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Double displacement coupled forced response for 
electromechanical integrated electrostatic 

harmonic drive
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Abstract. In this paper, the double displacement coupled statics and dynamics of the electromechanical
integrated electrostatic harmonic drive are developed. The linearization of the nonlinear dynamic equations
is completed. Based on natural frequency and mode function, the double displacement coupled forced
response of the drive system to voltage excitation are obtained. Changes of the forced response along with
the system parameters are investigated. The voltage excitation can cause the radial and tangent coupled
forced responses of the flexible ring. The flexible ring radius, ring thickness and clearance between the
ring and stator have obvious influences on the double displacement coupled forced responses. 
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1. Introduction 

Micro-electromechanical system (MEMS) can be described as machines constructed of small

moving sub-elements that have characteristic dimensions in the range of about 0.5-500 μm. Such

devices have potential applications in electronic assembly, medical, microspacecraft and military

equipment. The MEMS devices require high integration of the mechanical, electric and control

techniques (Thielicke and Obermeier 2000, Giuseppe 2007, Bao and Mukherjee 2004). 

Author invents an electromechanical integrated electrostatic harmonic drive as shown in Fig. 1.

The drive mainly consists of a flexible ring and an outer ring stator. The outer ring stator electrodes

are applied to voltage sequentially, and a rotational electric field will be produced which will result

in a periodic elastic deformation of the flexible ring and the periodic capacity changes between

flexible ring and stator. It produces tangential electric field forces to drive the axis to rotate. As the

stator is fixed, electric potential is applied to each segment of the outer ring with small screw. The

flexible ring is supported on output axis which is put to earth. Thus, the flexible ring is put to earth.

Hence, the voltage between the inner ring and a segment of the outer ring can be produced without

brushes or sliding contacts. In the drive, integration of the harmonic drive, motor and control can be

realized. It is a new concept of the electromechanical drive system (Xu et al. 2007). Compared with

piezoelectric and electromagnetic actuation principles (Oliver 2000, Wu et al. 2006, Lizhong and

Xiuhong 2007), the electromechanical integrated electrostatic harmonic drive needs neither
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additional elements like coils or cores, nor special materials like piezoelectric ceramics. It is more

favorable for miniaturization of the electromechanical devices. Compared with other electrostatic

actuation principles (Sarros et al. 2002, Nadal-Guardia et al. 2003, Bao and Mukherjee 2004), the

drive does not require fabrication of the teeth on microelements and its rotational axis does not

wobble. Thus the device reported here is easier to fabricate and use. The drive also offers other

advantages such as higher load-carrying capacity and low required precision of fabrication. 

Fig. 2 shows the operation for a six-segment rotary electric field electromechanical integrated

harmonic actuator. Initially, a voltage is applied between the flexible ring and segments 1 (positive

potential) and 4 (negative potential) causing an elastic deformation of the flexible ring as shown in

Fig. 2(a). Next, a voltage is applied between the flexible ring and segments 2 (positive potential)

Fig. 1 An electromechanical integrated harmonic drive (1-Flexible ring, 2-Outer ring stator)

Fig. 2 The operation of electromechanical integrated electrostatic harmonic drive
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and 5 (negative potential) causing an elastic deformation of the flexible ring as shown in Fig. 2(b).

Voltages are then applied sequentially to segments 3 (positive potential) and 6 (negative potential)

as shown in Fig. 2(c), 4 (positive potential) and 1 (negative potential) as shown in Fig. 2(d), 5

(positive potential) and 2 (negative potential) as shown in Fig. 2(e), and 6 (positive potential) and 3

(negative potential) as shown in Fig. 2(f), which completes one electrical cycle. Note that the

position of the black dot shown in Fig. 5(f) has rotated slightly after one complete electrical cycle

compared to its initial position in Fig. 2(a). Note that the flexible ring rotates in the opposite

direction to the electrical excitation sequence as shown as arrow in Fig. 2. 

The dynamics of the microsystems is an important subject that should be developed.

Understanding the dynamic behavior of MEMS is very important for controlling their performance. 

In this paper, the double displacement coupled statics and dynamics of the electromechanical

integrated electrostatic harmonic drive are developed. The linearization of the nonlinear dynamic

equations is completed. Based on analysis of natural frequency and vibrating modes, the double

displacement coupled forced responses of the drive system to voltage excitation are obtained.

Changes of the forced response along with the system parameters are investigated as well. Results

show: the voltage excitation can cause the radial and tangent forced responses of the micro flexible

ring; for given simple harmonic voltage excitation, the forced responses are also simple harmonic

vibration; the flexible ring radius, ring thickness and clearance between the ring and stator have

obvious influences on the double displacement coupled forced responses; in order to get good

dynamic performance, smaller clearance, thickness and radius should be selected. These results can

be used to design and manufacture of the drive system and can offer some reference for other micro

electromechanical systems. 

2. Electromechanical coupled statics

The dynamic equation of micro flexible ring subjected to force is 

(1)

where u and v are radial and tangential displacements of the micro ring, respectively;  and  are

the second derivatives of displacement u and v with respect to time, respectively; r is the average

radius of the ring. A is its transverse section area; ρ is material density of the ring; E is the modulus

of elasticity of the ring material; Ix is section modular of the ring,  (l and d is effective

width and the thickness of micro ring, respectively); θ is position angle of the micro ring; qr and qt

are radial and tangential loads per unit arc length applied to the flexible ring, respectively.

 From Eq. (1), let , , and , balance equation of the ring is obtained as

below

(2)

A micro flexible ring under electrical field force is shown in Fig. 3. The micro ring is inside an
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outer ring stator which consists of a number of conductive segments with an insulating layer

between the micro ring and outer ring and also between adjacent segments. The central angle of

each segment is 2β. When a voltage is applied between a segment of the outer ring and the micro

ring, a distributed electrical field force is subjected to the micro ring. Using Rayleigh-Ritz method,

the displacement distribution is investigated (Xu and Qin 2007). The results show that the

maximum error is about 7% when assumption that the electric field force is uniform is used. For

simplifying analysis, the uiniform electric field force assumption is used here. Assuming that the

electrical field force is uniformly distributed on the micro ring, the radial and tangential electric

field forces per unit arc length can be denoted by symbol qr0 and qt0 which are applied to micro

ring, through the central angle [−β, β]. 

Let w denote the radial relative distance between the flexible ring and outer stator, and the radial

electrical field force Fe between them can be given

 (3)

Where vis and C are voltage and capacitance between the flexible ring and outer stator, respectively.

The clearance between the micro flexible ring and the outer stator is so small that the capacity

between them can be calculated by equation of flat capacitor

(4)

Where ε0 is permittivity constant of free space, ε0 = 8.85 × 10−12 C2 · N−1 · m−2, εr is relative

dielectric constant of the insulating layer, t is initial clearance between micro ring and outer ring, dc

is width of the insulating layer,  is average radial displacement of the micro ring within central

angle [−β, β].

Combining Eq. (3) with Eq. (4), the radial electric force qr0 between the micro ring and a segment

of the outer stator ring per unit arc length can be calculated as following

(5)
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Fig. 3 A micro flexible ring subjected to electrical field force
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Here neglecting tangential load, and then the static load distribution on the micro ring is shown as

below

When  and , 

When  and , qrs = 0

The load can be defined in Fourier series form as

(6)

Where , 

 

 Let static displacement , and substituting it and Eq. (6) into Eq. (2), yields

(7)

The average radial displacement  of the flexible ring can be calculated as below 

 (8)
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between micro flexible ring and outer stator. Then, the total capacity C consists of the static

capacity C0 and the dynamic capacity ΔC

(12)

Where distance ,  is dynamic component of the distance corresponding to dynamic

displacement , w0 is static component of the distance corresponding to static displacement u0. 

Total voltage vis consists of the static voltage vis0 and the dynamic one Δvis

(13)

The total radial electric field force Fe consists of the static electric field force F0 and the dynamic

one ΔFe 

(14)

Then, the radial load qr per unit arc length on the micro ring consists of the static component qrs

and the dynamic one Δqr

(15)

The tangential load qt per unit arc length on the micro ring consists of the static component qts and

the dynamic one Δqt

(16)

Substituting Eqs. (12), (13) and (14) into Eq. (3), neglecting the higher order term, yields

 (17)
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(21)

Eq. (21) is linear electromechanical coupled dynamic equation of the micro ring subjected to

electric field force. 

Because of the structure and load symmetry of the micro ring, the dynamic displacements of the

ring can be calculated on one-quarter of the micro ring. The dynamic load  is distributed as

below

(22)

(23)

Neglecting tangential load, substituting Eqs. (22) and (23) into Eq. (21), yields

(24)
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Constants  are obtained by conditions of micro ring symmetry and continuity

between different sections. The natural frequencies and modes function of the ring vibrations can be

obtained simultaneously as well. 

4. Forced response to voltage excitation

From Eq. (18), it is known that under variable voltage, dynamic electrical field force will be

caused 

 (28)

The forced response of the system to voltage excitation will occur. The voltage is applied between

the flexible ring and one of the stator segments through central angle range . Hence, under

periodic exciting voltage  (Here, ωz is the exciting frequency of the voltage), the

exciting electrical field force  can be given as below

(29)

Then, within angle range , exciting electrical field force f0 per unit arc length is

(30)

Therefore, the exciting force distribution on the ring is as below
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(35)

(36)

Substituting radial vibration mode function into Eq. (32), the generalized force 

corresponding to mode i  can be given

(37)

Where 

 

Substituting tangent vibration mode function into Eq. (32), the generalized force Qvi(t)

corresponding to mode i  can be given
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Substituting generalized forces into Eq. (34), the generalized coordinates can be given

(39)

Where , .

In Eq. (39), the forced responses and associated free vibration are included. The associated free

vibration will vanish soon under action of the damp. Therefore, this term can be not considered.

Then, Eq. (39) is simplified as 

 (40)
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Table 1 Parameters of the electromechanical coupled dynamic system with micro ring

r (mm) t (μm) d (μm) l (mm) d
c 
(μm) ε

r
E (Gpa) β (0)

1 2 30 1 0.5 8.4 70 30

Table 2 The first four natural frequencies of micro ring (rad/s)

Order 1 2 3 4

Natural frequency 11221155 20691843 30526243 40460281
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Fig. 4 Forced response displacements (modes 1 and 2)
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Fig. 5 Forced response displacements (modes 3 and 4)
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forced responses are given as shown in Figs. 4-6. Here, only the first four modes are considered, the

static voltage vsi0 = 60V, exciting voltage va = 10V, and exciting frequency ωz = 314 rad/s. The right

figures of the Figs. 4-6 shows forced responses at one point (θ = 0o) on the micro flexible ring.

From Figs. 4-6, following observations are worth noting:

(1) For different modes, the voltage excitation can cause the radial and tangent forced responses

of the flexible ring. 

(2) For given simple harmonic voltage excitation, the forced responses are also simple harmonic

vibration. The frequency of the forced responses equals exiting one. 

(3) As the exciting voltage frequency is very low compared with the natural frequency of the

flexible ring, the forced response magnitude corresponding to mode 1 is the largest, and the

total forced response is near one of the mode 1. 

(4) The radial forced responses of the ring are much larger than those of the tangent forced

responses at point θ = 0o. At other points, the radial forced responses of the ring are near ones

of its tangent responses.

(5) As the order number of the vibrating mode increases, positions of the peak dynamic

displacements increase and the periodic times and magnitudes of the mode functions decrease.

(6) For different order number of the vibrating modes, the peak displacements of the radial forced

responses are as the same order of the amplitude as that of the tangent responses. Hence, when

the tangent responses are investigated, the radial forced responses should be considered as

well. The radial vibration of the flexible ring can cause unfavorable dynamic behavior such as

Fig. 6 Total forced response displacements
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speed fluctuation, etc.

The forced frequent responses and their changes along with system parameters are shown in

Fig. 7. Here, only results at the point θ = π/4 of the first mode are given. From Fig. 7, it is known:

(1) As the exciting frequency is near natural frequency of the system, the radial and tangent

Fig. 7 Changes of the forced response along with the main parameters; (a) change of Δu along with d, (b)
change of Δv along with d, (c) change of Δu along with r, (d) change of Δv along with r, (e) change of
Δu along with t, (f) change of Δv along with t
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resonances all occur.

(2) As the thickness d of micro ring increases, the natural frequencies increase and the radial and

tangent vibrating magnitudes of the ring decrease. It is because the system stiffness increases

with increasing thickness d. 

(3) As the ring radius increases, the natural frequency decreases and the radial and tangent

vibrating magnitude of the ring all increase. It is because the system stiffness decreases with

increasing ring radius.

(4) As the clearance t increases, the natural frequency increases and the radial vibrating magnitude

of the ring do not nearly change, but tangent vibrating magnitude of the ring increase

obviously. It is because the system stiffness and equivalent exciting force all increase with

increasing clearance t. For tangent vibration, influence of the equivalent exciting force change

is principal. For radial vibration, influence of the equivalent exciting force change is near one

of the system stiffness change.

(5) In order to get good dynamic performance, smaller clearance t, thickness d and ring radius

should be selected.

5.2 Discussions

(1) As above stated, compared with radius of the ring, the transverse section size of the micro

flexible ring is so small and Eq. (21) is obtained. Eq. (21) is mainly for the tangent vibration of the

flexible ring. However, the study results show that the radial vibration amplitudes are as the same

order of the amplitudes as the tangent vibration. Hence, the radial vibration and its effects should be

considered in dynamic design of the drive system.

(2) The radial vibration of the flexible ring causes capacitance fluctuation between the stator and

the flexible ring. It causes the output speed fluctuation which is analyzed as below:

There is not mechanical input in the drive system. It is similar to a motor and its input is the

voltage. The driving torque is 

Where θ is the position angle of the flexible ring.

As the harmonic drive principle is used in the system, there is obvious difference between the

drive and the motor. If the speed ratio of the drive is defined as the ratio of the electrical field

rotational speed to the flexible ring rotational speed, a large speed ratio is achieved. Thus, the large

output torque can be obtained as well

Where i is the speed ratio of the drive system, i = −rs/(rs − rf), rs is inside radius of the stator, rf is

outside radius of the flexible ring, minus means that the flexible ring rotates in the opposite

direction compared to the electric field rotation.

As the clearance between the flexible ring and the stator can be taken to be quite small, the speed

ratio is quite large. For example, the speed ratio is 200 under rs = 1 mm and (rs − rf) = 5 μm. 

From above equations, it is known that the capacitance change will cause the torque change

which can result in the speed fluctuation. In order to remove the speed fluctuation, a compensation
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control voltage should be used. Hence, the research results can be used to design the control system

of the drive.

(3) As above stated, the flexible ring radius, ring thickness and clearance between the ring and

stator have obvious influences on the double displacement coupled forced responses. In order to get

good dynamic performance, smaller clearance, thickness and ring radius should be selected.

After the drive parameters are determined, the natural frequencies of the drive system are

determined. For avoiding resonance, the exciting frequency should be taken to be far from the

natural frequences. Hence, the study results can be used to design operating parameters of the drive

system. 

(4) When the voltage is stable, considering high order term and Eq. (18) is changed into

Simulation results shows:  ≤ 0.019 (here ).

Thus, the error neglecting the high order term is 1.9%. Hence, nonlinear elastic effects can be

neglected. If = 0.1 (here ), the error neglecting the high order term is 10%.

Therefore, when the amplitude of dynamic displacement gets to 3% of the clearance between the

stator and the flexible ring, nonlinear elastic effects should be considered. For example drive

system, if the amplitude of the exciting voltage is increased by 6 times, nonlinear elastic effects

should be considered. Otherwise, as the exciting frequency of the exciting voltage is near to the

natural frequency of the drive system, nonlinear elastic effects should be considered as well.

(5) When the flexible ring vibrates, the damping comes mainly from the film air pressure between

the stator and the flexible ring. When the vibrating frequency of the ring is not very high, the air

damping is quite small and can be neglected. For simplifying analysis, the damping is neglected in

the paper. The research results are useful for designing the dynamic performance of the drive

system under condition that the exciting frequency is not very high. Of course, it is also useful for

high frequency vibration analysis of the drive system under vacuum. Meanwhile, the results can be

taken as basis for high frequency vibration analysis where the air damping should be considered.

6. Conclusions

In this paper, the double displacement coupled statics and dynamics of the electromechanical

integrated electrostatic harmonic drive are developed. The linearization of the nonlinear dynamic

equations is completed. The double displacement coupled forced response of the drive system to

voltage excitation are obtained. Changes of the forced response along with the system parameters

are given. The results can be used to design and manufacture of the drive system and can offer

some reference for other micro electromechanical systems. 
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