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Abstract. In piezoelectric flexible structures, the contribution of vibration modes to the dynamic
response of system may change with the location of piezoelectric actuator patches, which means that the
ability of actuators to control vibration modes should be taken into account in the development of modal
reduction model. The spatial H2 norm of modes, which serves as a measure of the intensity of modes to
system dynamical response, is used to pick up the modes included in the reduction model. Based on the
reduction model, the paper develops the state-space representation for uncertain flexible structures with
piezoelectric material as non-collocated actuators/sensors in the modal space, taking into account
uncertainties due to modal parameters variation and unmodeled residual modes. In order to suppress the
vibration of the structure, a dynamic output feedback control law is designed by simultaneously
considering the conflicting performance specifications, such as robust stability, transient response
requirement, disturbance rejection, actuator saturation constraints. Based on linear matrix inequality, the
vibration control design is converted into a linear convex optimization problem. The simulation results
show how the influence of vibration modes on the dynamical response of structure varies with the
location of piezoelectric actuators, why the uncertainties should be considered in the reductiom model to
avoid exciting high-frequency modes in the non-collcated vibration control, and the possiblity that the
conflicting performance specifications are dealt with simultaneously.
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1. Introduction

The vibration control of flexible structures using piezoelectric materials as sensors and actuators

has found many applications in aerospace, civil, and automotive field, such as large space structures,

flexible manipulators, and tall buildings and so on, whose trend is to employ lightweight structures

that are energy efficient and responsive. This makes the structure less stiff and therefore more

susceptible to the vibration, which may last for a long time. The light-weight structures are typically

characterized by poorly damped and clustered vibration modes with low resonant frequencies

(Gawronski 1996). Such structures even become unstable since their open-loop poles are very close

to the imaginary axis in the complex plane. Therefore, it is desirable to use active vibration control

methods to attenuate the vibration of the structures. Recently, piezoelectric materials (Cao and

Harley 1999) become very popular in the structural control problems due to their lightweight, large
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linear range and broad bandwidth. In literatures, active vibration control of structures with

piezoelectric effect has been studied (Ha et al. 1992, Gao and Chen 2003, Narayanan and

Balamurugan 2003, Kusculuoglu and Fallahi 2004, Yu and Wang 2007, Jiang et al. 2006, Fuller

et al. 2002).

Flexible structures often include a large number of vibration modes. Using the model including all

modes usually leads to a high-order controller, for which it is difficult to implement. There are

several approaches that can be used for model reduction, such as balanced reduction and direct

modes truncation and so on. The characteristics of vibration modes is not clear in the balanced-

reduction model, so the direct modes truncation is the common practice to obtain a relatively low

order model (Moheimani 2000). Although, generally speaking, low-frequency modes tend to

contribute more significantly to structural vibration than high-frequency modes, the influence of

vibration modes on the dynamical response of structure varies with the location of piezoelectric

actuators, and the ability of actuators of to control vibration modes has to be taken into account in

the reduction model by using modes truncation, which means that the reduction model should

include the modes which significantly contribute to the dynamical response of structure, rather than

only keep the first several low-frequency modes.

Model errors coming from the modes truncation also have to be considered in order to avoid

control spillover and observation spillover. The interaction of two spillovers may lead to system

instability, especially in the non-collocated control (Fuller et al. 1996, Clark et al. 1998). To deal

with the problem, a variety of control design frameworks have been explored. Balas (1978) suggests

that collocated actuators and sensors should be used, or a comb pre-filter could be built for the

sensor signal. Meirovitch (1983) develops the independent modal space control where each mode is

controlled independently. Besides, the variation in modal parameters (resonant frequencies and

damping ratio) may degrade the performance of the controller (Bala 1995). Zhang (2001) designs a

robust  control method with concerning the un-modeled dynamics. Taking into account

uncertainties due to the variation in resonant frequencies and un-modeled high-frequency modes,

Sridhar and Vittal (2000) achieve the disturbance rejection by using robust  control method with

input limit.

Most of the time the controller for flexible structures is required to simultaneously satisfy different

conflicting specifications, and therefore linear matrix inequalities (LMI) have recently emerged as a

convenient and powerful tool to solve this problem and convert multi-objective control problem into

convex optimization problem for which efficient algorithms and software exist (Carten et al. 1989,

Chien et al. 2003). There are some applications of LMI for the vibration control of structures in the

literatures such as (Sridhar and Vittal 2000) achieving the disturbance rejection by using robust 

control method with input limit, (Hu and Ma 2004) designing a  output feedback control for the

plate structure, (Xu and Chen 2004) giving the multi-objective vibration control for a certain beam

structure, (Chen and Guo 2005) presenting the application of  method with control input

constraints for active suspensions, and (Samuel and Vicente 2006), designing a  state feedback

control for the plate structure.

In this paper, how to pick up the modes which significantly contribute to the dynamical response

of structure in the mode truncation is investigated by using spatial H2 norm of modes, and the

ability of actuators to control vibration modes is considered in modeling a relatively low-order

dynamic modal equation. Based on the dynamic modal state-space equation of the uncertain flexible

structures, a dynamic output feedback controller is designed with satisfying the following: (1)

Guaranteeing that the closed-loop system is internally stable and robust to model uncertainties; (2)

H∞

H∞

H∞

H∞

H∞
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As for disturbance rejection, setting un upper bound on the  norm from external disturbance to

the performance output; (3) In order to achieve the desired transient response performance, the

damping ratio and decay rate requirement will be satisfied via regional constraints on the uncertain

closed-loop pole locations; (4) To avoid actuator saturation, every control input satisfies

 (Meirovitch and Baruh 1983). Finally the validity of the modal-based vibration

control is illustrated by a numerical example.

2. Model reduction using spatial H2 norm of modes

2.1 Modelling in the modal space

Here the flexural vibration of an Euler-Bernoulli beam with K piezoelectric actuator patches is

considered, neglecting the shear deformation and rotation of the beam. The beam has the

dimensions of , and the jth actuating patch has the dimensions of . Ignoring

the influence of the small mass and stiffness of the piezoelectric thin patches on the structural

dynamics, we have the partial differential equation for the flexural vibration of structure

(1)

Where,  is the spatially distributed transverse deflection of structure, namely the

displacement response; EI is the flexural rigidity of structure;  is

the bending moment coming from the jth actuating patch;  are the location of the ends of the

jth actuating patch respectively;  Heaviside function; Kj depends on the performance and

dimensions of beam and piezoelectric patches.

The boundary conditions are represented as 

(2)

Using the modal analysis and the given boundary conditions, the displacement response can be

written as

(3)

Where, ,  is the modal functions, and qi(t),  is the modal coordinates.

Using the orthogonality of modal functions φi(t) and including the proportional modal damping

ratio ζi, the Eq. (1) can be decoupled and written as

 (4)

Where, qi(t) is the ith modal coordinate;  are the frequency and damping ratio of the ith mode

respectively; ,  φ'(•) is the first derivative with respect to x.

With the applied voltage to the actuators  as the inputs, and

the displacement response  as the output, the transfer function of the structure can be written

as 
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(5)

Where, , , 

2.2 H2 norm of system

The H2 norm of a system  can be written as

(6)

Using the state-space reprensentation of system 

(7)

We have

or (8)

Where,  is the conjugate transpose of the matrix , is the trace of the matrix, Wc,

Wo are the controllable and observable Gramian matrix, which can be obtained by solving the

following Lyapunov equation

or (9)

2.3 Spatial H2 norm of modes and model reduction

The spatial H2 norm of a system  with multi-input and spatially distributed output is

defined as

(10)

Using the orthogonality of the modal functions, that is , , the

spatial H2 norm of a system  can be represented as

(11)

Where,  is the transfer function component corresponding to the

ith mode of system.
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It is obvious, from Eq. (11), that the spatial H2 norm of a system can be represented as the

superposition of spatial H2 norm components ,  coming from independent

modes of the system. The spatial H2 norm component coming from an independent mode indicates

the contribution of the mode to the dynamic response of structure. Comparing the spatial H2 norms

of independent modes, we include the modes which significantly contribute to the dynamical

response of structure in the reduction model, rather than only the first several low-frequency modes.

Using , we can have the spatial H2 norm component corresponding to the

ith mode

(12)

Where,  is the component of  system corresponding to the jth

actuator. The spatial H2 norm corresponding to the ith mode can be represented as the superposition

of k components related to k actuators.  can be regarded as the H2 norm of a SISO (single

input and single output) system , which can be obtain by using Eqs. (6)-(9).

Comparing the spatial H2 norm of modes , , we can decide which modes will

be included in the reduction model.

3. Uncertain modal state space representation

3.1 Nominal modal state space representation

Including external disturbances , , the dynamic equation of structure with m

modes an be written as

(13)

Where,  are the ith generalized modal control force and the ith generalized modal
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In terms of the structural modes, the performance displacement outputs and the measured

displacement outputs can be defined as

(14)

where  is the ith performance output; cij is the influence coefficient of the jth mode on the ith

performance output;  is the ith measured output;  is the influence coefficient of the jth mode

on the ith measured output.

Defining  as state variables, the state space

model of the piezoelectric flexible structure can be written as 

(15)

where  is state vector;  is the control input vector;

 is external disturbance vector;  is performance output;

 is the measured output; , .

3.2 Considering uncertainties
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where , ; .

Secondly considering the uncertainty due to un-modeled high-frequency modes, and the model

error is represented by norm-bound addition uncertainty , we have

(20)

Weighting function  can be normalized by a weighting function .

 (21)

where  is the unknown uncertainty satisfying ;  has to form the upper bound of

the un-modeled high-frequency modes.

The state-space representation for  can be written as
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where  is the state variable vector of the controller;  are unknown parameters of

the controller.  means that the control law is strictly real.

With controller (24) and structure (23), the state space realization of the closed-loop system is

written as

(25)

where, , , , 

, , , , , 

5. Design specifications

5.1 Stability and disturbance rejection

Considering the following norm-bound uncertainties due to modal parameters variation and
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Using S-procedure, Eq. (29) will hold in the case of Eq. (28) if and if only there exits ,

, such that

(30)
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(34)

where,

, , 

5.2 Transient response performance

In order to achieve the desired transient performance, it is often necessary to place closed-loop

poles in the specified region, which can be described by using LMI region. LMI region is defined
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expressed as .
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where, , , ⊗ is Kronecker product.

Similar to Eq. (33), the matrix inequality (36) is nonlinear in the unknown parameters P, Ak, Ck, Bk,

Dk. Performing a congruence transformation with  on both inequalities (25), we obtain

, , 

, , (37)

5.3 Actuator saturation

In order to avoid actuator saturation, we need to set limit on every control input which will not be

violated for a given set of disturbance and initial conditions. For defining the control input

constraint, an ellipsoid χ of initial conditions is considered for the closed loop initial conditions as

given below

(38)

where λ is a real number that defines the size of the ellipsoid, and  is the initial conditions for

the closed loop system.

Let  be the reachable set of state trajectories of the system in response to a given set of

finite energy disturbance  and a given set of initial conditions

with ellipsoid χ.

 The robust stability condition can be written as

 (39)

Integrating over time 0 to t, we have

, for all (40)

Because  and , we can readily infer that for a given nonzero

trajectory in the ellipsoid χ, each of the closed-loop trajectory  in  satisfies

, for any , all (41)

For zeros initial conditions

, for , (42)

MD
3

Ac P,( ) L3 P⊗ M3 PAc( ) M3

T
PAc

T( )⊗+⊗+= M31

T
M32 M3=

diag F̂1 I I, ,( )

L3 Φp⊗ M3 ΦA⊗ M3

T ΦA

T
  ⊗+ + M31

T ΦB  ⊗ M32

T ΦC

T⊗

 I  – I ΦD

T⊗

sym  I–

0<

Φp

p̂
1
  I

I  p1

= ΦA

Aop̂1
BoCM  + Ao BoDkC̃o+

AM  p1Ao BMC̃o+

= ΦB
E1 BoDKE3+

p1E1 BME3+

=

ΦC F1p̂
1

F2CM+ F2DkC̃o,[ ]= ΦD F2DkE3= p̂
2
p2

T
1 p̂

1
p1–=

x̂
0

T
Px̂

0
λ<

x̂
0

S x̂
0

w,( )
W w t( ) w

T
t( )w t( ) td wmax≤

0

∞

∫ ∞<{ }=

dV x̂ t( )( )
td

-------------------- y
T

t( )y t( ) w
T

t( )w t( )–+ 0<

V x̂ t( )( ) V x̂ 0( )( )– y
T
y td

0

t

∫ w
T
w td

0

t

∫–+ 0< t 0≥

V x̂ 0( )( ) x̂
0

T
Px̂

0
λ<= y

T
y td 0≥

0

t

∫
x̂ t( ) S x̂

0
w,( )

x̂
T

t( )Px̂ t( ) λ wmax+< w t( ) W∈ t 0≥

x̂
T

t( )Px̂ t( ) wmax< w t( ) W∈ t 0≥



500 Xu Yalan and Chen Jianjun

For guaranteeing the control input constraint, each control input must satisfy

, for , (43)

Using Eq. (15), Eq. (43) becomes

(44)

where  is the jth row of the Cv.

Combining Eq. (42) and Eq. (44), the control input limit becomes

, (45)

By Eq. (45), control input limit can be written as matrix inequality constraints

, (46)

Performing a congruence transformation with  on both inequalities Eq. (46), we obtain

(47)

6. Multiobjective synthesis

In the previous section, specifications, such as robust stability and disturbance rejection, dynamic

response performance and control input limit, have been as LMI constraints on the unknown

controller state-space matrices and Lyapunov Matrix. So the controller design problem with

conflicting specification requirements can be converted into a linear convex optimization problem as

follows

(48)

7. Numerical example

First, to demenstrate that the influence of vibration modes on the dynamical response of structure

varies with the location of piezoelectric actuators, the flexural vibration of a simply supported beam

is considered. The piezoelectric actuator patch is located at  and 
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0.23lb 0.49lb→ 0.1lb 0.14lb→
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along the beam (  is the length of the beam) respectively, and seven modes contributing

most to the system dynamical response is hoped to be kept. Fig. 1 and Fig. 2 give the system

frequency respones for system with displacement of different points (x = 0.04 m and x = 0.18 m)

respectively along the beam as outputs, while the piezoelectric actuator patch is located at

. In figures, “A” denotes the real response of system, “B” the low-order response by

using the direct truncation, “C” the low-order response by using the method given in this paper

(1st~6th and 9th modes are kept) and “D” the low-order reponse by using the method given in the

literature (Yu and Wang 2007). The comparision between Fig. 1 and Fig. 2 shows that the kept

modes do not varies with the choosen output points when the piezoelectric actuator patch location is

fixed. Fig. 3 gives the system frequency respones of system with displacement of the point (x =

0.04 m) as output, while the piezoelectric actuator patch is located at , in which

1st~3rd and 5th~8th modes are kept different from Fig. 1 and Fig. 2. From the three figures, it can be

seen that the influence of vibration modes on the dynamical response of structure varies with the

lb 0.5 m=

0.23lb 0.49lb→

0.1lb 0.14lb→

Fig. 1 Frequency responses of system (x = 0.04 m) with actuator patch located at 0.23lb 0.49lb→

Fig. 2 Frequency responses of system (x = 0.18 m) with actuator patch located at 0.23lb 0.49lb→

Fig. 3 Frequency responses of system (x = 0.04 m) with actuator patch located at 0.1lb 0.14lb→
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location of piezoelectric actuators, which means the ability of actuators to control vibration modes

has to be taken into account in modeling a relatively low-order dynamic modal equation. 

Next, to demenstrate that the uncertainties should be considered to avoid ecxiting high-frequency

modes in th non-collcated vibration control, the simulation is conducted to suppress the flexural

vibration of a simply supported beam with non-collocated piezoelectric actuator/sensor patches

bonded to it. The piezoelectric actuator patch is located at  along the beam while the

piezoelectric sensor is located at  The performance displacement output is the

displacement coming from some point along the beam. Based on the spatial H2 norm of modes, the

1st, 2nd, 3rd, 5th modes are kept in the control design stage without considering the uncertainties.

Fig. 4 and Fig. 5 give the impulse responses and frequency responses for the uncontrolled and

controlled system without considering the uncertainties, from which it is evident that the high

modes are exicted when the low frequenciec are controlled (Fig. 5), and the system vibration cannot

be controlled (Fig. 4). 

Finally, a dynamic output feedback uncertain  vibration control law is designed with transient

response requirement and actuator saturation constraints by using linear matrix inequality method.

0.1lb 0.14lb→
0.58lb 0.85lb→

H∞

Fig. 4 Impulse responses without considering
uncertainties

Fig. 5 Frequency responses without considering
uncertainties

Fig. 6 Impulse responses with considering uncer-
tainties 

Fig. 7 Frequency responses with considering uncer-
tainties
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The residual modes is considered as norm-bound additive uncertainty, which is normalized by

weighting function  (from actuator to performance output). A decay rate of

0.3, minimum damping ratio not less than 0.01 and the ±5 V control input limits are requried. Fig. 6

and Fig. 7 give the impulse responses and frequency responses for the uncontrolled and controlled

system with considering the uncertainties, from which it can be seen that the low-frequency modes

is suppressed without exciting the high-frequency modes, and therefore the spillover appearing in

the non-collocated control without considering uncertainties is avoided.

8. Conlusions

(1) The influence of vibration modes on the dynamical response of structure varies with the

location of piezoelectric actuators, and the ability of actuators to control vibration modes has to be

taken into account in modeling a relatively low-order dynamic modal equation.

(2) The modal state-space representation is developed for uncertain flexible structures with non-

collocated piezoelectric actuators and sensors bonded to it, taking into account uncertainties due to

modal parameters variation and un-modeled residual high frequencies.

(3) A dynamical output feedback control law is designed by simultaneously considering the

conflicting performance specifications, such as robust stability, transient response requirement,

disturbance rejection, actuator saturation constraints.

(4) The results show that modal-based multiobjective vibration control law can suppress the low-

frequency modes without exciting the high-frequency modes, and therefore the spillover appearing

in the non-collocated control can be avoided.
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