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Abstract. In this paper, we present a quadratic element model based on non-conforming displacement
modes and modified shape functions. This new and refined 8-node hybrid stress plane element consists of
two additional non-conforming modes that are added to the translational degree of freedom to improve the
behavior of a membrane component. Further, the modification of the shape functions through quadratic
polynomials in x-y coordinates enables retaining reasonable accuracy even when the element becomes
considerably distorted. To establish its accuracy and efficiency, the element is compared with existing
elements and - over a wide range of mesh distortions – it is demonstrated to be exceptionally accurate in
predicting displacements and stresses.
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1. Introduction

For several decades, considerable efforts have been devoted to the development of finite elements

with good performance, especially, of enhanced accuracy in coarse meshes and free of spurious

locking. Although there are some exceptions, most of these finite elements can generally be grouped

† Manager, Corresponding author, E-mail: chunks@dreamwiz.com 
‡ Assistant Professor, E-mail: kassegne@mail.sdsu.edu
‡† Associate Professor, E-mail: pwtae@kongju.ac.kr

DOI: http://dx.doi.org/10.12989/sem.2008.29.6.643



644 Kyoung-Sik Chun, Samuel Kinde Kassegne and Won-Tae Park

into two distinct classes of element models. These models are the displacement model, which is

basically based on the total potential energy principle and the mixed model, which - in addition to

displacements - assumes one or more independent fields such as stresses or strains. 

Developments in mixed/hybrid plane elements have been particularly extensive and form the

focus of this study. Beginning with the assumed stress hybrid finite element proposed by Pian

(1964), numerous additional formulations have been developed. The major challenge in deriving

hybrid finite elements seems to be the lack of a rational way for deriving the optimal stress modes.

Recently, several partial hybrid finite elements have been proposed with a variety of methods for

deriving assumed stress fields. Pian and Sumihara (1984) proposed a new approach for hybrid stress

elements that is based on the Hellinger-Reissner principle. They defined the assumed stresses in the

natural coordinate system. The stresses are in-turn initially defined in the form of complete

uncoupled polynomials. Equilibrium conditions are then enforced on them through integral-type

equations with geometric perturbation and subsequently degenerated to optimal stress terms. As

modified versions of this scheme, Pian and Tong (1986), and Pian and Wu (1988) proposed new

constraint equations for assumed stresses which did not need geometrical perturbation to obtain the

sufficient number of constraint equations. Their initial choice of stress terms are unconstrained and

complete polynomials. The additional displacements are used as Lagrange multipliers to enforce the

stress equilibrium constraint.

Recently, Sze (1992) used orthogonal lower- and higher-order stress modes to construct a hybrid

element. His approach allows the partition of the element stiffness matrix into a lower- and a

higher-order stiffness matrix. When the lower-order stiffness turns out to be identical to the sub-

integrated element, the higher-order stiffness matrix plays the role of a stabilization matrix. A more

general hybrid model was developed by Chen and Cheung (1995) who proposed a new approach

for approximation of the assumed stresses. The key to their approach lies in rational choice of the

incompatible modes containing first-order terms which are introduced to relax the sensitivity to

mesh distortion. Wu and Cheung (1995, 1996) presented a penalty equilibrium term for enforcing

equilibrium conditions in a variational sense. Di and Ramm (1994) introduced a rigorous unified

formulation of stress interpolations without non-conforming modes. They investigated a series of

hybrid elements based on Hellinger-Reissner principle. Their formulations – which are unique in the

way the stress assumptions are chosen – are based on the normalized stress transformation and the

concept of directly interpolating the physical components of the stress tensor. Yeo and Lee (1997)

proposed the generalized non-compatible displacements modes for a refined four-node hybrid stress

plane element and eight-node hybrid stress brick element. Feng et al. (1997) presented a brief

compilation of studies dealing with criteria for stability and convergence of hybrid finite elements.

Choi et al. (1999) presented a defect-free 4-node flat shell element with non-conforming modes.

Recently, Chun and Kassegne (2005) proposed a new, efficient 8-node serendipity element with

explicit and assumed strains formulation, modified shape functions, and refined first-order theory for

the static, buckling and free-vibration analysis of fibrous composite plates.

However, research in developing more refined and accurate plane elements, especially under loads

and geometries leading to severe distortions, are still ongoing. In this particular study, an approach

for choosing the stress terms for 8-node hybrid stress elements is selected and a new element model

based on non-conforming displacement modes and modified shape functions is presented. The new

and refined 8-node hybrid stress plane element presented here is then compared with existing

elements to establish its accuracy and efficiency.
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2. Modified shape functions

The 8-node Serendipity element can be modified so that it can represent any quadratic

polynomials in x-y coordinates, thus retaining reasonable accuracy even when the element becomes

considerably distorted (1999). Essentially, the concept adopted here is that of deriving 8-node

element by eliminating the interior node (ninth node) of the 9-node one with all the Cartesian

quadratic polynomials preserved (Kikuchi et al. 1999, MacNeal and Harder 1992, Chun and

Kassegne 2005).

(1)

(2)

where the  is the shape function of the i-th node in the 8-node Lagrange element and Ti is a

coefficient of constraint. Eq. (2) can then be expressed in terms of standard 8-noded shape

functions,  and hierarchical form. Therefore,

(3)

The constraint coefficients, Ti, are constructed with the aid of x-y coordinate at each node. For

convenience, the shape functions  for the 8-node Serendipity element are shown below.

(4)

(5)

The modified shape functions for the present 8-node Serendipity element are, therefore, expressed

for  as
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(7)

where the natural coordinates ξ and η are equal to ±1 on the boundaries and their values at node i, ξi

and ηi are given by  and  for ,

respectively. Di is equal to four times the Jacobian  at vertex i, and is defined as

(8)

(9)

To enhance the original Serendipity element, Kikuchi et al. (1999) and MacNeal and Harder

(1992) presented a modified method that includes any quadratic terms of Cartesian coordinates

when the element is of convex bilinear subparametric shape.

3. Non-conforming displacement modes

A number of different techniques have been proposed for improving the basic behavior of

quadrilateral elements. Among these techniques, the use of non-conforming displacement modes is

among the most successful approaches in pure bending situations. The basic concept of this

approach is to restore true deformation by adding additional deformation modes which are called

non-conforming displacement modes (Choi et al. 1999).

The displacement fields of a finite element can be enhanced by adding non-conforming

displacements modes to the original displacement components of the element as 

(10)

where  represents the explicit modified shape functions and  is the vector of non-conforming

shape functions as defined is Eqs. (6), (7). The number of nodes per element is given by ‘n’, and m

is the number of the non-conforming displacement fields. The possible non-conforming displacement

modes to be added to an 8-node Serendipity element are shown in Fig. 2 and defined by the

following set of shape functions (Choi and Park 1999)

(11)
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more non-conforming modes ( ) are added to the translational degree of freedom to improve

the behavior of a membrane element. Therefore, the hybrid assumed stress fields proposed here are

based on the combinations of the non-conforming displacement modes by Pian and Wu (1988) and

Chen and Cheung (1995). It is now well-established that the formulation of hybrid stress element

based on the vanishing of the virtual work due to the higher order stresses and incompatible

displacements along the element boundary lead to satisfactory elements (Pian and Wu 1988).

Further, when the incompatible displacements also satisfy the constant strain patch test the resulting

elements will provide the most accurate solutions. Pian and Wu (1988) reviewed briefly recent

developments in using the added incompatible displacements to formulate hybrid stress elements, in

which relations between the hybrid stress model and the corresponding incompatible displacement

model are emphasized. The assumed stresses initially are all chosen to be complete in linear terms

in natural coordinates. The equilibrium conditions are imposed in a variational sense through the

internal displacements which are also expanded in the natural coordinates. The resulting element

possesses the rational stress terms, i.e., it is invariant, it is less sensitive to geometric distortion, and

contains a minimum number of stress parameters.

4. Assumed stress formulations

Recently, many rational approaches for stress assumption have been forwarded for hybrid stress

elements. The main feature of these approaches is the adoption of constraint equations for assumed

stresses. Among them, Pain and Tong (1986) proposed the following constraint equations for

higher-order terms of assumed stresses 

(12)

where σh is the higher-order terms in the assumed stresses,  is the admissible variation of the

non-conforming modes and D is the differential operator of the strain-displacement equations.

Eq. (12) suggests that the higher-order terms should be orthogonal to the non-conforming strains

N1 N2,

Dδuλ( )Tσh Ωd
Ω

 

∫ 0=

δuλ

Fig. 2 Non-conforming displacement modes for quadratic element
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and was employed by Chen and Cheung (1995) to 4-node plane element.

For 4-node plane element, if the following non-conforming modes (Eq. (13)) of Wilson et al.

(1973) and Taylor et al. (1976) are considred,

(13)

and Eq. (1) employed, then the resulting stress assumption is found to be the same with that of Pian

and Sumihara (1984). The stresses σe are expanded in terms of assumed stress parameters β.

(14)

where Ic is a 3 × 3 identity matrix. The coefficients ai and bi can be expressed in terms of nodal

coordinates, xi and yi.

(15)
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where j denotes the Jacobian matrix in Eq. (17) evaluated at the origin  of the

element. For the choice of uλ terms, non-conforming displacement fields are considered in Eq. (19).

The non-conforming functions of quadratic elements are aforementioned.

(19)

The constraint Eq. (12) for the higher-order stress terms be expressed as 

(20)
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= (23)

The quadratic membrane element has 16 degrees of freedom. Therefore, a stress field with a

minimum of 13 independent parameters is needed to describe the membrane stress field. In results,

the above stress assumption, without changing the stress values, can be expressed in a matrix form as

(24)

where

,

The matrix T0 is a transformation matrix, evaluated at the origin, , in the natural

coordinate system, which transforms the covariant stresses defined in the natural coordinate to the

physical stress defined in the Cartesian coordinate. This approach of obtaining optimal stress terms

by using the non-compatible modes of Eq. (19) and the constraint Eq. (12) is equivalent to that of

defining the covariant stresses only with the assumption matrix P and then transforming them to the

physical components by transformation matrix calculated at the point (Yeo and Lee 1997).

5. General formulation of hybrid stress elements

The variational basis of hybrid stress formulation is the Hellinger-Reissner principle with

constraint equations for assumed stresses. Following Pian and Wu (1988), when the terms

corresponding to applied loads are neglected, the Hellinger-Reissner functional can be expressed as

(25)
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For finite element approximation, displacements and assumed stresses for one element are

discretized as follows

u = Nd (26)

σ = Pβ (27)

where β is the vector of assumed stress parameters. N is the matrix of standard isoparametric shape

functions defined in the natural coordinate system, and P is the matrix of basis functions for stress
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Substituting Eqs. (26) and (27) into Eq. (25), we can get the following matrix form of the

discretized Hellinger-Reissner functional

(28)

in which

 

The element stiffness equation will be given by the system stationary condition. The element level

relation between stress parameters and nodal displacements is given as:

(29)

(30)

A 3 × 3 Gauss-Legendre full integration is used for the evaluation of the element stiffness matrix.

6. Numerical results

The performance of the hybrid stress element is evaluated in this section. Some of the numerical

examples included here are often used as benchmarks for the numerical behavior of the quadrilateral

elements. In all the examples, the material is assumed to be linear, elastic, homogeneous, and

isotropic. All units of model data are assumed to be consistent, and therefore need not be specified.
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Table 1 List of finite elements used for comparison 

Name Description

Q4 Standard 4-node bilinear isoparametric plane element.

Q8 Standard 8-node quadratic plane element.

QPM8 2D plane stress continuum element in LUSAS

QC9D Membrane finite element with drilling degrees of freedom derived by Groenwold and Stander 
(1995). 

5β-EP 5β family with equilibrium constraint plus perturbation derived by Di and Ramm (1994).

5β-NT 5β family with normalized transformed derived by Di and Ramm (1994).

8β-EP 8β family with equilibrium constraint plus perturbation derived by Geyer and Groenwold (2002).

M5β 4-node plane element with refined transformation matrix derived by Yeo and Lee (1997).

XSHELL42 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom derived by Kim 
et al. (2003)

8-SAP 8-node serendipity element with explicit and assumed strains formulation, modified shape func-
tions, and refined first-order theory derived by Chun and Kassegne (2005)

HQ8-14β Present hybrid assumed stress 8-node plane element with non-conforming displacement modes 
and modified shape functions
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It is shown that the results from the proposed element developed here show very good agreement

with those reported in the literature. A list of plane elements used for comparison with the proposed

element is outlined in Table 1.

6.1 Eigenvalue test

The eigenvalue analyses of the elements have been performed in order to check the presence of

spurious zero energy modes. The plane stress elements must have 3-rigid body mode on an element

without constraints. Therefore three of the λi should be zero for a plane element. 

The single meshed model has a thickness of 1.0 and side lengths of 1.0. The material properties

are E = 1.0 and ν = 1.0. The results of the patch test are presented in Table 2. The new proposed

element, HQ8-14β, is pass the patch tests performed.

Table 2 Eigenvalue 

λi Eigenvalue

1 4.5939E-00

2 4.5939E-00

3 2.1333E-00

4 2.1031E-00
… …

12 3.0155E-01

13 1.5621E-01

14 1.0000E-07

15 −5.0000E-08

16 −5.0000E-08

Fig. 3 Patch test and cantilever beam
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6.2 Patch test and cantilever beam

The effect of mesh distortion on finite element accuracy is studied by using the two-element

cantilever beam. The geometry is depicted in Fig. 3, and the numerical results are presented in

Table 3. Load case 1 represents a patch test, which is passed by all the elements studied. Load case

2 represents bending behavior, while load cases 3 and 4 examine the effect of element distortion.

The new proposed element, HQ8-14β, is more accurate than not only the quadratic elements Q8

but also the membrane elements with drilling rotational degree of freedom, QC9D. The Q8 and 8-

SAP elements yields slightly better results for a load case 2 only. 

6.3 Tapered and swept beam

A tapered, swept beam with one edge clamped and the opposite edge acted upon by a unit load at

the tip is shown in Fig. 4. The elements used to model the beam are distorted and are under

membrane forces. The beam is analyzed by using 2 × 2, 4 × 4, and 8 × 8 meshes. The normalized

vertical deflection δc at point C are presented in Table 4. The reference solution, 23.91, is obtained

by Simo et al. (1989). The normalized Max. and Min. principal stresses at point A and B are

presented in Table 5. Tables shows that the present element, HQ8-14β, is the most accurate

elements.

Table 3 Patch test and cantilever beam 

Element
LC1 LC2 LC3 LC4

Q8 6.00 17.80 99.70 3003 2.72 101.41 4095

QC9D 6.00 16.78 81.86 2541 - 84.59 3433

5β-EP 6.00 17.64 96.18 3014 - 98.19 4137

8β-EP 6.00 16.87 84.86 2881 - 88.00 3822

8-SAP 6.00 17.79 99.75 - - 101.79 -

HQ8-14β 6.00 17.75 100.00 3000 0.00 102.13 4137

Analytical 6.00 18.00 100.00 3000 0.00 102.00 4050

u1
A

u2
A

– u2
A

σx
B

– τxy
B

– u2
A

σx
B

–

Fig. 4 Tapered and swept beam 
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6.4 Element distortion sensitivity test

A cantilever beam of two elements with different distortions is a well-known example for testing

the sensitivity of the element to mesh distortion. Here, the effect of mesh distortion on the HQ8-14β

element accuracy is investigated by using the two-element cantilever beam shown in Figs. 5 and 8.

The normalized vertical deflections at tip point A and B is plotted in Figs. 6 and 9 versus the

parameter e, which represents the degree of geometric distortion of the two elements. Although all

elements except for the Q4, yield the exact solution when there is no geometric distortion, e = 0, it

is seen that their performance under severe distortion is quite different. The results show that for the

vertical displacement at point A and B, the present element, HQ8-14β, give very exact solutions

even when the elements are highly distorted. 

Table 4 Normalized results for the tapered and swept beam 

Element 2×2 4×4 8×8

Q4 0.496 0.765 0.923

Q8 0.950 0.992 0.999

QC9D 0.806 0.946 0.985

5β-EP 0.884 0.963 0.991

8β-EP 0.841 0.950 0.986

8-SAP 0.953 0.992 0.999

HQ8-14β 0.968 0.993 0.999

Table 5 Maximum and minimum principal stresses 

Element 2×2 mesh 4×4 mesh 8×8 mesh

Q8 1.057 1.044 1.025 1.002 1.012 1.013

QC9D 0.779 0.804 0.950 0.948 0.984 1.001

5β-EP 0.786 0.778 0.950 0.924 0.994 0.988

8β-EP 0.768 0.818 0.959 0.906 0.998 0.990

HQ8-14β 1.099 1.065 1.031 1.004 1.012 1.013

Analytical 0.2360 −0.2010 0.2360 −0.2010 0.2360 −0.2010

σmax( )A σmin( )B σmax( )A σmin( )B σmax( )A σmin( )B

Fig. 5 Element distortion test under end moment
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Fig. 6 Normalized results of element distortion test under end moment

Fig. 7 Vertical displacement contour for element distortion

Fig. 8 Element distortion test under end shear
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6.5 Straight cantilever beams

The straight cantilever beam problem suggested by MacNeal and Harder (1985) is solved for the

three discretizations shown in Fig. 10. The theoretical results for extension and in-plane shear are

simply calculated from the elementary beam theory including shear deformations. The problem is

solved to demonstrate the elements capability in handling meshes with distortions and high aspect

ratios. For extension problem, the results show that all elements perform well. For in-plane shear

problem, the result of HQ8-14β shows less sensitivity to mesh distortion compared with M5β, Q8

and 8-SAP. However, for the regular shaped elements, M5β provides better results. The present

element has the error of fewer than 3.0% for all meshes and loads.

Fig. 9 Normalized results of element distortion test under end shear

Table 6 Normalized results to the straight beam

Tip load
direction

Element
Theoretical

solution
mesh a mesh b mesh c

Extension M5β

3.0 × 10−5

1.000 1.000 1.000

Q8 0.998 0.998 0.998

8-SAP 0.998 0.998 0.998

 HQ8-14β 1.000 1.000 1.000

In-plane shear M5β

0.1081

1.000 0.378 0.957

Q8 0.982 0.899 0.980

8-SAP 0.962 0.971 0.982

 HQ8-14β 0.987 0.975 0.987

Fig. 10 Straight cantilever beam
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6.6 Curved cantilever beam subjected to end in-plane shear

The curved cantilever beam is formed by a 90o circular arc. An in-plane load is applied at the free

end of beam. A coarse mesh of 1×6 that results in a high aspect ratio for each element is adopted.

The normalized results from the present element, HQ8-14β, and other elements are tabulated in

Table 7. In this problem, it is clear that the results for all elements except the 5β-NT are uniformly

good. However, the HQ8-14β consistently performs better than the other elements, as shown in the

table.

7. Conclusions

In this paper, we have presented a new hybrid element model through the use of non-conforming

displacement modes and modified shape functions. The new element consists of two additional non-

conforming modes that are added to the translational degree of freedom to improve the behavior of

a membrane component. Further, the modification of the shape functions through quadratic

polynomials in x-y coordinates enables retaining reasonable accuracy even when the element

becomes considerably distorted. The new and refined 8-node hybrid stress plane element presented

here is compared with existing elements to establish its accuracy and efficiency. Over a wide range

of mesh distortions, the element presented here is found to be exceptionally accurate in predicting

displacements.

Fig. 11 Curved cantilever beam 

Table 7 Normalized results to the curved cantilever beam

Element In-plane shear

5β-NT 0.07751 (0.887)

XSHELL42 0.08341 (0.955)

HQ8-14β 0.08786 (1.006)

Theoretical solution 0.08734
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