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A numerical analysis of the large deflection
of an elastoplastic cantilever
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Abstract. A simple numerical method is applied to calculate the large deflection of a cantilever beam
under an elastic-plastic deformation by dividing the deformed axis into a number of small segments.
Assuming that each segment can be approximated as a circular arc, the method allows large deflections
and plastic deformation to be analyzed. The main interests are the load-deflection relationship, curvature
distribution along the beam and the length of the plastic region. The method is proved to be easy
and particularly versatile. Comparisons with other studies are given.

Key words: large deflection; elastic plastic deformation; cantilevers; curvature.

1. Introduction

The FElastica theory was first introduced by Euler to study the large deflection solutions of
elastic beams. In the following two centuries, the research work in this field was mainly restricted
to the beam made from linear elastic materials, i.e. merely geometrical nonlinearity was considered.
The related results were summarized by Frisch-Fay (1962). Since then, the Elastica theory has
been extended to cases in which both geometrical and material nonlinearities are involved. The
effect of large deflection on the development of plastic deformation was studied by Reid and
Reddy (1978) for a rigid, linear-hardening moment curvature relationship. They showed that
a cantilever with a tip force acting in a fixed direction has a limited length for the plastically
deformed region that extended from the root. Lo and Gupta (1978) investigated the case in
which the stress-strain relationship takes the form of a logarithmic function when stress is beyond
the elastic limit. Yu and Johnson (1982a) gave a closed form solution of a post-buckling behavior
of an elastic-plastic Euler strut and called this type of problem “Plastica”.

Changes in the distribution of curvature in a cantilever were considered by Wu and Yu (1986)
for an elastic-perfectly plastic material model, and by Liu, Stronge and Yu (1991) for an elastoplas-
tic strain hardening material. They successfully modeled the entire process of large deflection
of a horizontal cantilever subjected to a concentrated force at its tip. Nevertheless, these approaches
are of considerable complexity and numerical procedures such as the finite difference method
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Fig. 1 A cantilever under a tip force load.

had to be applied to solve the equations. It is felt that a much simpler semi analytical, semi-
numerical model can be established for such problems. Based on this approach, the new method
presented in this paper may not only help to solve plastic, large deformation of a cantilever
beam under tip loading, but also be able to deal with more complicated problems, such as
distributed load, combined loading of bending and axial force, curved beams, etc.

2. Numerical model

The present paper studies the development of large deflection in an elastic-plastic bar. For
easy understanding, a straight cantilever is chosen as an example, as shown in Fig. 1. The beam
has a rectangular cross-section with depth H and width B; there is a force at the tip acting
transversely to the undeformed cantilever and then it will remain fixed in its original direction
during the deforming process. It is assumed that the cross-section of the beam will remain
plane and axial stretching is negligible. The local curvature K(S) at any section S is related
to the rotation $(S) of the cross-section,

_ 49

A group of nondimensional variables are chosen: m= M/M,,f=FL/M,, 6=A/L, A=A/L,x=X/L,
y=Y/L s=S/L and B=M.L/EI=20,L/EH. Here forces and moments have been nondimen-
sionalised with respect to the largest elastic moment M,=BH’0,/6, o, is the yield stress and
E is the elastic modulus. B is a parameter that reflects the geometry and material properties
of the beam and is equal to the nondimensional curvature k= LK=d8/ds, pertaining to the
maximum elastic bending moment.

K

2.1. Material modeling

In elastic deformation, the bending moment m(s) is linearly related to the nondimensional
curvature
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Fig. 2 Bi-linear material model.

m(s)=«/pB @)

The elastic response ends with the bending moment at the root reaching the elastic limit, m=1
and this elastic solution is only valid when «<f and 0<s<l.

When the load f increases further, a plastic range initiates from the beam root and expands
from root towards the tip. In the plastic region the stress distribution at a cross-section has
an elastic core and is plastic near the top and bottom surfaces. For a rectangular section with
elastic-perfectly plastic properties, the relation between the bending moment and the curvature

of the neutral axis is
p*=3-2m 3)
where p=f/x is the ratio of the radius of the curvature to the radius of curvature at the elastic
limit.
For a bilinear material property, as shown in Fig. 2, the above relation becomes

pz—a(%—3+p2)=3—2m 4
a being the nondimensional plastic strain-hardening modulus.
2.2 Numerical modeling

In the present numerical modeling, the axis of the deformed beam will be replaced by a
number of circular arcs tangent to each other at the points of intersection, as shown in Fig.
3, assuming the arc lengths are small enough that the bending moment for each arc can be
approximated as constant and equal to the average bending moment. From the geometry of
a general element of arc in Fig 4, the following equations can be written for the ith arc,

8= §ipi %)

a=fsn{ e 5'9)-sn{ o~ $5) ®

j=

b,:p,-(cos< o— I:zi aj)—cos( o— 2 ,9,-)) @)

J Jj=1
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Fig. 4 Variables of the ith element.

where p; is the nondimensionlised radius of the ith circular arc, §; is its corresponding angle,
a; and b; are projections of the nondimensional arc length s; in directions of X and Y axes

respectively and

N
=2 9
j=1

is the sum of angles to all the arcs. N is the number of arcs into which the total length of
the beam is divided. When s, a; and b; are known, the length, deflection and horizontal distance

to the clamped end can be found,
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When the applied load is a concentrated tip force fixed in the direction perpendicular to
the undeformed beam axis, the average bending moment for a general arc is

m,-=( Z o+ %)f (10)

Thus if a;(j=1, i) are given, m; can be calculated and with the assumed value of tip slope
¢ given, starting from the free end the nondimensional curvature of each arc can be solved
using Eq. (2) for m<1, (3) or (4) for m>1, and all the rest of the above equations can then
be solved in order.

When the value of a,/p; is greater than the corresponding value for

i—1
sin(d)— Z 3,-)
/=1

the last arc has been achieved, indicating too large a value of a; was used. In this case,

N
we have N=i and for the last arc sin <¢— Zﬁj) is equal to zero and
J=1

av . _N-I )
n —sm(q) j;ﬁj (1D

Combining Eq. (2) for m<1, (3) or (4) for m>1 with Eqgs. (6), (10) and (11), the actual value
of ay of the last arc can be solved.
The correct result by this method requires a good estimate of ¢ at the beginning of the
N

calculation. Iterations may need to be carried out if the deviation between Y. s, and 1 is
J=1

too large, and ¢ has to be adjusted accordingly and the whole procedure repeated. Fig. 5 shows

the flow chart of the algorithm.

3. Numerical results

Typical deflection profiles for an elastic-plastic cantilever with a vertical force at its tip are
shown in Fig. 6; the material is a bilinear strain hardening model with @=0.1 and S=0.1.
In the calculation, the beam was divided into 100 segments, ie. N=100. It is clearly seen in
Fig. 7 showing the bending moment distribution along the beam that the plastic range expands
from the root towards the tip with increasing magnitude of the force. The plastic range increases
rapidly with 63% of the total length entering the plastic state at /=3, but after that the plastic
length increases slowly to 76% at f=9. Curvature changes along the beam are given in Fig
8. Calculation was stopped after ¢ had reached 1.1.

Influences of @ and B on beam deformation are given respectively in Figs. 9 and 10 with
f=7. It appears that for the same value of S the higher «, the less x/f, and with a constant
a the higher B, the higher «/f. A comparison between the numerical results and available experi-
mental data of Reid and Reddy (1978) for mild steel cantilever is given in Fig.11, which shows
reasonable agreements for a=0.05.
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Fig. 5 Flow chart of the algorithm.

0.0 e
01} .
02} 1
03} | ) .
-0.4 | .
> 05| il
06 -~ £=1.0 W i
07} — f=3.0 n ]
0 £=5.0 ]
o8L ---- £=70 ]
L e £=9.0 ]
09} .
1.0 I N . I . I I N i . I I . 1 %
bo 01 02 03 04 05 06 07 08 09 10
X

Fig. 6 Deformed configuration of a straight cantilever (@=0.1, p=0.1).
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Fig. 8 Curvature ratio, x/f against intrinsic coordinate, s (2=0.1, $=0.1).
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Fig. 9 Influence of a on bending moment and curvature distribution (f=7.0, B=0.1).
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Fig. 10 Influence of B on bending moment and curvature distribution (f=7.0, a=0.1).
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Fig. 11 Comparison between numerical results and experimental data (Reid and Reddy 1978), =0.
1475.

4. Discussions

The above example of a large deflection analysis on an elastoplastic straight cantilever demonst-
rates the effectiveness of this simple numerical approach. An advantage of this method is its
significant versatility. Apart from a concentrated vertical force, the load can also be an inclined
force or even a distributed force; only Eq. (10) needs to be changed accordingly as

_ i—1 i . i—1 é_l
m,——f(cos )/(JZ; a;+ > +siny ,; b+ 3 (10a)

and
i=1 ozl _ 2
m = Z szj<_ai+ z ak+g—')+ Wlai'—] (IOb)
/=1 2 45 2 8005(

- o= 2. 8)

where y is the inclined angle of the concentrated force to the undeformed beam axis, and Egs.
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(10a), (6) and (7) must be solved at the same time; w in Eq. (10b) is the intensity of distributed
load per length, it is approximated here that over each arc element (not the whole beam), w
is uniformly distributed.

Eqs. (2) and (3) or (2) and (4) represent respectively elastic-perfectly plastic and bilinear strain
hardening materials with no axial force considered in the yield criterion. If the axial force is
considered, for elastic-perfectly plastic beam under an inclined tip force, it gives

n= 2}]7Ve (cos( y+o— /Z gj)+cos( y+o— :221 ,9j-> ) (10c)
and
1/m 0<m<l—n
p= (3—%)2/4(1—;1) 1—n<m<l+n—2n (12)
V=) —2m 1+n—2n<m<3(1—nd)2

where n=F/N, and N,= BHo,, as discussed by Yu and Johnson (1982b). If a work hardening
relation of 6=Ce" is adopted, C and n being the material constant and working hardening
exponent, respectively, the p—m—n relation is given by El-Domiaty and Shabaik (1984). These
relations can be easily adapted into the calculation.
This numerical method may also be applied to curved beams, such as a circular ring of
radius r; then for elastic deformation, as an example, we have
1 1

—=m+—
p r

and the coordinates of the beam tip become

eefon(2)- %)

Y‘—’r(i b,.—1+cos(’r:))

The method can be extended for any curved bar provided the geometry of the free shape
allows to calculate pre-deformed r; for each elemental arc.

Many authors (Reid and Reddy 1978, Wu and Yu 1986, Liu, er al. 1989) have noticed the
so-called unloading phenomena. For a cantilever loaded with a tip load of fixed direction, the
load magnitude increasing, the plastic range first generates from the beam root towards the
free tip, then from a certain magnitude of f, the plastically deformed range begins to decrease.
This is the result of large deflection which causes the bending moment in certain beam sections
to reduce with increasing force. As shown in Fig. 2 the bi-linear material under this unloading
condition behaves in the same way as in its elastic stage. Thus when using this numerical
modeling the value of m; should be recorded and compared with that produced by the next
step of higher f. If unloading happens, the bending moment and curvature in the plastic unloading
segment are reduced from the maximum values of m, and its corresponding x, which occurs

at a lower load. The relation between the bending moment and curvature in this segment
is

m=m,+Ax/f (13)
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where the accumulated reduced curvature during unloading is Ax=«x—«,.

The main difficulty in applying this numerical method is the estimate of the original value
of ¢, the assumed final tip slope. Experience shows that if a chosen value is too far from the
real one, the algorithm may not be convergent to the required accuracy, then a new value of
¢ needs to be given. Therefore, a trial and error procedure is required in some cases.

Another problem is the accuracy of the curvature at beam segments where the curvature deriva-
tive is large, such as at the beam root. Due to the nature of the method, the beam element
is assumed as a circular arc, the curvature is then in the sense of an average value. If a high
accuracy is required, a finer discretization, viz. a smaller a, should be used, particularly for
the elements close to the beam root.

Finally, it is noted that if the analysis involves only elastic deformation, the above discussed
method is in a way similar to the work done by Seames and Conway (1957).
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