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Vibration frequencies for elliptical
and semi-elliptical Mindlin plates
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Abstract. This paper presents new frequency results for elliptical and semi-elliptical Mindlin plates
of various aspect ratios, thicknesses and boundary conditions. The results were obtained using the recently
developed computerized Rayleigh-Ritz method for thick plate analysis. For simply supported elliptical
plates, it is proposed that the penalty function method be used to enforce the condition of zero rotation
of the midplane normal in the tangent plane to the plate boundary.
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1. Introduction

The vibration of elliptical thin (Kirchhoff) plates has been extensively investigated, and Pavlik
(1937) was probably the first researcher to analyse the vibration problem. Using the Rayleigh-
-Ritz method, he computed the natural frequencies of the first seven normal vibrations for a
free-elliptical plate of aspect ratio 1.29 and compared the results with experimental observations.
Further experiments conducted by Waller (1950) yielded many useful frequency results. Later
studies on vibrating elliptical plates with completely free edges were made by Beres (1974) and
Narita (1985) using the Rayleigh-Ritz method. Sato (1973) derived exact solutions in terms of
Mathieu functions for such unconstrained vibrating elliptical plates. Frequency values for the
first five modes were presented and they were in good agreement with those obtained ex-
perimentally. Sato pointed out that Pavlik's frequency results are higher than his by about 4%
and 10% for the first and second modes of vibration. Sato (1976) also extended the study to
elastically constrained elliptical plates. Vibration of unsupported elliptical plates of lenticular
section, whose middle surfaces may be flat or uniformly curved, was thoroughly studied by
Harris and Mansfield (1967).

Shibaoka (1956) examined the vibration of clamped elliptical plates and presented the
fundamental frequencies for different aspect ratios. DeCapua and Sun (1972) used the Rayleigh-
-Ritz method to solve the same problem and presented vibration results for the first six modes,
McNitt (1962) employed Galerkin's method to obtain approximate results for the first two vibration
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frequencies of a damped elliptical clamped plate. Nayfeh, et al. (1976) proposed a perturbation
procedure which was used in conjunction with a transfer of boundary conditions to solve the
vibration of nearly annular and circular plates. They illustrated the method by considering two
clamped elliptical plates of aspect ratios b/a=09 and b/a=0.8 and obtained the natural frequen-
cies and mode shapes. The method. however. may not furnish accurate results when the elliptical
plates are longish.

Vibration of simply supported elliptical plates was treated by Leissa (1967). He determined
the fundamental frequencies for various values of Poisson ratios and aspect ratios. Sato (1971)
gave exact solutions for simply supported plates in terms of Mathieu functions. Numerical results
were given for the first five natural frequencies for a complete range of eccentricities.

More recently. Wang, et al. (1994) used the Rayleigh-Ritz method to analyse the free flexural
vibration problem of super-elliptical plates.

In the case of thick elliptical plates (which requires the consideration of transverse shear
deformation and rotary inertia), it is rather surprising that so little work has been done. An
exceptional paper is that of Callahan (1964) who used the Mindlin theory to derive the governing
frequency equations for eight boundary conditions. The equation for each boundary case is
an infinite determinant and each element in it is an infinite series of Mathieu functions containing
an unknown frequency. Although a method for calculating the roots (normal modes of vibration)
of the infinite determinant was proposed by Callahan. no results were presented.

In view of the dearth of Mindlin vibration results for elliptical plates, the authors were prompted
to use their recently developed computerized Rayleigh-Ritz method to analyze this vibration
problem (Wang. et al. 1993, Xiang, et al. 1993, Kitipornchai, et al. 1993). The key feature of
the method lies in the definition of the Ritz function which consists of the product of a mathema-
tically complete two-dimensional polynomial function and the equations of the boundaries raised
to appropriate powers. The method should yield accurate vibration solutions for elliptical plates
since there is no discretization of the curved plate edges. A sufficient degree of polynomial
function is necessary, however, to ensure converged results.

Using this computerized Rayleigh-Ritz method. extensive Mindlin vibration results have been
computed and presented for elliptical plates and semi-clliptical plates. the latter plate shape
not studied hitherto. These new vibration results should be useful to engineering designers who
are dealing with elliptical plates and panels.

A particular feature of this paper is the treatment of the (S) simply supported edge condition
in the Rayleigh-Ritz method. This kind of S-supporting edge requires zero transverse deflection,
w=0 and zero rotation normal to the edge, §=0. For Mindlin plates whose S-edges are either
parallel to the Cartesian axes or where boundaries can be expressed simply in polar coordinates
(such as the cases of circular and annular sectorial plates), the Ritz functions involving the
product of the boundary equations raised to appropriate powers can automatically satisfy the
geometric boundary conditions of this kind of S support. The same Ritz function cannot be
used, however, when the S-edge is inclined (for instance in polygonal plates) or curved (as in
elliptical plates). Note that for skew plates, one can still use the Ritz function if skew coordinates
are adopted. To handle the aforementioned S-supporting edge, a penalty function method is
proposed and demonstrated on elliptical and semi-elliptical plates with S-edges.

2. Energy functional, boundary conditions and Ritz functions for Mindlin plates

Consider a flat, isotropic elliptical plate of uniform thickness 4. major axis length @, minor
axis length b, Young's modulus E, shear modulus G=F/[2(1+v)] and Poisson’s ratio v (see
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the total energy functional F of the vibrating Mindlin plate may be written as
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in which D=flexural rigidity of the plate=FEh*/[12(1—v")], @ and b are the plate maximum
dimensions in the x- and y-directions, respectively, k= shear correction factor=5/6 (Reissner 1945),
w(& m)=transverse displacement; (& n) and 6(& n) the normal rotations in the xz- and yz-
-planes, respectively; w(& n)=nondimensionalized transverse displacement; 4=nondimensionali-
zed area of the plate and d4=d&in.

The boundary conditions for Mindlin plates are (Huang 1989):

—Free edge (F): Q,=0, M,=0, M, = (3a)
in which Q,=the shearing force, M,=bending moment and M, =twisting moment.
—Simply supported edge (S): w=0, M,=0 and 6,=0 (3b)

in which 6, is the rotation of the midplane normal in the tangent plane #z to the plate boundary
(see Fig. 1(a)).

—Simply supported edge (S*): w=0. M,=0, M,,=0 (3¢0)
—Clamped edge (C): w=0, 6,=0, =0 (3d)
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in which 68, is the rotation of the midplane normal to the clamped edge (see Fig. 1(a)).

The Ritz functions for approximating the transverse displacement and the rotations in the
x- and y-directions are taken as

Pog
<W. 9—"’ 0l>: Z Z <C" ¢V~ dr Y/V\‘r~ €, Y/rr) (4)
g0 i1

in which p is the degree of the mathematically complete two dimensional polynomial function,
¢.. d, and e, the unknown coefficients to be varied with the subscript r given by

2
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and
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The basic functions, @, ¥,.. ¥, must satisfy the geometric boundary conditions given in Eq.
(3). For the plate shapes considered and the adopted Cartesian coordinate system shown in
Fig. 1, they take on:

72
<§3+ n— 1—) for elliptical plates

D, ¥, Y= 4 1\
(n)”3<§3+ )73—Z> for semi-elliptical plates )
For @,. the power 2 assumes values of
02=0 if the edge is free (F) (8a)
=1 if the edge is simply supported (§ and S*) or clamped (C) (8b)

For ¥,. the power {2 assumes values of

£2=0 if the edge is free (F) or simply supported (S*) or simply supported (S)
parallel to the y-direction (8c)

N=1 if the edge is simply supported (S) parallel to the x-direction
or clamped (C) (8d)

For ¥, the power {2 assumes values of

=0 if the edge is free (F) or simply supported ($*) or simply supported (S)
parallel to the x-direction (8e)

N2=1 if the edge is simply supported (S) parallel to the y-direction
or clamped (C) (80

3. Treatment of simply supported edge (S)
The Ritz functions, ¥,, and ¥,; cannot be used to satisfy the S type support condition for

the elliptical plate and the curved cdge of the semi-elliptical plate since the condition requires
0,=0. In order to handle this kind of support condition, it is proposed that in addition to
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the S* edge condition a series of » point constraints, as shown in Fig. I(b), be introduced to
ensure that at these points

0,=0y cos(n—fB)— 0y sin(m—B)=0, k=1, 2, -=. n 9)

where B, is the angle the tangent line (to the k-th point on the plate curved edge) makes with
the x-axis. For simplicity. the positions of these points at the elliptical edge are generated using
equi-spaced angles.

Using the penalty function method, the energy functional in Eq. (2) may be augmented
to

F*=F+u 6
k=1
=F+pD (04 cos B+ 0y sinBi) (10)
k=1

where u is the penalty multiplier.

4. Eigenvalue equation for natural frequencies

On the basis of the foregoing energy functional and Ritz functions, the application of the
Rayleigh-Ritz method furnishes the following eigenvalue equation:

{c}
1= (4 p=10) (i
in which the Ritz coefficients
Cl dl €]
(eh=Y ¢ (o ddi=y @ p:qeb=3 @ (12)
(",,1 d m ()‘m
the stiffness matrix
[K.] [K.] [K.]
(K]= [Kdd:] U\ ] (13)
symmetric  [K,.]
and the mass matrix
M1 M,] M,]
(M]= [M/d:l [M/p] (14)
symmetric  [M,.]
The elements of [K] and [M] are given by
¢ 0D, OB, acp oD

(lll] ¢f df V/\/ (15b)
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where 7. j=1, 2, «--. m; m=(p+1)Yp+2)/2. Note that the terms involving the penalty multiplier
u are only taken into consideration when the edge is S-supported.

The natural frequency parameter A may be determined by solving the eigenvalue problem
given by Egs. (11)<(16) using the EISPACK subroutines. Integrations have been performed exactly
using the software MATHEMATICA (Wolfram 1991).

5. Numerical results
b.1. Convergence and comparison studies

Convergence studies have been conducted to establish the degree of polynomial required for
accurate solutions. Table 1 presents a typical case study on elliptical plates with aspect ratios,
x=2. 3 and thickness-minor axis length ratio. //b=0001, 0.15. It can be observed from the
tabulated results that p=12 is sufficient for converged results, and this degree has been used
to generate all further results for elliptical plates reported herein. Note that p=10 has been
used to calculate the results for semi-elliptical plates since it is sufficient to generate converged
solutions.

Checks were also made using thin plate solutions available in the literature. It can be seen
from Table 1 that the results corresponding to #/b=0.001 are in very close agreement with those
obtained by previous researchers such as Shibaoka (1956), Sato (1971, 1973), Narita (1985), Leissa
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Table 1 Convergence and comparison studies of frequency parameters. (wb’/4) \/ph/D. for elliptical plates
with different boundary conditions

Free Simply supported S* Clamped
x | Mode p h/b h/b h/b
0.001 0.15 0.001 0.15 0.001 0.15
6 1.668 1.618 3304 3119 6.845 5.833
9 1.667 1.617 3.303 3116 6.844 5.833
12 1.667 1.617 3.303 3116 6.844 5.832
1 13 1.667 1.617 3.300 3116 6.844 5.832
1.667¢ 3.306¢ 6.869"
1.667° 3304 6.875
1.667¢ 3.303¢ 6.845/
3.293¢
6 4.303 3977 9.841 8.466 14.08 11.01
9 4230 3941 9.581 8.267 14.00 10.97
2 12 4.230 3.940 9.581 8.266 13.99 1097
3 13 4230 3.940 9.580 8.266 13.99 1097
4.231° 9.582" 13.99
4.23(r 13.99/
6 8.174 7237 16.16 13.00 2217 15.67
9 7.885 6.988 15.69 12.69 2202 15.62
12 7.878 6.986 15.69 12.68 2201 15.62
6 13 7.878 6.986 - 15.69 12.68 2201 15.62
7.881% 15.69 22.01°
7.878 201
6 0.751 0.740 3010 2.849 6.312 5400
9 0.751 0.739 3.009 2.846 6.311 5.399
12 0.751 0.739 3.009 2.846 6.311 5.399
1 13 0.750 0.739 3.009 2.846 6.310 5.399
0.750¢ 3.009° 6.322"
0.750°* 6.322¢
0.750¢
6 1.958 1.881 6.638 5904 10.23 8.269
9 1.923 1.857 6.323 5636 10.04 8.167
3 12 1.923 1.856 6.322 5.634 10.02 8.163
3 13 1.923 1.856 6321 5.634 10.02 8.163
1916 6.323% 10.03*
1.923¢
6 5.694 5117 14.20 11.67 19.78 14.20
9 5452 4.887 11.59 9.722 16.68 12,40
12 5441 4.882 1144 9.619 16.67 12.40
6 13 5441 4.882 11.44 9.619 16.67 12.40
5.466 11.62° 16.68°
5441«

a-Sato (1973); b-Liew (1990); c-Narita (1958); d-Leissa (1967); e-Shibaoka (1956) and f~DeCapua and Sun

(1972).
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Fig. 2 Variation'of frequency parameter A versus the number of point constraints # for an elliptical
plate having y=2 and A/h=0.15 with different values of penalty multiplier u

(1967) and Liew (1990). The good agreement of results lends support to the correctness of the
numerical algorithm.

For the case of the S-supported elliptical plate, it is necessary also to determine the number
of point constraints n and the value of the penalty multiplier y for converged results. Taking
an elliptical plate of aspect ratio y=2 and //b=0.15, Fig. 2 shows the variation of the frequencies
of the first and sixth mode with respect to n and u It can be observed that #=24 points and
u=1000 are sufficient to simulate the S-support condition. Note that when n=0, the solutions
correspond to those belonging to elliptical plates with S$* support.

5.2. Elliptical plates

Four different edge conditions F, §*. S and C have been considered for the elliptical Mindlin
plate. The first six natural frequencies have been computed and are presented in Tables 2-5
for y=10, 1.5, 20, 2.5, 30 and A/b=0001, 005, 0.10, 0.15.

The following observations are made:

—The results corresponding to y=a/b=10 are those for circular plates and they agree with

those obtained by Irie. et al. (1980).

— For elliptical plates with free edges. the first three natural frequencies are zero as they are
associated with rigid body modes.

—The frequency parameters decrease with increasing aspect ratio y=a/b particularly in the
higher modes.

—The frequency parameters decrease with increasing plate thickness due to increasing effects
of shear deformation and rotary inertia. especially for plates with greater restraints such
as clamped plates.

—The frequencies are a few percent higher for S-type supported plates than for the correspon-
ding S*-type supported plates. The maximum differences occur when the plate thickness
is relatively large and when considering higher vibration modes. These differences are not
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Table 2 Frequency parameters (wh’/4)/ph/D. for free (F) elliptical plates

Mode sequences

a/b h/b
4 5 6 7 8 9
0.001 5.358 5.358 9.003 1243 1243 2047
1 0.05 5278 5.278 8.868 12.06 12.06 19.71
0.10 5.115 5.115 8.508 11.32 11.32 17.99
0.15 4.895 4.895 8.013 1041 1041 16.00
0.001 2.878 3.549 7.142 7.337 7.799 12.89
1.5 005 2.855 3.501 7.016 7232 7.635 12.54
0.10 2.806 3415 6.745 6972 7.304 11.76
0.15 2736 3.300 6.383 6.615 6.876 10.80
0.001 1.667 2.636 4.230 5.503 6.941 7.878
2 0.05 1.659 2.598 4.184 5403 6.840 7.734
0.10 1.642 2.537 4,083 5.214 6.601 7413
0.15 1.617 2459 3.940 4967 6.272 6.986
0.001 1.077 2.093 2.751 4222 5.161 6.710
25 005 1.073 2.060 2.730 4.148 5.097 6.613
0.10 1.066 2013 2.685 4019 4951 6.387
0.15 1.055 1.953 2621 3.852 4.747 6.077
0.001 0.750 1.734 1.922 3419 3618 5441
3 0.05 0.748 1.706 1912 3.358 3.585 5331
0.10 0.745 1.667 1.889 3.261 3510 5.135
0.15 0.739 1.618 1.856 3.136 3403 4.882
Table 3 Frequency parameters (wb’/4n/ph/D, for simply supported (S*) elliptical plates
Mode sequences
a/b h/b
1 2 3 4 5 6
0.001 4936 13.89 13.89 25.61 25.61 29.71
1 0.05 4.894 13.51 13.51 2432 2432 2825
0.10 4.778 12.63 12.63 21.71 2171 25.03
0.15 4.606 11.53 11.53 18.94 18.94 21.64
0.001 3.678 7.926 12.19 14.12 18.39 2228
1.5 005 3.652 7.779 11.90 13.70 17.69 21.32
0.10 3.579 7.450 11.20 12.77 16.20 19.27
0.15 3471 7014 10.31 11.64 1448 17.01
0.001 3.300 5910 9.580 11.53 14.37 15.69
2 0.05 3.274 5812 9.357 11.27 13.92 15.17
0.10 3.209 5.608 8.877 10.64 12.95 14.03
0.15 3.116 5335 8.266 9.826 11.78 12.68
0.001 3.122 4.983 7479 10.66 11.17 14.29
25 005 3.094 4.905 7.324 10.38 10.93 13.86
0.10 3.034 4.748 7.003 9.797 10.33 12.90
0.15 2.948 4.539 6.589 9.062 9.561 11.73
0.001 3.009 4456 6.321 8.642 1094 11.44
3 0.05 2.983 4.390 6.198 8.437 10.71 1112
0.10 2926 4.259 5952 8.017 10.14 1044
0.15 2.846 4084 5.634 7487 9.393 9.619

43
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Table 4 Frequency parameters (wb’/4n/ph/D, for simply supported (S) elliptical plates

Mode sequences

a’b b
1 2 3 4 5 6
0.001 4936 13.89 13.89 25.61 25.61 29.71
1 0.05 4.894 13.57 13.57 2451 24.51 28.25
0.10 4779 12.72 12.72 2201 2201 25.03
0.15 4.607 11.64 11.64 19.26 19.26 21.64
0.001 3.678 7.926 12.19 14.12 18.39 2228
1.5 0.05 3.658 7817 11.94 13.78 17.81 2145
0.10 3.591 7.518 11.27 1291 16.40 1947
0.15 3.489 7.101 10.39 11.80 1471 17.23
0.001 3.300 5910 9.580 11.53 14.37 15.69
2 0.05 3284 5.849 9420 11.30 14.01 15.26
0.10 3229 5.677 8.991 10.69 13.10 14.19
0.15 3.144 5428 8408 9.890 11.96 12.87
0.001 3122 4983 7479 10.66 11.17 14.29
25 005 3.105 4939 7.382 1047 10.96 13.94
0.10 3055 4815 7.111 9.941 10.38 13.03
0.15 2978 4631 6.730 9.239 9.615 11.89
0.001 3.009 4456 6.321 8.642 10.94 11.44
3 0.05 2993 4421 6.251 8.505 10.73 11.23
0.10 2.946 4321 6.054 8.153 10.18 10.61
0.15 2873 4.170 5.769 7.662 9439 9.821
Table 5 Frequency parameters (wb”/4)/ph/D, for clamped (C) elliptical plates
Mode sequences
a’b h/b
1 2 3 4 5 6
0.001 10.21 21.25 21.26 34.87 34.87 39.76
1 0.05 9943 20.18 20.18 3223 3223 36.51
0.10 9.249 17.78 17.78 27.05 27.05 30.28
.15 8.371 15.23 15.23 2229 2229 2472
0.001 7.613 12.65 18.43 19.72 25.34 28.81
1.5 0.05 7.449 12.24 17.59 18.83 2386 27.05
0.10 7019 11.25 15.66 16.80 20.70 23.37
0.15 6453 10.06 13.53 14.59 17.52 19.73
0.001 6.844 9.874 13.99 17.46 19.24 2201
2 0.05 6.702 9.605 13.50 16.68 18.40 20.84
0.10 6.328 8.929 1233 14.89 16.48 18.28
0.15 5.832 8.087 1097 1291 14.37 15.62
0.001 6.503 8637 1142 14.89 16.97 19.08
25 005 6.370 8418 11.07 14.34 16.23 18.25
0.10 6.021 7.862 1021 13.05 14.51 16.35
0.15 5.554 7.158 9.178 11.57 12.59 14.29
0.001 6310 7.954 10.02 12.54 15.55 16.67
3 0.05 6.184 7.762 9.741 12.13 14.96 1595
0.10 5.848 7.269 9.033 11.13 13.57 14.27
0.15 5.399 6.638 8.163 9957 12.00 12.40
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Table 6 Frequency parameters (wbh*/4)/ph/D, for F-C semi-elliptical plates

Mode sequences

a/b /b
1 2 3 4 5 6
0.001 8.603 19.67 28.86 36.33 45.09 57.71
1 0.05 8.344 18.58 26.80 33.27 40.48 5097
0.10 7.818 1643 2281 2777 3282 40.32
0.15 7.171 14.17 18.96 22.81 2641 31.97
0.001 5.710 10.86 17.83 2649 2671 36.16
1.5 0.05 5.593 10.48 16.97 2475 25.01 33.06
0.10 5.358 9714 15.24 21.25 21.72 27.53
0.15 5.051 8.806 13.36 17.77 18.46 22.54
0.001 4.822 7.905 12.02 17.24 23.63 25.06
2 0.05 4741 7.680 11.58 1645 2228 2349
0.10 4.570 7.240 10.69 14.85 19.64 20.26
0.15 4342 6.697 9.654 13.10 16.89 17.04
0.001 4440 6.581 9.351 12.81 17.04 2298
25 0.05 4.373 6417 9.054 12.32 16.25 2148
0.10 4228 6.095 8.468 11.34 14.69 18.86
0.15 4.028 5.690 7.765 10.22 13.00 16.28
0.001 4234 5.864 7.908 1042 1346 17.95
3 0.05 4.175 5732 7.682 10.06 1291 16.90
0.10 4,042 5.468 7.235 9.358 11.84 15.09
0.15 3.858 5.131 6.691 8.532 10.64 13.26

significant in elliptical plates but are significant in, for instance, rectangular plates (Xiang, et
al. 1993).

5.3. Semi-elljptical plates

Four different boundary conditions F-C, C-F, C-C and C-S have been considered for the
semi-elliptical Mindlin plate. The first letter denotes the straight edge condition while the latter
denotes the curved edge condition. The first six natural frequencies have been computed and
are presented in Tables 6-9 for y=1.0. 1.5, 20, 2.5. 3.0 and A/Ah=0001, 005, 0.10. 0.15.

The results for the semi-elliptical plates follow the same trend as the elliptical plates. The
frequencies decrease with increasing aspect ratio, plate thickness and less restrained boundary
conditions.

6. Conclusions

The problem of vibration of elliptical and semi-elliptical plates can be readily solved using
the computerized Rayleigh-Ritz method. Natural frequencies for these plate shapes have been
presented for various aspect ratios, plate thicknesses and boundary conditions. These results
should be useful to engineering designers.

The penalty function method used to impose the S-type constraint in the Rayleigh-Ritz method
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Table 7 Frequency parameters (wb’/4)\/ph/D, for C-F semi-elliptical plates

Mode sequences

a/b h/b
1 2 3 4 5 6
0.001 4.538 9.356 17.23 27.02 27.58 40.26
1 0.05 4475 9.066 1641 2522 2573 36.71
0.10 4.325 8.455 14.78 21.58 22.31 30.66
0.15 4.119 7.708 13.01 18.01 18.96 25.30
0.001 4389 7.462 1199 18.03 2514 25.67
1.5 0.05 4330 7271 11.56 17.17 23.56 24.06
0.10 4.187 6.866 10.68 1547 20.28 21.08
0.15 3.990 6.360 9.650 13.62 1699 18.10
0.001 4252 6479 9.517 13.43 18.37 2427
2 0.05 4.195 6.328 9.223 1291 17.41 22.84
0.10 4.060 6.010 8.617 11.86 15.69 19.79
0.15 3872 5.607 7.893 10.66 13.83 16.60
0.001 4.141 5873 8.121 10.93 14.50 1868
25 005 4.086 5.745 7.892 10.55 13.78 17.75
0.10 3.957 5477 7423 9.795 12.95 1592
0.15 3.778 5134 6.853 8910 11.28 14.01
0.001 4.054 5464 7.231 9.386 12.20 15.39
3 0.05 4001 5352 7.040 9.091 11.59 14.70
0.10 3.878 5.116 6.653 8493 10.66 1333
0.15 3.706 4.812 6.174 7.785 9.643 11.86
Table 8 Frequency parameters (wb*/4)n/ph/D, for C-C semi-elliptical plates
Mode sequences
a’b h/b
1 2 3 4 5 6
0.001 28.11 41.72 58.68 7191 78.43 95.05
1 0.05 2594 3748 51.23 61.16 66.37 78.23
0.10 21.68 30.15 39.74 4569 49.72 56.88
0.15 17.78 24.13 3112 3491 3822 43,05
0.001 2543 3243 41.21 51.86 65.79 67.07
1.5 0.05 23.55 29.60 37.02 4574 55.74 57.38
0.10 19.80 24.35 29.84 36.09 4298 43.07
0.15 16.30 19.78 2396 28.64 3292 33.69
0.001 2447 29.13 34.81 41.60 51.57 62.16
2 0.05 2270 26.74 31.55 37.20 43.85 52.82
0.10 19.13 2218 2578 2992 34.58 40.39
0.15 15.76 18.10 20.87 24.02 27.50 3162
0.001 2398 2748 3173 36.78 4522 5340
25 0.05 2226 25.30 2884 3307 38.22 45.78
0.10 18.78 21.07 2373 26.80 30.32 35.22
0.15 1549 17.24 19.29 2162 2423 27.65
0.001 23.67 2649 3001 34.16 4197 48.87
3 0.05 22.00 2443 27.28 30.78 3524 4210
0.10 18.58 2041 2252 25.04 2796 3244
0.15 1532 16.72 18.34 20.22 22.36 2544
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Table 9 Frequency parameters (wb/4)/ph/D. for C-S semi-elliptical plates

Mode sequences

a/b hb
1 2 3 4 5 6
0.001 19.50 3143 46.60 5851 64.62 79.75
1 0.05 18.54 29.26 42.38 51.99 57.14 68.72
0.10 16.40 2497 34.83 41.27 45.23 5291
0.15 14.11 2093 2841 3287 36.00 4145
0.001 17.86 2429 3237 42.37 54.40 54.77
1.5 0.05 17.04 22.89 30.08 38.77 48.67 4893
0.10 15.16 1991 2558 3206 3898 3937
0.15 13.11 16.92 21.37 2632 31.07 31.74
0.001 17.19 21.56 26.83 33.44 4131 5341
2 005 1642 2041 25.12 3061 37.29 46.64
0.10 14.65 1792 2172 2604 3121 3697
0.15 12.69 1533 18.34 21.70 2559 29.74
0.001 16.81 20.13 24.02 29.13 35.02 48.54
25 005 16.07 19.12 22.64 27.07 3227 4047
0.10 14.36 16.85 19.68 2294 27.00 31.78
0.15 12.46 1447 16.74 19.26 2237 25.66
0.001 16.57 19.25 2236 2673 31.58 44.04
3 0.05 15.85 18.31 21.10 24.86 29.14 37.18
0.10 14.18 16.19 1848 21.16 24.71 2893
0.15 12.31 13.94 15.76 1781 20.50 2334

may also be used to impose any elastically restrained edge or point support. The penalty multiplier
is equivalent to the elastic spring constants used in modelling these elastic restraints.
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