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Inclined yield lines in flange outstands
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Abstract. While spatial plastic mechanism analysis has been widely and successfully applied to thin-
walled steel structures to analyse the post-failure behaviour of sections and connections, there remains
some contention in the literature as to the basic capacity of an inclined yield line. The simple inclined
hinge commonly forms as part of the more complex spatial mechanism, which may involve a number of
hinges perpendicular or inclined to the direction of thrust. In this paper some of the existing theories are
compared with single inclined yield lines that form in flange outstands, by comparing the theories with
plate tests of plates simply supported on three sides with the remaining (longitudinal) edge free. The
existing mechanism theories do not account for different in-plane displacement gradients of the loaded
edge, nor the slenderness of the plates, and produce conservative results. A modified theory is presented
whereby uniform and non-uniform in-plane displacements of the loaded edge of the flange, and the
slenderness of the flange, are accounted for. The modified theory is shown to compare well with the plate
test data, and its application to flanges that are components of sections in compression and/or bending is
presented.

Keywords: inclined yield lines; spatial plastic mechanisms; post-failure behaviour; plastic hinge capacity;
unstiffened plates; flange outstands.

1. Introduction

It is well understood that for thin-walled steel members under increasing load, localisation of the

buckling pattern occurs and the post-buckling behaviour is characterised by large local

displacements in the inelastic range, which produces plastic folding of the cross-sections walls, and

the member falls into a spatial plastic mechanism. In analysing thin-walled steel members a

generalised spatial mechanism analysis, which takes into account second-order effects, will produce

a load-deformation relationship. The first step of such a procedure is to correctly identify the spatial

plastic mechanism that forms in the member, for which experimental observations have been found

to be the most reliable method, however Mahendran and Murray (1991) and Mahendran (1997)

have shown that some general relationships between cross-section geometry and initial

imperfections may be used to assist in predicting the type of spatial plastic mechanism that will

form. In practice it has been observed that there are two major classes of spatial plastic mechanisms

that form in steel members, namely true mechanisms and quasi-mechanisms. A true mechanism is

one whereby the component plates of the cross-section fold along the plastic hinge lines, whereas in

a quasi-mechanism certain zones of the plates must deform in-plane in order for the plastic
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mechanism to develop, resulting in yield zones in addition to yield lines. Murray and Khoo (1981)

and Murray (1984) noted that for true mechanisms to form, it is assumed that the component plates

of the cross-section can twist freely at right angles to the direction of thrust, for non-symmetric

hinges. Having established the spatial plastic mechanism, the analysis follows either an energy or an

equilibrium approach. The energy method derives the equilibrium condition by equating the work of

external loads to the work dissipated by the mechanism during a kinematically admissible

displacement, and may be applied to stationary or rolling yield lines. The equilibrium method

derives the equilibrium condition from consideration of equilibrium in infinitesimal width arbitrary

strips parallel to the direction of thrust, and may only be applied to stationary yield lines. The

equilibrium approach is generally mathematically simpler and has been used more widely than the

energy approach in the analysis of steel members and connections.

Much research effort has occurred since the early work of Murray and Khoo (1981) and Murray

(1973, 1984) in order to determine and analyse the spatial plastic mechanisms that form in steel

members and connections, such as plates, stiffened plates, open sections (I-sections, plain channel

sections, lipped channel sections, Z-sections), closed sections (square, rectangular, triangular,

trapezoidal, circular, hat, double skinned squares, ring-stiffened cylinders, conical shells, foam-

timber- and concrete-filled box sections), connections (plate to closed section connections, closed

section T, X and K connections) and ductility and energy absorption studies (closed sections, foam

filled closed sections). It is not the purpose of this paper to review this work, and the interested

reader is referred to the extensive review of Zhao (2003) which describes and references 89 papers

published in the field. The spatial plastic mechanisms that form in the various members and

connections consist of yield lines forming in the various component plates, often in quite

complicated patterns, and may also involve zones of in-plane yielding. In many cases the yield lines

that form are inclined to the direction of thrust, and thus a fundamental requirement of the analysis

is to determine the reduced plastic moment capacity of an inclined yield line. This paper is

concerned with the determination of the capacity of inclined yield lines that form in flange

outstands of open thin-walled steel sections, and how this capacity varies with both the in-plane

rotation that occurs at the loaded ends of the flange outstands, and with the slenderness of the

flange outstand.

2. Inclined yield line mechanism theory

A number of authors have developed statical solutions for inclined yield lines, and have used

different assumptions for both the stress distribution and the enforcement or not of a yield criterion.

Early efforts include those by Murray and Khoo (1981), Murray (1984), Davies, Kemp and Walker

(1975) and Mouty (1976), however none of the stress distributions were statically admissible since

the twisting moment was ignored (Mt in Fig. 1), which thus violated the equilibrium condition.

More recent models have enforced either von Mises or Tresca yield criterions such as those by

Bakker (1990), Zhao and Hancock (1993a,b), Cao et al. (1998), Rhodes (2002) and most recently

Hiriyur and Schafer (2005), however only Zhao and Hancock explicitly included the effect of the

twisting moment on the stress distribution. Comparisons of the various formulae in Zhao and

Hancock (1993b), Cao et al. (1998) and Hiriyur and Schafer (2005) show that they produce quite

different results. In this paper selected methods are compared with test results of single inclined

yield lines that formed in the unstiffened plate tests of Bambach and Rasmussen (2004a). The
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unstiffened plate tests consisted of rectangular plates simply supported on three sides with the

remaining (longitudinal) edge free, under uniform and non-uniform in-plane compression. The

selected methods are the original method of Murray and Khoo (1981) (Eq. (1)), the simplified

method of Zhao and Hancock (1993b) (Eq. (2)), and Hiriyur and Schafer’s (2005) modification of

the Bakker (1990) method (Eqs. (3) and (4)). Hiriyur and Schafer (2005) built upon the Bakker

method and satisfied the von Mises yield criterion. The rigorous method of Zhao and Hancock

(1993a,b) was verified against test results of single inclined hinges, however the solution was

iterative rather than explicit and quite complicated, particularly considering that in the analysis of

flange outstands one must iterate across the plate width (see the next section) and an explicit

solution is therefore mathematically much simpler. The simplified solution proposed by Zhao and

Hancock (1993b) was shown to be almost as accurate as the iterative one, and is thus acceptable for

this analysis. It is shown in Figs. 7-9 that although the various methods for calculating the capacity

of the inclined yield line are quite different, in application to yield lines forming in flange outstands

the results are quite similar.

Murray and Khoo (1981) (1)Mp hinge,
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Fig. 1 Single inclined yield line formed in an unstiffened plate with three sides simply supported and the
remaining (longitudinal) edge free
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Zhao simplified method (1993b) (2)

Hiriyur and Schafer (2005) (3)

where (4)

3. Murray’s basic yield line mechanisms for flange outstands

Regardless of the method chosen for calculating the capacity of the inclined yield line, the

analysis of the spatial plastic mechanism that forms in a flange follows from a consideration of the

geometry. Following the equilibrium method of Murray a spatial mechanism may be analysed by

considering each component plate in turn. The mechanism that forms in the plate may take different

forms depending on the geometry and type of loading that the member is under. A complicated

mechanism in a member may therefore be considered as the sum of a number of simple, basic

mechanisms in the component plates. Murray and Khoo (1981) analysed eight basic mechanisms,

and the inclined yield line that forms in the flange outstand in Fig. 1 considered in this paper, is one

half of Murray and Khoo’s basic plastic mechanism 5, shown in Fig. 2. This is a true mechanism,
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Fig. 2 Murray and Khoo’s (1981) true basic mechanism 5
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and therefore it is assumed that the loaded edges of the plate may twist freely in the formation of

the plastic hinge. Murray’s analysis of this mechanism is derived here for the readers convenience,

with reference to Fig. 1.

General,

(5)

(6)

(7)

Equilibrium of the longitudinal strip of width dx with central deflection Δi in Fig. 1

(8)

where

(9)

solving this quadratic produces

(10)

by geometry

(11)

substituting and integrating 

(12)

the moment of P about an axis through the supported edge is found by integrating xdP, producing

(13)

4. Yield line mechanisms in unstiffened plate tests

The unstiffened plate tests of Bambach and Rasmussen (2004a) consisted of rectangular plates

simply supported on three sides with the remaining (longitudinal) edge free. The plates were tested

under a variety of loaded edge conditions using two actuators simultaneously applying axial load

and moment. The loaded edges were constrained to remain straight and displace in-plane, and the
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corresponding load and moment were recorded (displacement control). The loaded edge conditions

analysed in this paper are pure compression displacement, compression displacement at the free

edge and zero at the supported edge, and compression displacement at the supported edge and zero

at the free edge. Since the tested load cases prescribe the applied gradient of displacement, they

may be considered as applied strain gradients rather than applied stress gradients. Indeed, in the

analysis of Bambach and Rasmussen (2004b) it is shown that after local buckling in slender plates

the in-plane stress distribution becomes highly non-linear. Five different slenderness ratios λ

(Eq. (14)), where fcr is the elastic critical buckling stress) were tested for each load case, with an

average range of values between 0.73 and 2.35, and four plates were tested for each slenderness

ratio. Of these, two were welded to induce residual stresses and two were unwelded. The measured

material properties of the plates are summarised in Table 1. The plates were tested beyond the

ultimate load, and the subsequent post-ultimate load path was recorded down to an average value of

80% of the ultimate load. Further details of the plate tests are presented in Bambach and Rasmussen

(2004a), from which reference may also be made for explanation of specimen numbers given in this

paper.

(14)

In general terms, the plate response involved the formation of one half of a sine wave elastic

buckle, with the maximum deflection near the centre of the length of the plate (at the free edge),

then as the load reached the ultimate load the buckle deformation localised to one end of the plate

forming a plastic hinge (inclined at an angle β) that extended from the supported corner to the free

edge, as shown in Figs. 3-6. The mechanism continued to deflect laterally as the in-plane

displacement was increased in the post-ultimate range, and additionally the yield line changed

λ
fy

fcr
-----=

Table 1 Material properties from tensile coupons

Nominal Measured

Plate σ0.2

(MPa)
E

(GPa)
σ0.2

(MPa)
σu

(MPa)
εu

1

(%)

1 300 202 271 479 42

2 300 199 317 504 36

1Based on a gauge length of 50 mm

Fig. 3 Typical formation of an inclined yield line in a simply supported rectangular plate with one
longitudinal edge free, under in-plane uni-axial compression that is non-uniform across the loaded
edge (specimen c12052, λ = 2.35)
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inclination slightly as the deformation progressed. The displaced shape is characterised in Figs. 4-6,

where a slender plate from each of the three load cases analysed in this paper are presented. It can

be seen that the yield line inclination angle, deduced from the position of maximum lateral

deflection along the length of the plate (at the free edge), is slightly different for each load case and

varies with increasing applied in-plane displacement. Accurate measurements at 25 mm increments

along the free longitudinal edge were recorded for at least two of the most slender geometries (i.e.,

Fig. 4 Displacement profile of unwelded specimen (c01751, λ = 2.17) under uniform compression
displacement at the post-ultimate condition, and plot of the displacement of the free edge

Fig. 5 Displacement profile of unwelded specimen (c11452, λ = 1.54) under compression displacement at the
free edge and zero at the supported edge at the post-ultimate condition, and plot of the displacement of
the free edge

Fig. 6 Displacement profile of unwelded specimen (c32551, λ = 1.69) under compression displacement at the
supported edge and zero at the free edge at the post-ultimate condition, and plot of the displacement of
the free edge
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8 plates in total) in each load case, and the results for the inclination angle of the yield lines are

summarised in Table 2. The inclination angle is given at ultimate and at the last recorded value in

the post-ultimate range (on average 80% of the ultimate load). The average inclination angle for

each load case is used in the analyses in this paper, and is shown in Table 2 to vary between 43o

and 57o. The effect of the angle on the results of the yield line mechanism analysis is shown to be

quite small in the Appendix of Bambach (2006a), where the model developed in this paper is

analysed for angles varying between 40o and 60o.

5. Comparisons of existing theory and plate tests

5.1 General

The results of the plate tests by Bambach and Rasmussen (2004a) were presented as load versus

axial shortening curves. For the case of uniform compression displacement the load is the axial

force and the axial shortening is the uniform axial displacement. For the load case of compression

displacement at the free edge and zero at the supported edge, the load is the total stress at the free

edge (Total Stress at the Free Edge in Fig. 7), being the sum of the stress from the compression

force and the stress from the bending moment (about the centre width of the loaded edge) at the

free edge, and the axial shortening is the axial displacement of the free edge. For the load case of

compression displacement at the supported edge and zero at the free edge, the load is the total stress

at the supported edge (Total Stress at the Supported Edge in Fig. 9), being the sum of the stress

from the compression force and the stress from the bending moment (about the centre width of the

loaded edge) at the supported edge, and the axial shortening is the axial displacement of the

supported edge. In order to compare the yield line analysis with the plate test results, the lateral

displacement of the hinge at the free edge (Δ) must be converted to the axial displacement of the

loaded edge (eaxial). The equations for the conversion are derived in the Appendix of Bambach

(2006a), and the resulting equation is given by Eq. (15). In this equation the elastic axial shortening

is also included (Rasmussen and Hancock 1992, Key and Hancock 1986). The yield line analysis

provides an axial force (Eq. (12)) and a moment (Eq. (13)) about the supported edge. For the non-

uniform compression displacement load cases the moment is converted to a moment about the

centre width of the loaded edge, and the stresses from the axial force and moment are deduced and

Table 2 Average angles of inclination of the yield line to the line of action of the compressive force (β), at
ultimate and at post-ultimate (unloaded to 80% of the ultimate load on average)

Uniform compression 
displacement

Compression displacement at 
free edge, zero at supported 

edge

Compressive displacement 
at supported edge, zero at 

free edge

No. specimens 8 8 16

Average β at Ultimate 45.1 62.4 54.8

Std dev 5.4 7.2 9.0

Average β at Post-Ultimate 40.1 50.8 41.1

Std dev 3.6 8.1 5.4

Average β 43 57 48
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Fig. 7 Total stress at the free edge vs axial shortening of the free edge curves, for unstiffened plates with
compression displacement at the free edge and zero at the supported edge – unwelded plate tests
compared with theories. Average plate slenderness values are (a) λ = 0.80, (b) λ = 1.00, (c) λ = 1.27,
(d) λ = 1.54, (e) λ = 2.35. β = 57º
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Fig. 8 Axial force vs axial shortening curves for unstiffened plates under uniform compression displacement –
unwelded plate tests compared with theories. Average plate slenderness values are (a) λ = 0.76, (b) λ =
1.08, (c) λ = 1.25, (d) λ = 1.57, (e) λ = 2.17. β = 43º
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Fig. 9 Total stress at the supported edge vs axial shortening of the supported edge curves, for unstiffened
plates with compression displacement at the supported edge and zero at the free edge – unwelded plate
tests compared with theories. Average plate slenderness values are (a) λ = 0.73, (b) λ = 1.01, (c) λ =
1.36, (d) λ = 1.69, (e) λ = 2.35. β = 48º
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summed. The yield line analysis results are then plotted with the plate test results in Figs. 7-9.

(15)

5.2 Plate tests with compression displacement at the free edge and zero at the sup-

ported edge

The existing theoretical solutions of Zhao and Hancock (1993b) (Eq. (2)), Hiriyur and Schafer

(2005) (Eqs. (3) and (4)) and Murray and Khoo (1981) (Eq. (1)) are compared with the plate tests

involving compression at the free edge and zero at the supported edge in Fig. 7. In general terms, it

is evident from the graphs that the theoretical methods are very conservative regardless of the

slenderness of the plates, however there is a slight trend with slenderness in that the theoretical

results for the slender plates are more conservative than those for the less slender plates. It is also

clear that while the theories are quite different, in comparison to the inclined yield lines observed in

the tests they produce results that are not too dissimilar from each other. Since the existing

theoretical results are quite similar and are all very conservative compared to the test results, it is

deduced that the conservatism is not a result of the assumed theoretical capacity of the inclined

hinge. 

5.3 Plate tests with uniform compression displacement

The existing theoretical solutions are compared with the plate tests under uniform compression

displacement in Fig. 8. In general terms, it is evident from the graphs that the theoretical methods

are quite conservative regardless of the slenderness of the plates, however there is a slight trend

with slenderness in that the theoretical results for the stocky plates are more conservative than those

for the more slender plates. Again the various theories produce quite similar results, and it is

apparent that the general conservatism is not a result of the theoretical method chosen. To

investigate wether the virtual work method provides a more accurate solution than the equilibrium

method, the static virtual work method is derived in the Appendix of Bambach (2006a) and is

compared in Fig. 8. The virtual work method produces a similar result to the equilibrium method

and is also conservative for all slenderness ratios tested, and it is therefore apparent that the

conservatism is not a result of the use of an equilibrium, rather than a virtual work, approach.

5.4 Plate tests with compression displacement at the supported edge and zero at the

free edge

The existing theoretical solutions are compared with the plate tests involving compression at the

unsupported edge and zero at the free edge in Fig. 9. In general terms, it is evident from the graphs

that the theoretical methods are quite conservative regardless of the slenderness of the plates,

however there is a slight trend with slenderness in that the theoretical results for the stocky plates

are more conservative than those for the more slender plates. Again the various theories produce

quite similar results, and it is apparent that the general conservatism is not a result of the theoretical

method chosen.

eaxial
2Δ

2

L
--------

PL

EA
-------+=



Inclined yield lines in flange outstands 635

6. Modified theory

6.1 General

In general terms, the comparisons of the existing theories with the plate tests of the three load

cases show that the theories are all quite conservative for all slenderness ratios, and do not match

the test data well. It is noted that a similar result was found by Hiriyur and Schafer (2005) in their

comparisons with unstiffened plates, where they found that the theoretical mechanism model had

little correlation to their finite element model (the capacities calculated were un-conservative when

compared with the finite element solution). It is clear that the different theories used for the capacity

of the inclined yield line produce quite similar results, and it may therefore be deduced that it is not

the assumed hinge capacity that is resulting in the conservatism found for the three load cases. The

conservatism may be traced to the assumed mechanism itself, and the treatment of the in-plane

displacements that occur at the loaded edges of the plates. In this section modifications of the basic

mechanism theory are developed and empirically calibrated to the plate test results, and the resulting

methods are presented in Table 3 for all load cases. The assumed hinge capacity in the modified

Table 3 Load (P) and Moment (Pe) resulting from inclined yield lines in flange outstands under various in-
plane displacement gradients of the loaded edges

Strain gradient on flange outstand Load and Moment equations Factor

 For all load cases:

 

This table is valid for slenderness ratios λ ≤ 2.35
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theory is taken to be the simplified method of Zhao and Hancock (1993a,b), since it has been the

most rigorously verified against test data, and additionally provides a solution that lies between the

other two methods analysed in this paper (Figs. 7-9). It is noted that the Zhao and Hancock

(1993a,b) method is slightly conservative when compared with Murray and Khoo’s (1981) method

in Figs. 7-9.

6.2 Plates with compression displacement at the free edge and zero at the supported

edge

For the load case of compression displacement at the free edge and zero at the supported edge,

the loaded edge of the plate rotates about the supported edge such that the free edge is displacing

in-plane and the supported edge is not. This is similar to the condition of the loaded edge in the

theoretical model developed earlier in this paper based on Murray and Khoo’s (1981) basic plastic

mechanism number 5. This mechanism assumes that as the plastic hinge develops the loaded edges

of the plate twist freely, resulting in large in-plane displacements at the free edge and little or no

displacement at the supported edge, and as such is a true mechanism. The treatment of the loaded

edge for this load case is therefore approximately correct, however the results are very conservative

in Fig. 7, and indeed the stress at the free edge eventually becomes negative (particularly as the

plates become more slender). This is due to the assumed position of the applied load in the

mechanism analysis, which results in an assumed stress distribution where the stress is a maximum

at the supported edge and linearly decreases towards the free edge. As the mechanism develops the

mechanism analysis assumes the applied load moves further towards the supported edge and

therefore the stress at the free edge reduces and eventually becomes slightly negative. Analysis of

the plates tests for this load case (Bambach and Rasmussen 2004c) shows that the eccentricity of

the applied compressive force from the supported edge (e in Figs. 1 and 2) is generally quite large

(between 0.56b and 0.7b from the supported edge). Therefore for this load case the eccentricity in

the mechanism analysis is modified, and the expression was deduced by calibration to the plate test

results. The resulting (empirical) equation is shown in Table 3. Since the theoretical results became

more conservative with increasing slenderness (Fig. 7) it was recognised that the plate slenderness

must also affect the capacity, and therefore the slenderness parameter (λ) was included in the

equation. The deduced equation was assumed to be linear for simplicity, and was calibrated to the

plate test data by adjusting the coefficients (0.7 and 1/25) until sufficient agreement was obtained

with the plate test data for all slenderness ratios for this load case. The resulting equation for the

eccentricity in Table 3 produces a result similar to that observed in the plate tests (Bambach and

Rasmussen 2004c), where the eccentricity is calculated to be between 0.61b and 0.7b from the

supported edge.

6.3 Plates with uniform compression displacement

If one compares the true mechanism already developed (where the loaded edges of the plate rotate

as the yield line develops) to the plates where the loaded edge was displaced uniformly (such that

no rotation of the loaded edge occurs), it becomes evident that for the mechanism to form for this

load case significant in-plane displacements would need to occur at the supported edge (of equal

magnitude to those at the free edge), in addition to the true mechanism. The mechanism that forms

for this load case is therefore a quasi-mechanism, and requires a zone of in-plane yielding adjacent
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to the supported edge as the plastic hinge develops. Such an assumption is difficult to verify

experimentally, as it was not possible to measure by inspection the size or existence of a yield zone.

This assumption was investigated further using the finite element program Strand7. The measured

plate geometries including measured geometric imperfections, and the measured material properties

(Table 1) were input into the numerical models, and the plates were loaded by displacement control

of the loaded edge with the load following directly, as was the case in the experiments. The

numerical models were found to be in close agreement with the test results (Bambach 2006b).

Having verified the numerical models, the von Mises (membrane) stress distributions were analysed

as shown in Fig. 10. In Fig. 10 it can be seen that after ultimate the stresses localise towards one

end as the plastic hinge develops there, and the remaining plate areas elastically unload. In addition

to the inclined yield line it is clear that an area of in-plane yielding is occurring adjacent to the

supported edge. For this load case then, the quasi-mechanism shown in Fig. 10(e) is analysed. Since

the width of the yield zone is not known a priori, the model is calibrated against the experimental

data, and the resulting (empirical) equation is shown in Table 3 and derived in Appendix A. Limits

are applied in Table 3 in order to restrict the values to be within the range of slenderness values in

the plate tests. It is noted that in Figs. 10(a)-(d) the maximum stress in the fully developed plastic

hinge is 303 MPa, which corresponds to 1.11fy and occurs at a strain of 0.03 on the material curve.

No attempt has been made in this analysis to explicitly account for this moderate strain hardening,

and the theoretical model assumes the maximum stress is the yield stress. However, since the model

has been empirically calibrated to the test data, the effect of strain hardening is nominally included.

It is noted that the inclined yield line in the finite element models shown in Figs. 10(a)-(d) has a

Fig. 10 Ultimate and post-ultimate von Mises (membrane) stress contoured distribution from FEM (Bambach
2006b), at a) ultimate, b) 84% of ultimate, c) 71% of ultimate and d) 66% of ultimate, for plate
specimen c01752 under uniform compression displacement, where white is zero stress and black is
1.11fy. e) assumed quasi-mechanism (black is the yield stress). In all diagrams the free longitudinal
edge is along the left side, and the other edges are simply supported
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zone towards the free edge where the stress is less than that in the remaining areas of the hinge

(seen as a lighter area), and this is attributed to the highly non-linear in-plane stress state that occurs

in post-buckled slender plates, where the in-plane stress at the free edge of the loaded end where the

hinge has formed may become tensile (Bambach 2004b, 2006b).

6.4 Plates with compression displacement at the supported edge and zero at the free

edge

For the load case of compression displacement at the supported edge and zero at the free edge, a

quasi-mechanism similar to that for the load case of uniform compression displacement is assumed.

Again it is clear that significant in-plane yielding must occur adjacent to the supported edge in order

for this mechanism to develop. In a similar manner to the uniform compression displacement load

case, the width of the yield zone is not known a priori, and the method is therefore calibrated to the

experimental results. The resulting (empirical) equation is presented in Table 3 and follows a similar

derivation to that in Appendix A.

7. Comparison of modified theory with plate tests

7.1 Plate tests with compression displacement at the free edge and zero at the sup-

ported edge

The modified theory deduced in the previous section and presented in Table 3 is compared with

the plate tests involving compression displacement at the free edge and zero at the supported edge

in Fig. 7. The modified theory approximates the plate test results well, however there are minor

discrepancies resulting from using a single linear slenderness function to fit all the test data, which

has been used for simplicity. The modified theory clearly matches the test data more closely than

the existing mechanism theories.

7.2 Plate tests with uniform compression displacement

The modified theory deduced in the previous section and presented in Table 3 is compared with

the plate tests under uniform compression displacement in Fig. 8. Again, the modified theory

approximates the plate test results well, however there are minor discrepancies resulting from using

a simple polynomial slenderness function to fit all the test data. The modified theory clearly

matches the test data more closely than the existing mechanism theories.

7.3 Plate tests with compression displacement at the supported edge and zero at the

free edge

The modified theory deduced in the previous section and presented in Table 3 is compared with

the plate tests with compression displacement at the supported edge and zero at the free edge in

Fig. 9. Again, the modified theory approximates the plate test results well, however there are minor

discrepancies resulting from using a simple linear slenderness function to fit all the test data. The

modified theory clearly matches the test data more closely than the existing mechanism theories.
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8. Application of modified yield line analysis to flanges in sections

In Table 3 the modified yield line mechanism equations are presented for individual flange

outstands under three different load cases. When flanges exist in sections, they may be subject to

different edge displacement conditions depending on the loads or displacements applied to the

section. For open sections in bending, or in compression whereby overall buckling creates bending

(i.e., long columns), the flange will be subjected to edge rotation closely approximating the load

case of compression displacement at the free edge and zero at the supported edge. It is

recommended that for such sections the modified method in Table 3 for flanges with compression

displacement at the free edge and zero at the supported edge be used. For open sections in

compression whereby overall buckling is not induced (i.e., stub columns), the flange will be

subjected to a uniform compression displacement. It is recommended that for fixed ended stub

columns the modified method in Table 3 for flanges under uniform compression displacement be

used. The third load case in Table 3 of a flange with compression displacement at the supported

edge and zero at the free edge is not a commonly developed yield line mechanism in sections,

however has been included in this paper for completeness. Having established the appropriate

equation for the capacity of the inclined yield line, the analysis of the spatial plastic mechanism that

forms in a given application follows from a consideration of the geometry of that mechanism, for

example following the equilibrium method of Murray and Khoo (1981) as discussed previously. 

9. Conclusions

There exists a variety of solutions in the literature for the capacity of single inclined yield lines,

which may form part of the more complex spatial plastic mechanisms that develop in thin-walled

steel sections and connections. In this paper various methods have been compared to single inclined

yield lines that develop in flange outstands, by comparison with plate tests of plates with three sided

simple support, with the remaining (longitudinal) edge free, under uniform and non-uniform in-

plane displacement of the loaded edge. It is shown that in the application of the existing theories to

flange outstands they produce quite similar results, however they do not match the test data well as

the mechanism theory does not account for the in-plane displacement of the loaded edge or the

slenderness of the flange outstand. A modified theory has been developed, whereby the in-plane

displacement of the loaded edge and the slenderness of the flange are incorporated to produce

results for the capacity of the inclined yield line that match the plate test data well. The method is

shown to be applicable to flanges that exist in sections, under different nominal load cases such as

pure compression for short and long columns, and pure bending.
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Appendix A: Solution of a quasi-mechanism

i.e., 

With reference to Fig. A1; 

P1-2 = P1 − P2

= (basic mechanism with b = b1) − (basic mechanism with b = b2)
= b1C − b2C
= (b1 − b2)C
= αbC since b1 = b and b2 = (1 − α)b

i.e., basic mechanism with b = αb
i.e., P1-2 = αP
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Fig. A1 Quasi-mechanism consisting of a single inclined yield line and an in-plane yield zone, formed in an
unstiffened plate with three sides simply supported and the remaining (longitudinal) edge free
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Similarly replace b with αb;

P1-2e1-2 = α2Pe

P3 = b2fyt
= (1 − α)bfyt
= (1 − α)Py

M of P3 about supported edge = (1 − α)2bfyt(b/2)
= (1 − α)2Py(b/2)

Ptotal = P1-2 + P3

= αP + (1 − α)Py

Mtotal = α2Pe + (1 − α)2Py(b/2)

In the nomenclature of Table 3:

The factor B is deduced empirically by comparison with the plate test data. Values of B are deduced for
each slenderness value, and a linear function is approximated and shown in Table 3.

P BP1 1 B–( )Py+=

Pe B
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