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Abstract. It is well known that two-dimensional simplified third-order theories satisfy the layer interface
continuity of transverse shear strains, thus these theories violate the continuity of transverse shear stresses
when two consecutive layers differ either in fibre orientation or material. The third-order theories
considered herein involve four/or five dependent unknowns in the displacement field and satisfy the
condition of vanishing of transverse shear stresses at the bounding planes of the plate. The objective
of this investigation is to examine (i) the tlexural response prediction accuracy of these third-order theories
compared to exact elasticity solution (ii) the effect of layer interface continuity conditions on the flexural
response. To investigate the effect of layer interface continuity conditions, three-dimensional elasticity
solutions are developed by enforcing the continuity of different combinations of transverse stresses and/or
strains at the layer interfaces. Three dimensional twenty node solid finite element (having three translatio-
nal displacements as degrees of freedom) without the imposition of any of the conditions on the transverse
stresses and strains is also employed for the flexural analysis of the laminated plates for the purposes
of comparison with the above theories. These shear deformation theories and elasticity approaches in
terms of accuracy, adequacy and applicability are examined through extensive numerical examples.

Key words: third-order theories; elasticity; flexure; composite; laminated; layer interface; continuity; degrees
of freedom; analytical; finite element method; symmetric lay-up; antisymmetric lay-up; crossply; angle-ply.

1. Introduction

It is well known that the classical plate theory based on Kirchoff's hypothesis of inextensional
straight normals under predicts deflections and over predicts frequencies and buckling loads
due to the neglect of transverse shear flexibility. Further, since the advanced composites in use
to date have low ratio of transverse shear modulus to the in-plane moduli, transverse shear
deformations play even more significant role in reducing the flexural stiffness than in metals.
To account for the transverse shear flexibility and other non-classical factors such as transverse
normal strains, several approaches have been proposed over the years. Most of these approaches
have been critically reviewed in the state of the art papers by Reissner (1985), Noor and Burton
(1989) and Reddy (1990). While Reissner (1985) provided survey of several two dimensional theories
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and variational statements of 3-dimensional elasticity problems, Reddy (1990) reviewed all the
third-order theories that satisfy vanishing of transverse shear stresses at the bounding planes
of the plate. Both these papers do not include numerical results. Noor and Burton (1989) assessed
the effect of thickness ratio, modular ratio, number of layers and stacking sequence on the
response prediction accuracy of several two dimensional theories.

Bhimaraddi and Stevens (1984), Reddy (1984) have proposed simple third-order shear deforma-
tion theories involving five dependent unknowns as in classical shear deformation theory due
to Mindlin (1951). The displacement field proposed by Bhimaraddi and Stevens (1984) includes
first-order and classical plate theories as its subset, while Reddy’s (1984) theory degenerates to
first-order theory only. These two approaches (Bhimaraddi and Stevens 1984 and Reddy 1984)
are basically the same and can be obtained one from the other by proper substitution of the
variables. Bhimaraddi and Stevens (1984) investigated the problem of free vibrations of laminated
plates only, while Reddy’s (1984) theory has been employed for deflection, free-vibration and
buckling analysis of laminated plates (refer Kant and Pandya 1988, Putcha and Reddy 1986
and Reddy and Phan 1985). The displacement fields employed by Reddy (1984) can be obtained
by neglecting transverse normal strain and imposing zero transverse shear stress at the top and
bottom surfaces of the plate in the displacement model proposed by Lo, et al. (1977a, 1977b).
Lim, et al. (1988) further simplified Reddy’s (1984) theory by incorporating the assumption that
in-plane rotation tensor is constant through the thickness and investigated the flexural response
of isotropic plates. The resulting theory has only four dependent unknowns in the displacement
field. Based on the same assumption, Bhimaraddi and Stevens’ (1984) theory can also be degenera-
ted to a displacement field having four dependent unknowns as that of Lim, e al. (1988). The
simplified theories discussed herein allow parabolic variation of transverse shear strain and do
not require shear correction factors. These simplified theories impose the continuity of dis-
placements and transverse shear strains at the layer interfaces. All these investigators have compa-
red their results with the analytical elasticity solution due to Pagano (1970), Pagano and Hatifield
(1972) and Srinivas and Rao (1970), wherein the continuity of transverse normal and shear stresses
along with displacements at the layer interfaces is imposed. Therefore, the effect of layer interface
continuity condition on the flexural response prediction accuracy of simplified third-order theories
need to be studied.

The objective of the present paper is to critically evaluate these simplified third-order theories
involving five variables (Bhimaraddi and Stevens 1984 and Reddy 1984) and four variables (Lim,
et al. 1988) for flexural response of laminated composite plates. Another simple third-order theory
involving four variables degenerated from the displacement field of Bhimaraddi and Stevens
(1984) is also considered for the purpose. The method of solution proposed by Pagano (1970)
is employed for the following layer interface continuity conditions.

(1) Transverse normal and shear stresses are continuous at the layer interface.

(2) Transverse normal stress and transverse shear strains are continuous at the layer interface.

(3) Transverse normal and shear strains are continuous at the layer interface.

In addition representative problems are solved using a twenty node three-dimensional solid
element available in general purpose finite element program MSC NASTRAN and the results
are compared with analytical elasticity solution and those of simplified higher-order theories.
Since, the element has only three translations as degrees of freedom, the continuity of dis-
placements and in-plane strains at the layer interface alone is assured, unlike in Pagano’s (1970)
analytical elasticity solution. Further, the stress free conditions at the bounding planes are not
imposed in this idealization. The comparison of plate centre deflections obtained from these
modelling approaches have brought forth many features regarding the adequacy and accuracy
of these formulations. The present study is limited to plate centre deflections alone as (i) such
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results are readily available in the open literature and (ii) it is well known that transverse normal
and shear stresses computed by utilizing three-dimensional elasticity equilibrium equations rather
than constitutive relations are fairly accurate.

2. Third order theories-formulations

The displacement field, strain-displacement relationship and constitutive equations of the
simplified third-order theories considered in this study can be expressed as:

473
u(x 3. 2)=u, (6 V) +2 06 D)+ 37 Vil y)

3
VX Y 2)=v,(x )tz oolx y)t+ ?Z—zl//z(x, V)

WX 3, 2)=w,(x, y)+w,(x y) (1

where u, v, w are the components of displacement anywhere in the plate in x, y and z direction
respectively. u, and v, are the components of mid-plane displacements in x and y directions
respectively. The transverse displacement is expressed interms of two components w, and w,.
The displacement field employed in two -of the third-order theories considered herein is such
that the derivative of the component w, is numerically equal to the rotation of the cross-section
(— Wv,) and w, is the displacement due to shear deformation of the section. ¢'s and /s are
additional variables, required to represent rotation of the cross-sectioin. 4 is the thickness of
laminated plate and x, y and z are the cartesian coordinates.
On substituting displacement field Eq. (1) in the strain-displacemnt relationship, the strains
in terms of dependent unknowns can be written as:
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The constitutive relations for a laminated plate corresponding to this model can be written
as:
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where,
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Ay By and D; are the usual extensional, bending-extensional and bending stiffness coefficients.
And E; F; and H; are the hlgher-Order stiffness coefficients given as:
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where Q; are the reduced transformed stiffnesses with respect to the material axes of k" layer.
The simplified theories due to Bhimaraddi and Stevens (1984), Reddy (1984) and Lim, er al.
(1988) can be deduced from Egs. (1)4(3) by appropriately specifying ¢'s and w's and w's eg.:

Lh]-—-

Model A

Third-order theory due to Bhimaraddi and Stevens (1984) can be obtained by substituting
(Pl ¢\ Wi xs (D’ ¢\ W, ¥ u/l (p\‘
=—¢ wy=w, and w,=0 @)

in Egs. (1)-(3)
The equilibrium equations of the theory consistent with the assumed displacement-field
(strain-displacement relationship) and appropriate constitutive Egs. (3) are:

N.\'. X + N.\:V. ¥ - () (Sa)

N\'y, X + Nl v 0 (Sb)

M\', a + 2M\'y, ar + M\ w + q= 0 (SC)

M\, X +M\'y, o —j%TEP\ X + P\'y, ¥ :I - Qx =0 (Sd)
My + My, = <pelPo P, 1= 0,=0 (5¢)

Model B

Third-order theory due to Reddy (1984) can be obtained by substituting:

¢| Wi ¢’ l//t Wox— Wy
V=W, W W= w,, and w,=0 ©)

in Egs. (1)-(3).
The equilibrium equations of the theory consistent with the assumed displacement-field (strain-
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displacement relationship) and appropriate constitutive Eqgs. (3) can be written as:

N¢ +Ng,,=0 (7a)

Ny tN,,=0 (7b)

g%T[P\ xy + 2P,\'_\2 xy + P\ v ] - Q\i x Q‘ ¥ + q = 0 (7C)
M, AM,,~ <[P +Py, 1=0,=0 (1d)
M\‘_y. x +M vy %Z_EPU X + P vy :] - Qy =0 (76)

The two theories (models A & B) are basically same and one can be derived from the other,
by substituting ¢.= v, +w, . and ¢.=y,+w,; in Egs. (4) or (6). Further, the deletion of higher-
order terms from model B results in first-order shear deformation theory only while model
A can be degenerated to first-order and classical plate theories.

Model C

Third-order theory due to Lim, er al (1988) can be obtained by substituting:
OI="Wp,) =W, 0 YIT —W ) Y™ W, ®)

in Egs. (1)-(3).

The displacement model C can be obtained directly from model B by assuming v, +w, ,=w, .,
y+w,,=w,, and w=w,+w, This is equivalent to assuming that the in-plane rotation tensor
is constant through the thickness. The resulting theory will, thus involve only four dependent
unknowns.

The equilibrium equations for this model can be written as:

N\'. x +N\'y. ¥ =0 (93)

Ny +N,. =0 (9b)

Mv. xx + ZM\‘y, xy +M v + q= 0 (9C)
34?[1)( XX + 2ny, Xy + P vy ] + Qx. x + Qy,y =0 (9d)

In the present study, this model is extended to investigate the flexural response of laminated
plates.

Model D

Third-order theory involving four dependent unknowns can also be obtained by substituting:
(Z)l =W, .\'+w.\, xa (Z)z: —W, y+"v.\'. v Wi= T Wl Y= W, (10)

in Egs. (1)-(3).
The equilibrium equations for this model can be written as:

N, tN,, =0 (11a)
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Ny, +N,,=0 (11b)
M\-, Xy + 2M\‘y, Ay + M| » + q— 0 ( 1 lC)
Mvc, XX + 2M\;v, Ay +Ml »wo 34'7[})\ xv + ZP.\'_V, ¥ + P\ »w :] + Q XX + Q\:v\' =0 (1 1 d)

All the models considered above allow parabolic variation of transverse shear strain through
the thickness and satisfy the condition of zero transverse shear strain and stresses at the top
and bottom surface of the plate. Hence, the shear correction factors required in classical shear
deformation theory are not needed. Models C and D have the advantage of easily allowing
the development of C' continuous plate bending finite element over the models A and B. This
implies that no numerical gimmicks such as reduced/or selective integrations are required if
finite element is based on models C and D.

3. Elasticity solutions

Three dimensional elasticity solution proposed by Pagano (1970) is employed in this section
for various layer interface continuity conditions. Pagano (1970) solved elasticity equilibrium equa-
tions expressed in terms of displacements, in each orthotropic layer for a simply-supported plate.
The simply-supported edge conditions assumed are such that in-plane normal displacements
are allowed and tangential displacements are constrained. The boundary value problem so formed
is solved for the following boundary conditions:

B\ X LTy —h\_
q(x,y, 2)—qosm g ST @(x,y, 3 )—O

T (x' » g) =T <X. » —Th) =0: 7. (x, » g) =T <x. » %) =0 (12)

along with simply-supported edge conditions as:
At x=0, a: o.=v=w=0
At y=0, b: o,=u=w=0 (13)

For the sake of simplicity, the notations adopted by Pagano (1970) are followed.

The flexural response of laminated plates is defined by the solution of boundary value problem
satisfying elasticity equilibrium equations in each layer, boundary conditions expressed by Egs.
(12) and (13) and layer interface continuity conditions. The analytical solutions is developed
for the following layer interface continuity conditions:

Model E: u, v, w, o, t. and 1. are equated at the adjacent layers at each interface.

Model F: u, v, w, 0. 1. and ¥, are equated at the adjacent layers at each interface.

Model G: u, v, w, &, ¥. and ¥, are equated in the adjacent layers at each interface.

For the sake of brevity, details of the steps involved in the analysis are omitted, the interested
reader may refer Pagano (1970).

4. Numerical results and discussions

Among the two dimensional higher-order shear deformation theories discussed in the preceding
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section, model B, has been employed by several investigators and as a result, numerical results
for certain configurations of laminated plates subjected to transverse loading are available. But,
with regard to models A, C and D, no results have been reported for the flexural response
of laminated plates. Hence, analytical solutions for simply-supported, symmetrically laminated
cross-ply plates subjected to sinusoidal transverse loading, based on models A-D are developed.
For this purpose, governing equations resulting from the equilibrium Egs. (5), (7), (9) and (11)
and strain-displacement relations and constitutive equations are solved to numerically evaluate
the flexural response of symmetrically laminated, simply-supported cross-ply plates. In the case
of symmetrically laminated cross-ply plates, one term approximations for various variables defined
as:

A
b

. X .
W, Wp, W)=(W,. Wh. W,,)sin -, Sin

(¢\" W\‘ ): (¢\'0s W\'U )COS —ZIX__ Sln _7;)'2’

(@ ¥)=(¢hn Wo)sin %x—cos—zl

(with ¢ and b being the length and width of the plate)

give exact solution, when plate is subjected to sinusoidal transverse loading. During the course
of investigation, it was realized that shear deformation theories involving five unknowns, that
is models A and B yield identical plate centre deflections. Same is true for models C and D.
Because some results for antisymmetrically laminated plates, based on model B are available
in the literature, a finite element based on the displacement field of model C alone is developed
herein. As the displacement field of this model allows C' continuous plate bending element,
hence Bogner, er al. (1966) approach of Hermite interpolation formulae ensuring interelement
compatibility is utilized. The four node rectangular finite element developed herein has fourteen
degrees of freedom per node such as u;, u; .« ;. Vi Vv Vivw Whie Whie Whive Whixe Wiy Wi W,
W, resulting in 56X 56 element stiffness matrix and 56X1 load vector. Further, this element
does not require any reduced/or selective integration scheme and is free from shear locking
phenomenon. The convergence of the plate centre deflection, for simply-supported, antisymmetri-
cally laminated plates ia attained by employing a 4X4 finite element mesh over the whole
plate. The elasticity solutions based on models E-G, allowing different interface continuity condi-
tions as explained in the preceding section, for symmetrically and unsymmetrically laminated
cross-ply plates are also developed herein.

Following material properties are used for numerical investigation, unless otherwise stated:

EL/ET:25; GLT:GLZ:O.SET; VLT:O.25; G77202ET

The transverse plate centre deflection presented throughout this section is normalized as w= 100
wErh¥(q,a’), where A is the total thickness of the plate.

The effect of side to thickness ratio (a/h) and modulus ratio (E;/E;) on the transverse plate
centre deflection of orthotropic plates, subjected to sinusoidal transverse pressure, using various
models described in the preceding section is presented in Table 1. It may be observed that
the simplified theories due to Bhimaraddi and Stevens (1984) [model A] and Reddy (1984)
[model B] involving five unknowns result in exactly the same transverse deflection. Same is
true with, the theories involving four dependent unknowns that is models C and D. It may
be mentioned here that models C and D slightly over estimate the flexural stiffness when
compared to model E, as modular and thickness to side ratio increases, while models A and
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Table 1| Normalized plate centre deflection (w) of orthotropic plates sub-
jected to sinusoidal transverse pressure. (Grr=G6,,=05 Er; vir=
025, Gr[:().z ET)

EJEr
Source a’h 0 55 5 00
Model A 1.0840 1.2150 1.4162 1.6323
Model B 1.0840 1.2150 1.4162 1.6323
Model C 09578 1.1129 1.3496 1.5962
Model D 5 09578 1.1129 1.3496 1.5962
Model E 1.0768 1.2022 1.3986 1.6106
NASTRAN 1.0939 1.2134 1.3996 1.6007
Model A 04970 0.6371 0.8576 1.0921
Model B 0.4970 0.6371 0.8576 1.0921
Model C 10 04522 0.6041 0.8366 1.0810
Model D 04522 0.6041 0.8366 1.0810
Model E 04954 0.6353 0.8543 1.0879
Model A 0.3375 0.4835 0.7124 0.9540
Model B 0.3375 0.4835 0.7124 0.9540
Model C 20 0.3261 0.4746 0.7068 09511
Model D 0.3261 04746 0.7068 09511
Model E 0.3371 0.4830 07117 0.9531
Model A 0.2916 04396 0.6713 09151
Model B 0.2916 0.4396 0.6713 09151
Model C 50 0.2897 04382 0.6704 09146
Model D 0.2897 0.4382 0.6704 09146
Model E 0.2915 0.4396 0.6712 0.9150

B are found to marginally under estimate it. Though, the models A and B yield results which
are closer to the one's obtained using model E, but this contradicts the common notion because
two dimensional theories should result in lower deflection compared to the three dimensional
elasticity solution due to the neglect of transverse normal strain. The results presented by Librescu
and Khdeir (1988) also indicate this trend. The over estimation of flexural stiffness using models
C and D may be due to the neglect of transverse normal strains and inherent assumption
of in-plane rotation tensor being constant through the thickness. The MSC NASTRAN results
included in this paper are obtained, using a twenty node three dimensional solid element with
8X8X3 mesh, over the whole plate which is decided based on the convergence study. It is
interesting to note that the three dimensional finite element solution over predicts the plate
centre deflection as modulus ratio and thickness to side ratio increases compared to analytical
elasticity solution model E. To verify the three dimensional finite element results obtained using
MSC NASTRAN, an orthotropic plate made of Argonite crystals, having side to thickness ratio
10 and subjected to uniform pressure is solved. The normalized transverse plate centre deflection
so obtained (w=0.137659) compares excellently with the available elasticity solution (w=0.137714)
due to Srinivas and Rao (1970).

Tables 2 and 3 give, the normalized plate centre deflections of symmetric cross-ply plates,
subjected to sinusoidal transverse pressure. This study attempts to focus the attention on the
layer interface continuity conditions. As mentioned in the previous sectioin, models A-D are
based on the transverse shear strain (.. %) continuity at the layer interface, hence, the compari-
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Table 2 Effect of layer interface continuity conditions on the normalized plate centre deflection (w)
of square symmetric cross-ply [0°/90°], plate subjected to sinusoidal transverse pressure

a/h Model A or B Model Cor D Model E  Model F Model G NASTRAN
5 1.4237 1.1129 1.4685 1.3360 1.3762 1.0547
10 0.7147 0.6045 0.7370 0.7753 0.8114 0.5795
20 0.5060 04749 0.5129 0.6232 0.6569 04624
50 0.4434 04382 0.4446 0.5792 06120 04371

Table 3 Effect of layer interface continuity conditions on the normalized
plate centre deflection (w) of a square symmetric cross-ply
£(0°/90°),], plates subjected to sinusoidal transverse pressure

(GLT:GLZZO.S Er: VLT:0.25; Grz:O.z ET)

EL/ET
Source a’h 20 73 i3 0
Model A 1.3389 1.5038 1.7467 1.9954
Model B 1.3389 1.5038 1.7467 1.9954
Model C 1.3209 14852 1.7283 1.9780
Model D 4 1.3209 1.4852 1.7283 19780
Model E 1.5660 1.7229 19579 2.1993
Model F 14217 1.5966 1.8412 2.0693
Model G 14315 1.6072 1.8513 20774
Model A 04599 0.6088 0.8410 1.0848
Model B 04599 0.6088 0.8410 1.0848
Model C 04522 0.6041 0.8366 1.0810
Model D 10 04522 0.6041 0.8366 1.0810
Model E 0.4984 0.6647 0.8777 1.1203
Model F 0.5492 0.7242 09732 1.2073
Model G 0.5553 0.7315 0.9807 1.2137
Model A 0.2846 0.4330 0.6652 0.9094
Model B 0.2846 04330 0.6652 0.9094
Model C 0.2845 04330 0.6652 0.9094
Model D 100 0.2845 04330 0.6652 0.9094
Model E 0.2850 0.4337 0.6658 09101
Model F 03777 0.5540 0.8049 1.0409
Model G 0.3829 0.5605 0.8119 1.0469

son with analytical elasticity solution (model E) which is based on the layer interface continuity
of transverse stresses (0., T... T.) is not really appropriate. Models F and G ensuring the layer
interface continuity of transverse normal stress and transverse shear strains/and transverse normal
and shear strains respectively are found to yield erroneous results especially in the thin plate
region. Based on the results presented in Tables 2 and 3, it can be concluded that the interface
continuity conditions considered in models F and G are not realistic. In that case how the
two dimensional theories discussed herein give results comparable to three dimensional elasticity
solution model E? Are these comparisons just a coincidence? This question remains unanswered.
The three dimensional finite element results (MSC NASTRAN) for which no layer interface
continuity conditions on transverse stresses/or strains are imposed, but equilibrium in the overall
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sense is satisfied are also not comparable with those of model E (see Table 2). It may be observed
that the deflections obtained using models C and D compare well with those of three dimensional
finite element results. Again the layer interface continuity conditions are different. On comparing
plate centre deflections given in Tables 1-3 following may be noticed:

—Models A, B and E reveal that symmetric cross-ply square plates are more flexible compared
to orthotropic square plates.

—Models C and D reveal that the transverse deflection of symmetric cross-ply and orthotropic.
square plates is identically same.

—Three dimensional finite element model shows that cross-ply square plates are stiffer than
the square orthotropic plates.

This shows that there is considerable ambiguity regarding the correctness of flexural response

predictions obtained using above mentioned approaches.

The effect of number of layers on transverse plate centre deflection of symmetrically laminated
square and rectangular (b/a=3). cross-ply plates is presented in Tables 4 and 5. Following observa-
tions are made.

—The transverse plate centre deflection obtained using models C and D for square plates
is invariant with number of layers and for rectangular plates it decreases with increase
in number of layers.

—The transverse plate centre deflections obtained using models A-D are comparable with
each other when the number of layer is large.

—The transverse plate centre deflections for a four layered (0°/90°) plate obtained using models
A and B compare well with elasticity solution (model E). As the number of layers increase,
especially in thick plates (@/h=4), the comparison is no good.

The effect of side to thickness ratio (a/h) and number of layers on the transverse plate centre

deflections of antisymmetrically laminated cross-ply plates, subjected to sinusoidal transverse

Table 4 Effect of number of layers on the normalized plate centre deflection (w)
of square symmetric cross-ply plates subjected to sinusoidal transverse pres-
sure (GLT:G[‘ZZO.S ETZ VLT:O.25; Gr/:()2 E[)

Source a’h [0°/90° ] L(0°/90°),]* [(0°/90°),1,* [(0°/90°)s],*

Model A 1.8937 1.5643 1.5038 1.4970
Model B 1.8937 1.5643 1.5038 1.4970
Model C 4 1.4865 1.4865 1.4865 1.4865
Model D 1.4865 1.4865 1.4865 1.4865
Model E 1.9367 1.7839 1.7229 1.7147
Model A 0.7147 0.6245 0.6088 0.6071
Model B 0.7147 0.6245 0.6088 0.6071
Model C 10 0.6045 0.6045 0.6045 0.6045
Model D 0.6045 0.6045 0.6045 0.6045
Model E 0.7370 0.6647 0.6467 0.6445
Model A 04343 04332 04330 04330
Model B 04343 04332 04330 04330
Model C 100 04332 04332 04332 04332
Model D 04332 04332 04332 04332
Model E 04346 04337 04335 04335

[(Oo/goo)lsl/(oo/goo)lnd/' . '/(00/900 )nlh:lx



Table 5 Effect of number of layers on the normalized plate centre deflection (w)
of rectangular (b/a=3) symmetric cross-ply plates subjected to sinusoidal
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transverse pressure (G.r=G;,=05 Er; vir=025 Grz=02 E7)

Source a’h £0°/90°], £(0°/90°)1, [(0°/90°),], [(0°/90°)s],
Model A 3.1089 2.7689 27879 2.8046
Model B 3.1089 2.7689 2.7879 2.8046
Model C 4 2.7970 2.6096 2.6682 2.6916
Model D 2.7970 2.6096 2.6682 26916
Model E 3.2337 3.1867 32149 3.2295
Model A 0.9796 1.0361 1.1196 1.1411
Model B 0.9796 1.0361 1.1196 1.1411
Model C 10 0.9209 1.0043 1.0950 1.1177
Model D 0.9209 1.0043 1.0950 11177
Model E 1.0183 1.1091 1.1926 1.2137
Model A 0.5547 0.6907 0.7881 0.8110
Model B 0.5547 0.6907 0.7881 08110
Model C 100 0.5544 0.6907 0.7882 08112
Model D 0.5544 0.6907 0.7882 0.8112
Model E 0.5552 0.6916 0.7890 0.8119

Table 6 Effect of number of layers on the normalized plate centre deflection (w)
of square antisymmetric cross-ply plates subjected to sinusoidal transverse

pressure

Source a’h [0°/90°] [0°/90°], £0°/90°], [0°/90° s
Model B* 1.9563 - - —
Model C* 4 1.9987 1.6107 1.5181 1.4944
Model E 2.0680 1.9581 1.7903 1.7245
Model B* 1.2128 - - -
Model C* 10 12155 0.6870 0.6233 0.6091
Model E 1.2275 0.7624 0.6698 0.6479
Model B* 1.0656 - - -
Model C* 100 1.0644 0.5086 0.4499 04373
Model E 1.0657 0.5093 0.4502 04375

*Results taken from Kant and Pandya (1988).
*Results obtained from the finite element developed herein.
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pressure loading is presented in Table 6. Elasticity solution (model E), and finite element results
based on models B and C are included. It is interesting to note that for two layered thin/thick
plates (w/h=4 to 100) the two dimensional higher-order theories based on the layer interface
continuity of transverse shear strains yield deflections comparable with elasticity solution. How-
ever, the results for thick plates (a/h=4) differ significantly as the number of layers increase.
Though, the results based on model B for large number of layers (4, 8 16) are not available
in the literature, it is expected that these values will be close to the one’s obtained using models
C. This argument is based on the study presented in Table 4. It is because, for regular
antisymmetric cross-ply plate and symmetric cross-ply plates with large number of layers, the
flexural stiffness in both the directions is same (D= D).
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Table 7 Normalized plate centre deflection (w) of eight layer anti-
symmetric angle-ply [45°/—45°], plates subjected to si-
nusoidal transverse pressure

W/h Source
Model B* Model C** Model B!
4 1.28 1.2835 1.2792
10 042 04167 0.4193
50 0.26 0.2500 02522
100 — 0.2447 0.2469

*Results read from graph (Putcha and Reddy 1986)
* Results taken from Kant and Pandya (1988)
**Results obtained from the finite element developed herein.

Tables 7 gives transverse plate centre deflections of a square antisymmetrically laminated,
eight layered angle-ply plates subjected to sinusoidal transverse pressure loading. Elasticity solution
for this type of lay-up are not available. Hence, the finite element results based on models
B and C alone are presented herein. It may be observed that the deflection obtained from
both the models are in good agreement. It may be due to the fact that the flexural stiftness
in both the directions is same (D,,=D,,). Therefore, for antisymmetrically laminated angle-ply
plates with fibre angle other than —45, models B and C may result in different deflections.

5. Conclusions

Various two dimensional, simple third-order shear deformation theories involving four and
five dependent unknowns in the displacement field and three dimensional elasticity approaches
are examined for the flexural response of laminated plates. Following conclusions can be drawn
based on present investigations:

—The plate centre deflections of orthotropic plates obtained using theories involving only
four dependent variables are slightly lower for large modulus ratio and small side to thickness
ratio. Whereas, theories involving five dependent variables consistently yield results which
are comparable with analytical elasticity solution. However, for small modulus ratio (£,/E+<
15) and/or large side to thickness ratio (@/A>10). all the two dimensional theories discussed
herein yield nearly same deflections.

—The strain-displacement relationship of models C and D have the advantage of allowing
the development of a C' continuous plate bending element. Therefore, these models might
turn out to be computationally more economic and will not have the problem of shear
locking in thin plates.

—Three dimensional analytical solution shows that orthotropic plates are stiffer compared
to symmetric cross-ply plates, while three dimensional finite element solution show the reverse
trend.

— Analytical elasticity solutions based on the continuity of transverse normal stress and transve-
rse shear strains/and transverse normal and shear strains do not yield even the classical
lamination theory results. Hence, these layer interface continuity conditions may not be
realistic.

—Transverse deflections of symmetric cross-ply plates, obtained using third-order theories



Simple third-order theories and elasticity approaches 133

involving five dependent unknowns are comparable with analytical elasticity solutions, while
those obtained using the theories involving four unknowns are comparable with the three
dimensional finite ¢lement results.

—The performance of all these simple higher-order theories deteriorate compared to analytical
elasticity solution, as the number of layers increases. For plates made of large number
of layers, all these two dimensional theories yield nearly same deflection, which of course
is far away especially for thick plates (a/2<4.0) from the analytical elasticity solution.

In brief the authors feel that the two dimensional shear deformation theories discussed herein

need to be refined further for better flexural response predictions, especially when number of
layers, modulus ratio and thickness to side ratios are large. The effects of layer interface continuity
on the flexural response predictions need to be studied more deeply. The applicability of three
dimensional finite element idealization for layered plates needs to be examined.
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