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Abstract. In the present study, a finite strip method for the vibration and stability analyses of anisotropic
laminated composite plates is developed according to the higher-order shear deformation theory. This
theory accounts for the parabolic distribution of the transverse shear strains through the thickness of
the plate and for zero transverse shear stresses on the plate surfaces. In comparison with the finite
strip method based on the first-order shear deformation theory. the present method gives improved
results for very thick plates while using approximately the same number of degrees of freedom. It also
eliminates the need for shear correction factors in calculating the transverse shear stiffness.

A number of numerical examples are presented to show the effect of aspect ratio, length-to-thickness
ratio, number of plies, fibre orientation and stacking sequence on the natural frequencies and critical
buckling loads of simply supported rectangular cross-ply and arbitrary angle-ply composite laminates.
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1. Introduction

Laminated composite plates and beams are increasingly used in aerospace, automobile and
other engineering constructions. Improving the accuracy and efficiency in vibration and stability
analyses of such structures is attracting great attention from many engineers and researchers.

For the analysis of rectangular or sectorial plate structures, the finite strip method is a very
efficient numerical method (Cheung 1976). This method uses a series of beam eigenfunctions
to express the displacement variations in the longitudinal direction. Thus, the two dimensional
analysis is transformed into one dimensional. The cost of analysis is reduced significantly not
only due to the reduction in the required computer time and storage space, but also due to
the substantial simplification of input data preparation. Furthermore, the accuracy of analysis
is also improved, particularly for highly anisotropic laminates, because the numerical error attri-
buted t0 material anisotropy is also cut down by the considerable decrease in the number of
degrees of freedom involved in each analysis.

The finite strip method has been successfully employed for the vibration and stability analyses
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of composite laminates since 1976 (Hinton 1976, Craig and Dawe 1986, 1987, Dawe and Craig
1986, Akhras, er al. 1993, Cheung, et al. 1993). However, in all the existing finite strip analyses,
the transverse shear deformation was taken into account according to the first order shear deformation
theory, where any straight line originally normal to the plate middle surface is assumed to remain
straight but not generally normal to the middle surface after deformation. This theory accounts
for transverse shear deformation, but produces a constant distribution of transverse shear strain
throughout the thickness. Although the existing finite strip method can be utilized to predict
the natural frequencies and critical buckling loads of moderately thick composite plates, it fails
to produce accurate results for very thick plates with length-to-thickness ratio lower than 10.
Moreover, even for a moderately thick plate, the wave-length of a higher order mode shape
could be only a fraction of the plate side length, and the plate may dynamically behave like
a very thick plate under the higher order vibration. In addition, in all the existing analyses,
a so-called shear correction factor must be introduced, and the evaluation of this factor is often
tedious and inaccurate.

In order to overcome above problems, a higher-order shear deformation theory developed
by J. N. Reddy (1984, 1985) is used in the present approach. This theory accounts for: (1) the
transverse shear deformation; (2) a parabolic variation of the transverse shear strains throughout
the thickness; and (3) the zero transverse shear stresses on the surfaces of the plates. Consequently,
there is no need to use shear correction factors in computing the shear strain energy. Based
on this theory, analytical solutions have been obtained for simply supported cross-ply laminates
and anti-symmetric angle-ply laminates. This approach employs the same number of degrees
of freedom as those of the first order shear deformation theory but gives more accurate results
than the latter theory. However, if a displacement finite element model based on the higher-
order shear deformation theory is to be developed, the interpolation function must guarantee
interelement continuity for the deflection w and for its first derivatives % and —%}wj Con-
struction of such an element requires many degrees of freedom at each node and, therefore,
much computer processing time. In an attempt to efficiently solve this problem, Putcha and Reddy
(1986) developed a mixed formulation using this theory. The resulting finite element model consists
of eleven degrees of freedom per node, namely three displacements, two rotations and six resultant
moments. While this approach yields results in close agreement with the higher-order theory,
it remains computationally intensive. The above difficulty can be readily solved by the finite
strip simulation in which Hermitian cubic polynomials are used as the interpolation function
of w in the x direction, and the beam eigenfunctions are utilized in the y direction

so that the slopes % and% are continuous across the nodal lines between the finite

strips. As a result, the finite strip method could be extended successfully to the analysis of very
thick plates and for higher order modes.

A number of numerical examples will be presented to validate the present method and to
investigate the effect of structural parameters, such as aspect ratio, length-to-thickness ratio, number
of plies, fibre orientation and stacking sequence, on the natural frequencies and critical buckling
loads of simply supported cross-ply and arbitrary angle-ply laminated plates.

2. Finite strip simulation

In the present analysis, the rectangular composite laminate is modeled by a number of finite
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Fig. 1 A finite strip.

strips, each of which has 3 equally spaced nodal lines (Fig. 1). For the m-th harmonic, the
displacement parameters of nodal line /i are

(1

[uim’ ;im’ Vims ;;im Wims (%)im» Weis  Woim ]T for i=1, 3
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For the laminates with two simply supported opposite sides, the boundary conditions at both
ends of the strip are
W:%:O, M‘ZO’ NI':N\'}':O at y:O and y:/ (2)

In this case, the midplane displacements and the normal rotations can be expressed in terms
of the above displacement parameters as

r 3
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where u, and v, are the displacements of the point (x, y, 0) on the midplane, w is the deflection
which is assumed to be constant in the thickness direction z, v, and y, are the rotations of
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the normal to the midplane about the y and x axes. respectively; r is the number of harmonics

employed in the analysis: / is the length of the strip; N:(x) is the quadratic interpolation function
for nodal line 7 (/=1 to 3) and has the following form:

3

N(r)= I == 4
) B 4)
J#

Fi(x) and H(x) (i=13) are the following Hermitian cubic polynomials:

Fi)= 1—3< %>2+2< z—)‘

o) o)

Hl(x):x[l —2ilj—+ (Z—)]

H;(x):x[< Z—)z— %‘)—] (5)

in which b is the width of the strip.

According to the higher-order shear deformation theory, the displacements at any point (x,
y. z) of a laminate are evaluated as

U=t 2 3*2‘—(‘“ 737)

4 y
vEvt Y §/T<‘” %)

w=w(x, y) (6)
Substituting Eq. (3) into Eq. (6), the following interpolation is obtained:
r 3
{f}:[u' v, W]T:Z Z[N]im{6}im (7)

m=1i=1

where [N J,, is the displacement matrix. For i=1 or 3, it is written as

NiSm Ni Cm O 0
[N ]fm = O 0 }V, Cm .}V,S m

0 0 0 0
—az*F'S,, —az*H'S,, (z—az*)N;S,, 0
—az’k,,F,C, —az*k,H,C, 0 (z—az*)N,C,, ®)
FiSm H,Sm 0 0

where S, =sink,y, C,=cosk,y. and k,=mn/l; ()’Z%%2 and ()”chc—z); a=4/3h>, and h

is the thickness of the plate.

For i=2, the above expression is applicable without the fifth and the sixth columns.
The following strain-displacement relationships are used in the analysis:
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By substituting Eq. (7) into Eq. (9), the strain vector can be expressed in terms of the displace-
ment parameters as

r 3
(6 =Le 6 For o 7 J7= 3 2 [BLI5)s (10)
where [B];, is the strain matrix. For i=1 or 3. [B],, has the following expression:
N'S, NG, 0 0 —az’F’S,,
O 0 —kmM'Sm km}viCm krsx aZ}E'Sm
[B]im: kaN;C, —k.N;S, N:Cn N:Sm —2k,az 3F:"Cm
0 0 0 0 k,,(1—3az*)F,C,
0 0 0 0 (1—3az*)F'S,,
—az’ H'S,, (z—az V'S, 0
k2az’H.S,, 0 —k,.(z—az")N,S,,
—2knaz ' HC, k(@ —az WN,C, (z—az"WiC, (1n
k,.(1—3az*)H.C,, 0 (1—3az*N,C,,
(1=3az*H'S,, (1—3az*)N,S,, 0

For =2, the above expression is valid without the fifth and the sixth columns.

From Eq. (11) it can be observed that %, and y. vary proportionally to (1—3az?) throughout
the thickness of the plate, and y.=p.=0 at z==A/2 which leads to t..=t.,,=0 at the top
and the bottom surfaces of the plate.

It is assumed that the laminate is manufactured from orthotropic layers (or plies) of preimpreg-
nated unidirectional fibrous composite materials. Neglecting o., for each layer, the stress-strain
relations in the x-y-z coordinate system can be stated as

Oy On Qi O 0 0 Ey
ogt Qn On O 0 0 Ey
Tw »— Qm Ox% Qs 0 0 Y (12)
‘L'yz 0 0 0 Q44 Q45 sz
Tox 0 0 0 Q45 QSS ¥V

or in a concise form:

{o}=L0] {& (13)
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Following the procedure commonly used in the finite strip vibration and stability analyses
(Cheung 1976, Dawe and Roufaeil 1982) yields the stiffness matrix, the mass matrix and the
geometrical stiffness matrix of the strip. The submatrices corresponding to nodal lines i and
j can be evaluated as follows

(K= j j j (BY.[Q1(B),dxdydz (14)
ho (J b
[M]g,‘mn:f fj p[N]:n [N],-ndxdydz (15)

[L]umn :f f ([Gu],’ly‘n [O’”] [Gu]jn + [G»],—Cn [GU] [Gv]jn + [GM]In [GU:] I:Gw:ljn)dx dy dZ (16)
hd I b

where 4 is the plate thickness, m and » denote the related series terms, and p is the mass
density of the laminate.
(G Jm [G.in and [G,],, are defined as follows:

[ji é&‘_‘ T: z’: i LG Jin {8t im
ox dy | = A
ov ov ar r 3
- Gv m 5 im
l:dx dy B milizl[ ] { }
aW aw a7 r 3
5 a1 = Gw im 6 im
[a’x oy | =& & Gdntdl (an
[o°] is the initial inplane stress matrix expressed as
o1—| O Ty
o ]_[rf:y aﬁ:] (18)

The positive directions of the stresses are shown in Fig. 2.
The integrations in the above equations can be carried out analytically in the y and z directions,
and the following expressions can be employed

% for m=n
I.=f151n k,y sin k,,ydy'—'{o for mwn
| —
f {? for m=n
L= cos k,y cos k,ydy=
), 4 Y=10 for m£n
for m—n=2k+1

. _ i nm*—n?)

IJ‘J,S‘“ Ky cos k"ydy“{o for m—n=2% (k=0, 1, 2, - (19)

In order to eliminate the ‘shear locking’ of the thin plates, in calculating the transverse shear

stiffness, the reduced integration technique (Cook. er al. 1989), i.e. the two point Gaussian quadra-
ture, is used in the x direction.

Because the integral /5 does not always vanish for m«n, different series terms are coupled

in the analysis. However, for some laminates. e.g. cross-ply or antisymmetrical angle-ply laminates,
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Fig. 2 Finite strip under inplane stresses.

all the stiffness coefficients associated with 7, disappear. Consequently, the different series terms
become uncoupled and the efficiency of the analysis is enhanced significantly.

After assembling the above strip matrices over the entire structure, the natural frequencies
and cntical load factors of the laminate can be obtained by solving the following matrix equations
using standard computer subroutines:

(K1{6}=wr [M]{6] (20)
[K1{8}=A[L]{6} 21

3. Numerical examples
3.1. Free vibration of (0°/90°) square laminate

A square laminates of side length ¢ and thickness 4 is composed of equal thickness layers
oriented at (0°/90°), and simply supported on all the edges. The lamina properties are assumed
to be

E1:4OO Eg, G[2:G13:0-6 Eg.. Gz_z:O.S Eg and V|z:O.25,

Where 1 and 2 refer to the fiber and transverse to fiber inplane directions, respectively; and
3 denotes the direction normal to the plate midplane.

The fundamental free vibration of the plate is analyzed using the present method. By virtue
of the symmetry of mode shape, half of the laminate is modeled by two proposed strips. And
only one harmonic is required.

The resulting dimensionless fundamental frequency of the laminate is given in Table | as
the function of the length-to-thickness ratio a/h. The analytical solutions based on the higher
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Table 1 Fundamental frequencies of (0°/90°) square laminates

a/h w=wa(p/E.h")"
Present HSDT FSDT CPT
2 5717 5.699 5.191 8.499
4 8.355 8.294 7975 10292
10 10.570 10.449 10.355 11.011
20 11.108 10.968 10.941 11.125
100 11.303 11.156 11.155 11.163

Table 2 Fundamental frequencies of (45°/—45°) square lamina-
tes

ah w=waXp/E-h*)"

Present HSDT FSDT CPT

2 6.337 6.283 5.520 —

4 9.760 9759 9.168 12.566
10 13.264 13.263 13.044 14.439
20 14.247 14.246 14.179 14.587

100 14.628 14.621 14618 14636

order shear deformation theory (HSDT) (Reddy and Phan 1985), the first order shear deformation
theory (FSDT) and the classical plate theory with the rotary inertia included (CPT) are also
listed in this table for comparison.

It can be seen that the present results are in good agreement with HSDT analytical solution
while the CPT overestimates the frequency and the FSDT underestimates the frequency.

3.2. Free vibration of (45°/ —45°) square laminate

A square laminate of side length a and thickness A consists of two equal thickness layers
oriented at (45°/—45°). Its four edges are hinged and free in the tangential direction but immova-
ble in the normal direction. The lamina properties are the same as for the previous example.

In the analysis, the entire plate is divided into four strips, and only one longitudinal harmonic
is taken.

The resulting dimensionless fundamental frequency is shown in Table 2. The results are in
an excellent agreement with the analytical solutions of the higher-order shear deformation theory
(HSDT) (Reddy and Phan 1985).

3.3. Free vibration of symmetrical angle-ply square laminated plate

A square laminated plate is constructed from a number of equal thickness plies, which are
oriented alternatively at 6 and — 68 and stacked symmetrically about the midplane of the plate.
This means that for the 2-ply, 4-ply and 8-ply laminates the fiber orientations are (6/6), (6/
—6/—6/6) and (/— §/6/ —0),. respectively. It is well known that there is bending-twisting coupling
but no coupling between bending and inplane deformation for such laminates.

The plate is simply supported on its four edges, and the lamina properties are identical to
previous examples.
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Table 3 Fundamental frequencies of square symmetrical angle-ply laminates

(0/—6/---),
Wh No. of w=wa (p/E-h*)"
plies 0=0° 0=15° 0=130° 0=45°
2 2 5.263 5412 5.754 5968
4 5.263 5513 5.855 6.055
8 5263 5.684 6.038 6.198
16 5.263 5795 6.192 6.345
4 2 8.741 8.962 9,510 9.832
4 8.741 9.284 10.120 10475
8 8.741 9.604 10.553 10.887
16 8.741 9.729 10.726 11.055
10 2 14.720 14.757 14.983 15.340
4 14.720 15.503 17.069 17.800
8 14.720 16.118 18276 19.133
16 14.720 16.286 18.582 19.462
20 2 17.504 17.326 17.239 17.654
4 17.504 18312 20.182 21.170
8 17.504 19.095 21.886 23.119
16 17.504 19.287 22274 23.553
100 2 18.829 18.528 18.343 18954
4 18.829 19.644 21.693 22.865
8 18.829 20,511 23642 25.100
16 18.829 20.709 24,056 25.572

The free vibration of the laminate is analyzed by the present method. In each analysis, the
plate is simulated by 8 strips with 8 longitudinal harmonics. Little improvement can be obtained
if more strips or harmonics are employed.

The results are listed in Table 3, which shows the effect of fiber orientation 6, the number
of plies and the length-to-thickness ratio a/4 on the fundamental frequency @ of the plate.

34. Free vibration of (0°/45°/ —45°/90°) laminate

A rectangular laminate of side lengths ¢ and b is made up of four equal thickness layers
stacked at (0°/45°/—45°/90°). Its four edges are hinged and free to move in both tangential
and normal inplane directions but fixed at all the corners. The material properties are identical
to example 1.

The free vibration of the plate is analyzed using four strips (parallel to the longer sides)
with eight series terms. Little difference can be detected if more strips and terms are used. The
resulting fundamental frequency is given in Table 4 as the function of the length-to-thickness
ratio a/h and the aspect ratio b/a.

3.5, Stability of square cross-ply laminate under uniform compression

A square laminate of side length @ and thickness /4 is composed of equal thickness layers
oriented alternatively at 0° and 90°, and simply supported on all the edges. The lamina properties
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Table 4 Fundamental frequencies of (0°/45°/
—45°/90°) rectangular laminates

Z): a)az(p/Eghl )0.5

a/h ba=10  ba=15  ba=20
2 5.10 424 403
4 747 6.13 5.87
10 9.64 772 742
20 10.29 8.13 7.80
100 10.58 8.30 794

Table 5 (o,), of square cross-ply laminates
’ (O-)')('ra 2/E‘Zh 2

h Method (00/900) (00/900/00)
S Present 8.368 10.674
HSDT 8.628 11.008
FSDT 8.142 10.525
10  Present 11.320 21902
HSDT 11.305 22.160
FSDT 11.099 21.643
20  Present 12.502 30978
HSDT 12.268 30.922
FSDT 12.208 30.664
100 Present 12.945 35935
HSDT 12.614 35.602
FSDT 12611 35.589
CPT 12.628 35.831

are the same as example 1. The stability of the plate under uniform compressive stress o, is
analyzed using the present method. By virtue of symmetry of the buckling mode shape, only
half of the laminate 1s modeled by two proposed strips. And only one harmonic is
required.

The resulting dimensionless critical stress is exhibited in Table 5 as the function of the length-
to-thickness ratio and layering. The analytical solutions based on the higher order shear deforma-
tion theory (HSDT) (Reddy and Phan 1985), the first order shear deformation theory (FSDT)
and the classical plate theory (CPT) are also given in this table for comparison. It can be seen
that the present method yields an acceptable accuracy as compared to the HSDT solutions.

3.6. Stability of square angle-ply laminated plates under uniaxial compression

The square laminated plates of side length ¢ and thickness 4 are stacked from equal thickness
layers, which are oriented at (45°/—45°), (45°/—45°/45°/—45°) and (45°/—45°/—45°/45°) respecti-
vely. The material properties of each layer are as follows

E1:400 Ez, G12:GZ3:G3]:O.5 Ez, V|2:0.25.
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Table 6 (o,). of square angle-ply laminates

(o.)-a*/E-h*

a/h Method 5o/ 450y (450/-45°/45°/—45°)  (45°/—d45°/—45°/45°)

5 Present 11455 14.895 9404
FS-FSDT 10365 15117 9715

10 Present 17.554 32,770 24863
FS-FSDT 16.942 33321 26,125

20 Present 20477 47545 41732
FS-FSDT 20278 47886 4240

100 Present 21670 55719 49775
FS-FSDT 21,669 55.759 49729
CPT 21709 56,088 -

For the first two laminates, all the edges are hinged and free to move in the tangential direction
but immovable in the normal inplane direction, and the analysis is carried out using four strips
with one series term. For the third laminate, the four sides are simply supported, and the plate
is modeled by eight strips with eight series terms. Further increasing strips and series terms
produces little improvement.

The resulting critical stresses (o)., are given in Table 6 in comparison with the CPT solutions
(Jones. er al. 1973) and the finite strip solutions based on the first order shear deformation
theory (FS-FSDT). The results reveal that the first order solution underestimates the critical
stress for the (45°/—45°) laminate and overestimates the critical stress for others in comparison
with higher order solutions.

4. Conclusions

In the present study, a finite strip method for vibration and stability analysis of anisotropic
laminated composite plates is developed according to the higher-order shear deformation theory.
This theory accounts for the parabolic distribution of the transverse shear strains through the
thickness of the plate and for zero transverse shear stresses on the plate surfaces. Therefore,
the present method yielded more accurate results than the finite strip method based on the
first-order shear deformation theory and eliminates the need to use shear correction factors in
calculating the transverse shear stiffness.
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