and on the steel layers. The isoparametric coordinate,
¢ is defined perpendicular to the middle surface of the shell. Each layer is assumed to be in
a state of plane stress and can have different material properties. The submatrix [k,;] can
be written as

(k] [p] g[P] [Pl = (Dl)k[pl]+(D2)k[p2:|+(D3)k[p3:]
Py (‘X(‘_Z[{[p] {2[p]]k’ k_|:+(D4)k I:p4]+(D5)k[P5:|+(D6)k[P6:|j|’

where

(D, D- D; D, Ds D ,=h[E, E, E; E; Es E.], for a concrete layer,

or=(E,)k[(Ay >0 0 (1), 0 0] for a steel layer,)

in which A, is the thickness of concrete layer k; E,, E, E; E, Es and E¢ the terms of the
constitutive matrix relating concrete stresses and strains; E; Young's modulus of steel; and (4,
b):y and (4, b)y are the total steel area for the layer and the width of an element in the x
and y directions, respectively. For uncracked concrete layers, E; and Es are zero. Steel is assumed
to be an elastic-perfectly plastic material. The six p-submatrices are of the order 3X3 and can
be expressed as before.

The submatrix for [ks,.j] for transverse shear stiffness can be written as

1)

2 2
9a) h_qalz 9s,, h_qblz
[ks,,:|6><6 Z D7) i 2 (lf +(D7)« 2 (~2—>2 , 3
h Qa>, 2 Qay, h b, h 9y

where (D, =(hE;) in which E; is the transverse shear modulus; / the total thickness of

an element, #= Y k. The submatrices [q,] and [g,] are defined as before.
k

Vector algorithm for layered reinforced concrete 175
3. Numerical integration

Appropriate selective numerical integration using the Gaussian quadrature formulation is per-
formed in the calculation of various terms in p and g-submatrices (Pawsey and Clough 1971,
Gupta and Akbar 1984). Before cracking, the stiffness terms related to £+ and &+ are integrated
using a 2X2 quadrature, those related to y using a 1 point quadrature, and those related
to vz and yz using 1X2 and 2X1 quadrature, respectively. After cracking, all the concrete
stiffness terms related to ¢, €+ Y&, Y& Y= are integrated using a 1 point quadrature, and
the steel reinforcement stiffness terms (related to e+ and &+) using a 2X2 quadrature.

4. Transformation

The three global rotational degrees of freedom are transformed into two rotations at each
node along the shell coordinates x and y. Thus, each node has five global degrees of freedom
after the transformation. After pre- and post-multiplying the stiffness submatrices given by Eqgs.
(1) and (3) with the transformation matrices, we get

mhrzz@quﬂmMPh«DMPﬂ

+3 [(D7)k [P4,]+ = (DKL PY T+ 75O P,]] , @
in which [P,] [0l , [0]sx5 Cp 1L T»];
EP‘:IJ]:[[O:IDG [szxz]i/" : u]:[[Tn],T[p,] [0]2“]”’
[0]3x3 [0]3x
[P’u:l [[szxs [Tzz:]zT[Pr][Tzzjj]’f ®)
and
[pe]_[[4a11+qb11] [Ojsxz] [P]_[[OJ3X3 [qalz+qb|z][T33]f]
i~ [0]axs (0122 fs” =" 7 [[T2]i(qay + 45, 1 [0]e2]y
[P 1= (0]5x3 [0Jsx2 6
Ty [[szm [T72]T[qa22+qbvz][Tzzjl:l” ©

where [T»,] is the 3X2 transformation matrix relating the three global and the two local rotations
(Min and Gupta 1994a). The submatrices [P57,], [P"], [P,y] [P,], [Pb] and [P5,] are in-
dependent of the layer properties. Therefore, the numerical mtegratlon to evaluate these submatri-
ces needs to be performed only once for each element. Since the Gaussian quadratures are
different before and after cracking, actually, two sets of the submatrices are precalculated and
stored in the beginning of the analysis.

We can now write various [P,], r=1—7 submatrices for all the nnXnn pair of nodes. For
example, [P¢], can be expressed as

tee JLps, 1 Cpr 1 0Ps,]
[pe) [P [P2] o

[P [P2,]

sym LpP;,.]

LP7]=

176 Chang Shik Min and Ajaya Kumar Gupta

in which each [P”] submatrix is 5X35. The four diagonal submatrices are symmetric and have
6 non-zero umque terms each. Each of the 6 off-diagonal submatrices has 9 non-zero terms.
Thus, [P¢] has a total of 78 upper triangular, non-zero terms. These terms are stored in a
vector array which has a length of 78. Similarly, [P?] and [P:] have a total of 96 and 36
upper triangular non-zero unique terms, respectively, and these submatrices are also stored as
vector arrays of appropriate lengths.

5. Vector algorithm

We calculate various p and ¢ matrices using the ne-vector length as we did before (Min
and Gupta 1994a). Table | presents an algorithm for stiffness matrix terms to be integrated
using 2X2 quadrature points which results in the calculation of p, , 4 matrices that are stored
in the BM (ne, 27, 10) array. Algorithms for other quadratures (1X1, 1X2 and 2X1) are similar
and are given in Min and Gupta (1994b). In a 1 point quadrature, p,_, matrices are computed
and stored in the BN (ne, 54, 10) array. For transverse shear stiffness, qq4,, |, ,, ,, Mmatrices, integrated
using a 1X2 quadrature, are stored in BM, (ne, 6, 10), BM, (ne, 9, 10), BM; (ne, 9, 10) and
BM , (ne, 6, 10) arrays, respectively. The terms of g, D212 matrices integrated with 2X1 quadrature
points are added to the appropriate BM, -, arrays. Similarly, for a 1 point quadrature, transverse
shear stiffness terms that are combinations of various ¢, and ¢, matrices are calculated and
stored in BN, (ne, 6, 10), BN, (ne, 9, 10), BN; (ne, 9, 10) and BN, (ne, 6, 10) arrays.

At this point, we rearrange the data in the form of [P¢], [P?] and [P¢] matrices as explained
in the preceding section. Table 2 gives the steps for the [P¢] matrix which is stored in the
arrays BO, (78, 5, ne) and BQ, (78, 7, ne) for uncracked and cracked elements, respectively.
Steps for [P2] and [P¢] are similar (Min and Gupta 1994b). The [P?] matrix is stored in
BO, (96, 5, ne) and BQ, (96,.7, ne) arrays and the [P;] matrix in BO; (36, 5, ne) and BQ;
(36, 7, ne) arrays, respectively. In themselves, the steps carried out in creating [P¢], [P?] and
[P¢] matrices appear to constitute unnecessary overhead that would reduce the computational
efficiency. However, these steps (that need to be carried out once only, before iterations start)
allow us to vectorize the stiffness matrix calculations presented in Table 3 leading to significant
computational efficiency. Each element stiffness matrix has a vector length of 210. Calculations
are performed in a sequence of three vectors that have lengths of 78, 96 and 36. The process
does not change from uncracked to cracked elements or among layers. Stiffness matrices of
the cracked elements need not be re-evaluated using scalar calculations as we did in the previous
algorithm (Min and Gupta 1994a).

In the present algorithm, the storage of each element stiffness matrix in a vector of length
210 directly leads to assembly of the global stiffness matrix using indirect gather/scatter operations
(Cray SR-0018 C) without having to rearrange the element stiffness matrices. In the previous
algorithm, we had to rearrange the element stiffness matrices before the assembly. This rearrange-
ment introduces a significant overhead because it is repeated for each iteration. We recall that
a similar rearrangement is carried out in developing the p and ¢ arrays in the present algorithm.
However, this is done only once, before the iterations start.

Vector algorithm for layered reinforced concrete 177

Table 1 Algorithm for stiffness matrix terms to be integrated using 2X2 quadrature points

Step Description Array sizes
1 Evaluate at each integration point, N, 5 N, , 2X(nn, 4)
2* Compute the elements of the Jacobian matrices J, (ne, 4)
Xg Y& X, Vo .]
Compute the direction cosines, n="[ns ny n:] (ne, 9, ni)
m=X,X,x.) m=[y.y,y.], m=[02.2,7.]
3* Evaluate the determinant of the Jacobian and its inverse, |J|, U=1/|J] 2X (ne)
Compute, Nis=UNi ¢y 7~ Nipy.e) Niz=U(—N; ¢x ,+N, nx¢) 2X(ne, nn, ni)
4* Compute, W=|J| (A weight coefficient of unity is implied.) (ne, ni)
5* Calculate; for i=1, nn; j=i nn
DN, DN, _[NizN;x N=N;5 _
| DN, DM] [NN N,-.yN,-.,‘—,]’ DNs=DN:+ DN, (ne, Snc)
6* Compute the 21 upper triangular terms of the 6X6 matrix Wlns)" [nz nyl
and store in the array TT. (ne, 21, ni)
7* Three 3X3 submatrices, pi, p;, ps are to be calculated for 10 upper triangular pairs

of nodes shown below:
Ly 12y (13) (14
22 23 @29
33 (G4
Symmetric 44)
Each of the submatrices (1.1), (22), (3.3) and (44) is symmetric and has six unique terms.
These terms are numbered for sets of pi, p» and p; as follows:

(123) (45 6) (7,89
(10,11,12) (13,14,15)
Symmetric (16,17,18)
Calculate pi, p;, ps+ submatrices corresponding to the above terms and store
in the BM array (ne, 27, nc)**

BM(1,4.7,10,13,16)=BM (1,4,7,10,13,16)+ DN, TT(123,7.8.12)
BM(2,11,17)=BM (2,11,17)+ DNs TT(4,10,15)
BM(3,69,12,15,18)=BM (3,6,9,12,15,18)+ DN, TT(16,17,18,19,20,21)
BM (5.8,14)=BM(5,8,14)+ DN; TT(9,13,14)+DN, TT(5,6,11)

Each of the off-diagonal submatrices, (1,2), (1.3), (1.4). (23), (24) and (3.4) has 9 unique terms. Again,
these terms are numbered for sets of p;, p» and p,; as follows:

(1.23) (4506 (7,89
(10,11,12) (13,14.15) (16,17,18)
(19,20.21) (22,2324) (25,26,27)

Calculate pi, p», ps submatrices corresponding to the above terms and store in the BM array
BM(14,7,10,13,16,19.22,25)

+DN, TT(123.2,7.83,8,12)

BM (2,14,26)=BM (2,14,26)+ DNs TT(4,10,15)

BM(3,69,12,15,18.2124,27)
+DN, TT(16,17,18,17,19,20,18,2021)

BM(14.7,10,13,16,192225)={

BM(369,12,15,18212427)=1

178 Chang Shik Min and Ajaya Kumar Gupta

BM(58.11,17.20.23)
BM(58.11.17,2023)=9 + DN, TT(9.13,5,146.11) (ne. 27, ncy**
+DN, TT(569.,11.13,14)

BM-array is initialized before above operations.

ne=number of elements, ni=number of integration points=4, nn=number of nodes in an element=4, nc=number of

the upper triangular coefficients in an anXnn matrix =nn{nn+1)/2=10

*Steps 2-7 are performed in a do loop on the integration points.

**The dimension of 27 is based on 3X3=9 unique terms in the 3 submatrices (pi, p., ps). For symmetric matrices we
have 6 unique terms per submatrix and require space for only 18 terms. However, the dimension of 27 is used both
for diagonal and off-diagonal submatrices for convenience and efficiency.

Table 2 Algorithm for generation of [P¢], Eq. (7)

Step Description Array sizes

The [P;] matrix is stored in BO, and BQ-arrays for uncracked and cracked elements, respectively,
in the following order to form a vector (vector length=np=78);

1 23 00 7 8 9 0 0 16 17 18 0 0 25262700\W
4 500 10 11 12 0 O 19 20 21 0 O 28029 30 0 O
6 0 0 13 14 15 0 O 22 2324 0 0 31 32 3 0 0

0 0 0O 0o 0 0 o0 0o 0 0 0 o 0O 0 o0 0 O

0 0O 0 0 o0 o0 O 0 0 0 o O 0 0o 0 O

34 35 36 0 0 40 41 42 0 0 49 5 51 0 O

37 38 0 0 43 4 45 0 0 52 53 54 0 0

39 0 0 46 47 48 0 0O 55 56 57 0 O

0 0 0O 0 0 0 o 0 0 o0 0 o

0 O 0 0 0 O O 0 o0 0 o

58 59 60 0 0 64 65 66 0 O

61 62 0 0 67 68 69 0 O

63 0 O 70 7172 0 0

0 o0 0 0 o0 o0 o0

0 0 0 0o 0 o

73 714 75 0 O

7% 77 0 0

78 0 0

0 0

summetric 0

The following steps are performed in three do loops in the following order (outermost-innermost):f‘—‘ 1,
nn;, j=i. nn; ie=1, ne
1 When i=j, calculate the 6 upper triangular terms for the four diagonal submatrices, (np, 5, ne)
BO,(1)=BM (14.7,10,13,16), BO,(2)=BM(2,58.11,14,17)
BO, (3)=BM (3,69,12,15,18), BO,(4)=BN(6,12,18,24.30,36)
BO, (5)=BM, (123456)

When ixj, calculate the 9 terms in each of the six off- diagonal submatrices,

BO,(1)=BM (14.7,10,13,16,19,22,25) (np, 5, ne)

Vector algorithm for layered reinforced concrete 179

BO,(2)=BM(2,5.8,11,14.17,20,23.26)
BO,(3)=BM (3.69,12,15,18,21,24.27)
BO:(4)=BN(6.12,18,24.30,36,42.48.54)
BO,(5)=BM,(1,23.2453.5.6)

2 When i=j, calculate the 6 upper triangular terms for the four diagonal submatrices,

BQ,(1)=BN(1.7,13,19.25.31), BQ:(2)=BN(2.8,14,20,26,32)
BQ,(3)=BN(39,15,21,2733) BQ:(4)=BN(4.10,16,22.28,34)
BQ/(5)=BN(5,11,17,23,29,35) BQ:(6)=BN(6,12,18.24,30,36)

BQ\(7)=BN,(12.34.5.6)
when ixj, calculate the 9 terms in each of the six off-diagonal submatrices,

BQ,(1)=BN(1.7,13,1925 31 37.43,49) (np. 7. ne)
BQ\ (2)=BN(2.8,1420,26,32,38,44.50)

BQ,(3)=BN(39.1521,273339.45,51)

BO, (4)=BN(4,10,16,22,28,34,40.46,52)

BQ, (5)=BN(5,11,17.2329,35,41.47,53)

BQ, (6)=BN(6,12,18,24,30,36,42.48,54)

BO\(7)=BN,(12324.53.56)

ne=number of elements, nn=number of nodes in an element=4, nc=number of the upper triangular coefficients in an
an Xnn matrix =nn(nn~+ 1)/2=10; np=number of coeflicients related with submatrix [P¥], 4 diagonal blocks (each 6 coefficie-
nts) and 6 off-diagonal blocks (each 9 coefficients)=4X6+6X9=78

Table 3 Algorithm for calculating element stiffness matrix

Step Description Array sizes

Each step is in a do loop, i=1, ne. Perform calculations for each layer accounting for its uncracked
or cracked state identified by an index array. Element stiffness matrix for each element is stored as

a vector of length 210 by sequentially stacking three vectors of 78, 96 and 36 (1-78, 79-174 and 175-
210).

Steel contribution
Step 1 is carried out only once and is not repeated during iterations.

I Compute stiffness contribution of each steel layer in three do loops:

(i) np=178

(K 1=tk I+HE(45) -} Bo+H{Es(4L} Bo) (210, ne)
(ii) ng=79,174

(K=K 1+{¢Es(45)} Boy+{¢E 41} BoG) (210, ne)
(iii) nr=175210

(K 1=0K I+ CES(45)} Box)+H CES 41 Bo) (210, re)

Matrix [K,] is initialized before above operations.
The following are repeated for each iteration.
2 Initialize stiffness matrix [K] by; [K.\]; [K]1=[K,] (210, ne)

180 Chang Shik Min and Ajaya Kumar Gupta

Concrete contribution

3 Add contribution of the submatrix [P¢] for each layer k in a do loop, np=178
For uncracked elements:

[K]1=[K1+(D\)«BO(1)+(D:): BO(2)+ (D), BO(3)
+(De)x BO\(4)+ (D7) BO\(5) (210, ne)
For cracked elements:
[K1=[K1+D)«BQ (1) +(D2): BQ (2)+(D:): BQ (3)
+(Da)« BQ (4)+(Ds)x BQ (5) +(De) « BQ 1(6)
(D7)« BO(7) (210, ne)

4 Add contribution of the submatrix [P?] for each layer k in a do loop, ng=79,174
For uncracked elements:

[KI=[K]+ (D) BOA1)+({Ds) BOA2)+(EDy) BOA3)
+({De)s BOA4)+ (D7) BOA5) (210, ne)
For cracked elements:
LK1=[K1+((D1)iBQ A1) +({D2)« BQA2)+({D3)« BQ(3)
+(¢D4)x BQ+4)+({D5)« BQA5)+({De) s BQ (6)
+(D7)BOAT) (210, ne)

5 Add contribution of the submatrix [P:] for each layer & in a do loop, nr=175210
For uncracked elements:

[K]=[K]+($ D) BO)+($* D) BOA2) + (7 D)1 BOS(3)

+($2De) i BOA4)+ (D7) BOA(S) (210, ne)
For cracked elements:

[K1=[K]+($ D) BQ (1) +($*D2)k BQ «2)+($* D)k BQA(3)
+($2D4)« BQ {4)+($Ds)« BQ A5)+ ($* De) BQ +(6)
+(D7)«BQ(7) (210, ne)

ne=number of elements, np=number of coefficients related with submatrix [P¢], 4 diagonal blocks (each 6 coefficients)
and 6 off-diagonal blocks (each 9 coefficients)=4X6+6X9=78: ng=number of coefficients related with submatrix, [P,
4 diagonal blocks (each 6 coefficients) and 6 off-diagonal blocks (each 2X6 coefficients)=4X6+6X12=96; nr=number
of coefficients related with submatrix, [P¢]. 4 diagonal blocks (each 3 coefficients) and 6 off-diagonal blocks (each 4 coefficie-
nts)=4X3+6X4=36

6. Evaluation of efficiency of the algorithm

Relative efficiencies of the two algorithms, presented here and in the previous paper, are evalua-
ted with the help of two models of a hyperbolic paraboloid saddle shell and three models of
a hyperbolic cooling tower. Various parameters of the five models are summarized in Table
4. The shell element formulated in conjunction with the algorithm presented in this paper has
ten concrete layers both for the saddle shell and the cooling tower models, one steel layer for

Vector algorithm for layered reinforced concrete 181

Table 4 Parameters of the models

Saddle shell Cooling tower
Model S16 S32 CI2 C24 C36
Number of elements 89 305 144 432 1,296
Number of nodes 133 389 169 475 1,369

Table 5 Comparison of the efficiencies of the present and the previous Min-Gupta algorithms for element
stiffness matrix calculation

Previous Min-Gupta vector algorithm Present vector algorithm
Model Number of CPU time* Number of CPU time* Efficiency
Iterations Total(sec) Per iteration- Iterations Total(sec) Per iteration- ratio t
element-layer(u sec) clement-layer(y sec)
S16 265 2.5 106.0 1293 16.6 144 7.3
S32 493 6.1 40.6 1826 794 14.3 28
C12 947 1.7 12.5 744 12.8 119 1.1
C24 436 9.6 510 669 326 113 45
C36 993 70.2 54.5 489 67.8 10.7 5.1

*Time was measured using CPU timer SECOND function of the Cray Math Library (Cray SR-2081 6.0)
t Efficiency ratio = ratio of the CPU time taken in the previous Min-Gupta algorithm divided by that in the present
algorithm for computing the element stiffness matrix per itcration-clement-layer.

the saddle shell models, and four steel layers for the cooling tower models. Both the finite
element computer programs are executed on a Cray Y-MP supercomputer. The Cray CFT77
compiler with the highest option, “full” is used. This option activates automatic vectorization
with full optimization (Cray SR-0018 C).

The total CPU time used in the calculation of the element stiffness matrices in each of the
five models using the two algorithms is given in Table 5. The number of iterations given in
the table in each case is the total of the number of iterations of all the steps up to the load-
displacement level roughly corresponding to what we considered to be the ultimate state. To
measure the computational efficiency of the two algorithms, we have determined the CPU time
used for calculating the stiffness matrix of one layer of each element in an average iteration.
This CPU time, per iteration-element-layer is equal to the total time used in the calculation
of stiffness matrices in an analysis divided by the numbers of iterations, elements and layers.
The element used in the previous algorithm has only one layer, and that in the present algorithm
has ten concrete layers and a variable number of steel layers for the two type of shells analyzed.
The stiffness contribution of the steel layers is calculated only once for the elastic case and
is not repeated for each iteration to avoid numerical instability after yielding of the steel. The
effect of steel yielding is accounted for by applying the appropriately calculated residual forces
in each iteration. The stiffness contribution of the ten concrete layers is recalculated in each
iteration. Therefore, the effective value of the number of layers used to determine the CPU
time per layer for the present algorithm is taken to be equal to ten, the number of concrete
layers.

The CPU time per iteration-element-layer is quite consistent for the present algorithm: 10.7-
119 usec for the three cooling tower models, and 14.3 and 144 psec for the two saddle shell
models. The later may be higher because, proportionately, more elements crack in the saddle
shell than in the cooling tower. As shown in Table 3, seven material constants are used in
the calculation of a cracked element stiffness matrix as opposed to only five for the uncracked

182 Chang Shik Min and Ajaya Kumar Gupta

element. The CPU time per iteration-element-layer increases monotonically for the three hyperbo-
lic cooling tower models, 12.5-54.5 usec, when the previous algorithm is used. The monotonic
increase can be explained on the basis that a more refined finite element mesh leads to a
proportionately higher number of cracked elements, which in conjunction with the previous
algorithm (in which the cracked element stiffness matrices are recalculated using a scalar algori-
thm) would cause an increase in the CPU time. The CPU time-values for the calculation of
the stiffness matrices for the two saddle shell models using the previous algorithm, however,
defies the above trend, and we are not able to explain it. It is possible that the CPU time-
values are incorrectly recorded for one or both the models. In any case, the relative efficiency
of the present algorithm over the previous algorithm is clearly indicated by the efficiency ratios
given in the last column of Table 5 that vary from 1.1 to 5.1 for the three cooling tower models,
and are 7.3 and 2.8 for the two saddle shell models. At least in the cooling tower case, the
higher the number of elements, the higher is the efficiency ratio.

7. Conclusions

A new vector algorithm is presented for calculating the stiffness matrices of the layered reinfor-
ced concrete shell elements that are uncracked and cracked. One element stiffness matrix is
calculated at a time with three vector arrays of 78, 96 and 36 lengths. No scalar recalculation
of the stiffness matrices of the cracked elements is required as was the case in a previous algorithm
we developed (1994a). The efficiency of the present vector algorithm is investigated on a Cray
Y-MP supercomputer. The new algorithm is 1.1 to 7.3 times more efficient than our previous
algorithm.

Acknowledgements

The supercomputing resources were provided by the North Carolina Supercomputing Center,
Research Triangle Park, North Carolina, U.SA.

References

Ahmad, Sohrabuddin, Irons, Bruce M. and Zienkiewicz, O. C. (1970), “Analysis of thick and thin shell
structures by curved finite elements,” Int. J for Numer. Meth. in Eng, 2, 419451,

Akbar, Habibollah and Gupta, Ajaya Kumar (1985), “Membrane reinforcement in concrete shells: design
versus nonlinear behavior,” North Carolina State University, Raleigh, North Carolina 27695-7908,
January, Reinforced Concrete Shell Research Report.

Cray SR-0018 C, CFT77 reference manual, SR-0018 C, Cray Research, Inc.

Cray SR-2081 6.0, UNICOS Math and Scientific Library Reference Manual, Cray Research, Inc.

Gupta, Ajaya Kumar and Akbar, Habibollah (1984), “Cracking in reinforced concrete analysis,” J Struct.
Engrg, ASCE, 110(8), 1735-1746.

Hand. Frank R., Pecknold, David A. and Schnobrich, William C. (1973), “Nonlinear layered analysis
of RC plates and shells,” J. Struct. Div, ASCE, 99(7), 1491-1505.

Lin, Cheng-Shung and Scordelis, Alexander C. (1975), “Nonlinear analysis of RC shells of general form,”
J. Struct. Div. ASCE, 101(3), 523-538.

Min, Chang Shik and Gupta, Ajaya Kumar (1991), “Vector finite-element analysis using IBM 3090-600E
VE,” Commun. in Applied Numer. Methods, 7(2), 155-164.

Vector algorithm for layered reinforced concrete 183

Min, Chang Shik and Gupta, Ajaya Kumar (1992), “A Study of inelastic behavior of reinforced concrete
shells using supercomputers,” Department of Civil Engrg., North Carolina State University, Raleigh,
North Carolina 27695-7908, March. Reinforced Concrete Shell Research Report.

Min, Chang Shik and Gupta, Ajaya Kumar (1994a), “Vector algorithm for reinforced concrete shell
element stiffness Matrix,” Structural Engineering and Mechanics, An International Journal, 2(2),
125-139.

Min, Chang Shik and Gupta, Ajaya Kumar (1994b), “Vector algorithm for layered reinforced concrete
shell element stiffness matrix,” Center for Nuclear Power Plant Structures, Equipment and Piping,
North Carolina State University, Raleigh, North Carolina 27695-7908, April, Reporr.

Pawsey. Stuart F. and Clough, Ray W. (1971), “Improved numerical integration of thick shell finite
elements,” Int. J. for Numer. Methods in Eng, 3, 575-586.

