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Abstract. In the present study, free vibration analysis of thick annular plates is analyzed by discrete
singular convolution method. The Mindlin plate theory is employed. The material is isotropic,
homogeneous and obeys Hook’s law. In this paper, discrete singular convolution method is used for
discretization of equations of motion. Axisymmetric frequency values are presented illustrating the effect
of radius ratio and thickness to radius ratio of the annular plate. The influence of boundary conditions on
the frequency characteristics is also discussed. Comparing results with those in the literature validates the
present analysis. It is shown that the obtained results are very accurate by this approach.
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1. Introduction

Thick circular, sectorial and annular plates have been widely used in many engineering

applications, for example, civil and mechanical engineering, nuclear, petroleum and aerospace

structures (Han and Liew 1998, Irie et al. 1982, Lime and Wang 2000, Liu et al. 2001). The

bending and vibration analysis of such plates is, therefore, of great importance in practical design.

In the literature, various methods have been used for vibration analysis of annular or sectorial

plates. Han and Liew (1998, 1999) used differential quadrature method to obtain static and free

vibration solutions of plates. Wang and Wang (2004) and Wang et al. (1995) proposed a new kind

differential quadrature for free vibration analysis of circular and annular plates with uniform and

non-uniform thickness. Annular sector and stepped circular and rectangular Mindlin plates have

been studied by Xiang et al. (1993, 2002) and Xiang and Zhang (2005). Liew and Liu (2000) and

Liew and Yang (2000) presented a numerical solution for free vibration of shear deformable annular
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plates. Irie et al. (1982) give some benchmark results for annular plates. Zhou et al. (2003, 2006,

2006a) have investigated three-dimensional vibration of circular and annular plates. Transverse

vibration analysis of circular, annular and sector plates have been studied by Liew et al. (1995),

Liew and Lam (1993), Wu et al. (2002). By using finite element method, axisymmetric vibration

analysis of circular and annular plates was presented by Liu and Chen (2001). Some results related

to bending analysis of circular and annular plates have also been in literature (Wu and Liu 2001,

Civalek 2007a). Detailed reviews have been made by Leissa (1987). The present study deals with

the free vibration analysis of thick annular plates by the method of discrete singular convolution

(DSC). This is the first time that the DSC method is used for vibration analysis of thick annular

plates.

2. Basic formulations

Following references (Han and Liew 1999) the annular plate is shown in Fig. 1. The governing

equations for axisymmetric free vibration are given (Han and Liew 1999)

(1a)

(1b)

where D is the flexural rigidity, v is the Poisson’s ratio, κ is the shear correction factor, t is the time,

W and Ψ are the transverse deflection and angular rotation, h is the thickness. 
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Fig. 1 Geometry of annular plate
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For free vibration we can write

(2a)

(2b)

Using Eq. (2) the governing equations of the motion given in non-dimensional form as

(3)

(4)

In these two equations following non-dimensional parameters are used

(5)

3. Discrete singular convolution (DSC)

In recent years, a new kind of numerical approach based on distributions and wavelet analysis

called discrete singular convolution is being developed in the field of mathematical physics and

computational mechanics by Wei (1999, 2000, 2000a, 2000b). Discrete singular convolution (DSC)

is an efficient technique for the numerical solutions of differential equations (Wei and Gu 2002, Wei

et al. 2002, Zhou and Wei 2006). The method of discrete singular convolution has been used many

of problems related to solid and fluid mechanics (Wei 2001b, Wei et al. 2002a, Wan et al. 2002,

Zhao et al. 2002,2002a, Zhao and Wei 2002, Ng et al. 2004, Zhao et al. 2005, Lim et al. 2005,

Civalek 2006, 2006a, 2007, 2008) by this time. Following the related reference (Wei 2001) and

using same notation, consider a distribution, T and η(t) as an element of the space of the test

function. A singular convolution can be defined by Wei (2001)

(6)

where  is a singular kernel. The DSC algorithm can be realized by using many

approximation kernels. However, it was shown (Wei et al. 2001, 2002, Zhao et al. 2002, Lim et al.

2005a, Civalek, 2007c, 2007d, 2007e) that for many problems, the use of the regularized Shannon

kernel (RSK) is very efficient. The RSK is given by Wei (2001a)

; σ > 0 (7)

where Δ = π/(N − 1) is the grid spacing and N is the number of grid points. The parameter σ

determines the width of the Gaussian envelope and often varies in association with the grid spacing,

i.e., σ = rh. In the DSC method, the function f (x) and its derivatives with respect to the x coordinate

at a grid point xi are approximated by a linear sum of discrete values f (xk) in a narrow bandwidth
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[x − xM, x + xM]. This can be expressed as (Xiang et al. 2002)

; (8)

where superscript n denotes the nth-order derivative with respect to x. After employing the DSC

method, the governing equations for vibration (Eq. (3)) become

(9)

(10)

The higher order derivative terms  in these equations are given as below (Zhao et al.

2002)

where, the differentiation can be carried out analytically. Simply supported, clamped and free

boundary conditions are considered. The discretized forms of these boundary conditions are as

follows for inner edge:

For clamped boundary

and (11)

For simply supported boundary

(12)

(13)

For free edge

(14)

(15)

For the outer edge the DSC form of these boundary conditions can be written by substituting the

subscripts 1 with N, and a/b = 1.
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4. Numerical results

For numerical results, the Poisson’s ratio is taken to be 0.3 and the shear correction factor is taken

as k = 0.823(π2/12). In order to simplify the results, the boundary conditions for plates are denoted

by letters S (simply supported), F (free) and C (clamped). For example, SC denotes that the annular

plate is simply supported at inner edge and clamped at outer edge. Some comparison study of the

present results for thick annular plates with different thickness to radius ratios and CC, CS and SS

boundary conditions is made for verification of the present DSC formulation. The obtained results

are compared with the analytical results given by Irie et al. (1982) and with the DQ results given by

Han and Liew (1999). These results are summarized in Tables 1, 2 and Fig. 2. 

It can be seen that the values calculated by the present method shows good agreement. It is also

concluded that, the accuracy of the results is increased by increasing N. The reasonable accurate

results are obtained for N = 15. Natural frequencies of annular plate are calculated for different grid

numbers to illustrate the convergence of the proposed method ratio. The results are given in Fig. 2

for three different thickness to radius ratios of CS annular plates (b/a = 0.3). It is also seen from

this figure that when the grid point numbers reaches N = 11 the present method gives accurate

predictions for h/a = 0.2. For other plate with different thickness, however, the accurate results are

obtained for N = 15. A different comparison study of the present DSC results with the finite

Table 1 Comparison of frequency parameters of CC annular plates (h/a = 0.1)

b/a
Han and Liew

(1999)
Irie et al.

(1982)
Present

0.1 24.629 24.63 24.632
0.2 30.841 30.84 30.843
0.3 39.398 39.40 39.405
0.5 70.277 70.28 70.286

Table 2 Convergence of natural frequency of SS annular plate with different h/a ratio (b/a = 0.2)

Sources
h/a

0.001 0.1 0.2 0.3

Irie et al. (1982) - 16.16 14.69 12.97
Han and Liew (1999) 16.780 16.164 14.688 -
Present DSC results

N = 9
 17.236 17.883 15.227 13.914

Present DSC results
N = 11

17.011 16.174 14.703 13.018

Present DSC results
N = 13

16.804 16.169 14.698 12.981

Present DSC results
N = 15

16.785 16.166 14.695 12.975

Present DSC results
N = 18

16.784 16.163 14.694 12.973

Present DSC results
N = 21

16.784 16.163 14.694 12.973
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element solutions obtained using the IDEAS software package has been made and presented in

Fig. 3. First four axisymmetric frequencies of C-F annular Mindlin plates are presented in this figure

with the results given by Han and Liew (1999) using differential quadrature method. A good

agreement is achieved amongst the present results, results given by Han and Liew (1999) and the

results produced by IDEAS using Mindlin shell element. The results given by IDEAS are included

both the symmetric and axisymmetric modes. We choose only axisymmetric results for comparison.

Fig. 2 Convergence of the first frequency with grid numbers of CS annular plates (b/a = 0.3)

Fig. 3 First four axisymmetric non-dimensional frequencies of C-F annular Mindlin plates (h/a = 0.1, b/
a = 0.2)



Frequency analysis of moderately thick uniform isotropic annular plates 417

Variation of frequency parameter with radius ratio a/b for annular plate with different boundary

conditions has been shown in Figs. 4-6. Nine different boundary conditions are taken into

Fig. 4 Variation of frequency parameter with radius ratio a/b for annular plate with clamped inner edge

Fig. 5 Variation of frequency parameter with radius ratio a/b for annular plate with free inner edge

Fig. 6 Variation of frequency parameter with radius ratio a/b for annular plate with simply supported inner
edge



418 Ömer Civalek and Hakan Ersoy

consideration in these figures. From Figs. 4-6, it is seen that, the frequency parameter decreases

rapidly for small radius ratio a/b (a/b ≤ 3). With the increase of radius ratio (a/b > 3) the effect of

the a/b ratio on the frequency parameter is insignificant. It is shown that the increasing value of h/a

ratio always decreases the frequency parameter. It is also shown in these figures, the plate with

clamped inner edges have the highest frequency parameter, followed by the simply supported and

free. 

The relationships between the frequency parameter with thickness-to-radius ratio h/R for annular

plate are depicted in Figs. 7-9 for different a/b ratios. Generally, it can be seen that, as h/R

increases, with a/b fixed, the frequencies decrease. Furthermore, the effect of the h/a ratio on the

frequency parameter is more significant for small a/b ratios. In Figs. 10 and 11, the variations of the

first four frequency parameters for SS and CC plates with radius ratio and thickness to radius ratio

are demonstrated respectively. The frequency parameter decreases rapidly for small radius ratio a/b.

With the increase of this ratio the effect of the a/b ratio on the frequency parameter is insignificant.

Fig. 7 Variation of frequency parameter with thickness to radius ratio h/a for annular plate with clamped inner
edge

Fig. 8 Variation of frequency parameter with thickness to radius ratio h/a for annular plate with free inner
edge
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Furthermore, with the increase of mode number, the effect of the a/b on the frequency parameter is

more significant. Similarly, the frequency parameter decreases rapidly for thickness to radius ratio h/a.

The effect of the mode numbers on the frequency is more significant for the ratio of h/a than the a/b

ratio.

The relationship between the frequency parameter and mode numbers at different radius ratio is

shown in Fig. 12. It is shown that the increasing value of mode numbers always increases the

frequency parameter.

Fig. 9 Variation of frequency parameter with thickness to radius ratio h/a for annular plate with simply
supported inner edge

Fig. 10 Variation of frequency parameter of SS
plate with radius ratio a/b for different
mode numbers  (h/a = 0.2)

Fig. 11 Variation of frequency parameter of CC plate
with thickness to radius ratio h/a for
different mode numbers (b/a = 0.1)
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5. Conclusions

In the present paper, the free vibration behavior of annular late is studied by the method of

discrete singular convolution. Mindlin plate theory is adopted. The obtained results are verified with

available analytical and numerical solutions and also the finite element solutions obtained by

IDEAS package programs. The effect of some geometric parameters on frequency parameters is

investigated. Different combinations of inner and outer boundary conditions were also investigated.

It is also important to note that the present method provides a controllable numerical accuracy by

using the suitable bandwidth. The results show that the thicknesses to radius ratio, boundary

conditions and radius ratio have more important effect on frequencies. 
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