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Problems with a popular thick plate element and the 
development of an improved thick plate element
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Abstract. Some unreasonable results from the use of a popular thick plate element are discovered from
the analysis of a raft foundation and a pile cap in Hong Kong. To overcome the problems, the authors
have developed a new shear deformable beam which can be extended to a general quadrilateral shear
deformable plate. The behaviour of this new element under several interesting cases is investigated, and it
is demonstrated that the new element possesses very high accuracy under different depth/span ratios, and
the results from this new element are good even for a coarse mesh.
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1. Introduction

Pile caps, transfer plates and raft foundations are typical structures which are important and

expensive thick plates. These structures are so thick that shear deformation cannot be neglected, and

the use of Kirchhoff plate theory will be less satisfactory. For the past twenty years, many thick

plate elements have been developed and are used by engineers (Urugal 1999, Reddy 2000, Szilard

2004) and extensive treatment of various thick plate elements has been covered by Zienkiewicz and

Taylor (2000) and many others. The popular classical quadrilateral elements include the Q4, Q4-R,

DKQ by Katili (1993), MITC4 by Bathe and Dvorkin (1985) and MITC7 and MITC9 by Bathe

et al. (1989), the stabilized MITC elements by Lyly and Stenbergy (1998), the one point integration

with stabilization matrix by Hughes (1986, 1987). The popular classical triangular elements include

the T3, T3-R, DST-BL by Batoz and Lardeur (1989). One simple and straightforward approach is

proposed by Ibrahimbegovic (1992, 1993). Ibrahimbegovic utilized the Timoshenko’s beam

formulas to determine the deflection, rotations and shear strain along element sides, and then

constructed three quadrilateral thin-thick plate elements PQ1, PQ2 and PQ3 by using mixed

interpolation method. Soh et al. (2001) provided another set of locking-free Timoshenko’s beam

formulas with the development of a new thin/thick plate element (ARS-Q12). ARS-Q12 has no
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numerical problem and exhibits good performance for both thin and thick plates. The same

Timoshenko’s beam formulas also appeared in the constructions of elements RDKQM (full

integration), DKTM and RDKTM (one point integration re-constitution shear-strain element) by

Chen and Cheung (2000, 2001). Sheikh and Dey (2001) proposed a new triangular element based

on the Reissner-Mindlin’s plate theory for thin and thick plate. This element may have any arbitrary

triangular shape, which has the advantage of analyzing plates of any geometry. Gruttmann and

Wagner (2004) utilized a Hellinger-Reissner functional with independent displacements, rotations

and stress resultants and proposed a new quadrilateral Reissner-Mindlin plate element with 12

degrees of freedom. Gruttmann and Wagner (2004) adopted a formulation close to that by Hughes

(1986, 1987) by using a stabilizing matrix. Cen et al. (2006) used the quadrilateral area co-ordinate

method to formulate a new quadrilateral element, named AC-MQ4. This element is free of shear

locking and is insensitive to mesh distortion. Ozdemir et al. (2007) have proposed 8 and 17 nodes

shear locking free elements based on purely the use of higher order polynomial without any other

special treatment, and these elements can be formed easily by classical finite element method. These

8 nodes element produces a relatively poor result for coarse mesh while the 17 nodes element can

produce a very good result even for a coarse mesh. Ozgan and Daloglu (2007) have proposed four

and eight node elements (PBQ4 and PBQ8) based on the classical Mindlin plate theory. Abdalla and

Ibrahim (2007) have also proposed a discrete Reissner-Mindlin thick plate element for geometrical

non-linear problem. Among the elements mentioned, the thick plate element by Ibrahimbegovic

(1993) (termed as IB element in later study) is one of the most popular thick plate elements

currently adopted by some commercial programs and many engineers for thick plate analysis in

many countries. The four node IB element can suit the loadings and structures easily compared with

other higher order elements, and the element is widely adopted for engineering use. The authors

have recently discovered some problems of this element from several real jobs which have generally

been overlooked in the past, though this element has been used for the analysis of many thick plate

structures for a long time.

In this paper, the limitations of the IB element will be demonstrated by several interesting cases

originated from two real jobs in Hong Kong. In view of the limitations of the element, a new shear

deformable beam element which is free from shear locking is developed, based on which a new

quadrilateral thick plate element “PLATE” is formulated in this paper. It can be demonstrated that

“PLATE” can provide a good accuracy and convergence, particularly for coarse mesh problems.

The new thick plate is formulated initially as a rectangular element and then later extended to a

general quadrilateral element which is more useful to irregular structures. 

2. Formulation of a new shear deformable beam free from shear locking

Most of the thick plate elements are based on the extension of shear deformable beam where

shear strain is included in the computation of displacement. The relationship among the parameters

(i) out-of-plane displacement ω; (ii) out-of-plane rotation ψ; (iii) out-of-plane shear strain γ for a

shear deformable beam is illustrated in Fig. 2. The main differences in the formulations between

different researchers are the order of polynomial used for the finite element formulation (Bathe et al.

1985, Hughes et al. 1986, Jirousek et al. 1995, Zienkiewicz 1991, Sze 2002) and the methods to

determine the polynomial coefficients. In the present formulation for the beam as shown in Figs. 1

and 2, the deflection ω is represented by a 3rd order polynomial. The rotation ψ would then be a 2nd
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order polynomial. The coefficients and in Eqs. (1) and (2) are constants to be determined from the

boundary conditions and energy minimization. r is a normalized dimensionless distance given by

r = s/L which lies in the range of 0 to 1.

(1)

(2)

As illustrated in Fig. 2, the angular rotation at any section is the combined action of the bending

and shear deformation given by

(3)

The shear strain within this short segment of beam (shear force is constant) is a constant term γ0

given by

ω α0 α1r α2r
2

α3r
3

+ + +=

ψ β0 β1r β2r
2

+ +=

dω

ds
-------

1

L
---

dω

dr
------- ψ γ+= =

Fig. 1 Symbols for thick beam formulation 

Fig. 2  Relationship among  ω; ψ; γ  for shear deformable beam
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(4)

Making use of the boundary conditions at r = 0, ω = ωi, ψ = ψi and at r = 1, ω = ωj, ψ = ψj; α0,

α1, β0, β1 in Eqs. (1) and (2) can be expressed in terms of the deflections ωi and ωj at the two ends

of the beam so that Eq. (1) and Eq. (2) can be rewritten as 

(5)

and (6)

Eq. (3) can now be rewritten as

(7)

Substituting r = 0 and r = 1 with  and  in Eq. (7) and solving gives

; (8)

Back-substituting Eq. (8) into Eq. (5) and re-arranging gives

(9)

Differentiation of Eq. (9) with respect to s where s = Lr gives

(10)

Put Eqs. (6), (10) into Eq. (3) 

, or

(11)

β2 is now determined from Eq. (11) so that Eq. (6) can be re-written as

 (12)

Bending energy UB per unit width of the shear deformable beam is 

(13)

where κ is the curvature of deflection given by . From Eq. (12) 

γ γ0=

ω 1 r–( )ω i rω j r 1– r+( )α2 r 1– r
2

+( )α3+ + +=

ψ ψi ψj ψi– β2–( )r β2r
2

+ +=

dω

dr
------- L ψ γ+( ) ω i– ω j 1– 2r+( )α2 1– 3r

2
+( )α3+ + += =

ψ ψi= ψ ψj=

α2 3ω i– 3ω j 2Lψi– Lψj– 3Lγ0–+= α3 2ω i 2ω j– Lψi Lψj 2Lγ0+ + +=

ω 1 r–( )2 1 2r+( )ω i r
2

3 2r–( )ω j Lr 1 r–( )2ψi Lr
2

1– r+( )ψj Lr 1 r–( ) 1 2r–( )γ0+ + + +=

1

L
---

dω

dr
-------

6r– 6r
2

+

L
-----------------------ω i

6r 6r
2

–

L
------------------ω j 1 4r– 3r

2
+( )ψi 2r– 3r

2
+( )ψj 1 6r 6r

2
+–( )γ0++ + +=

6r– 6r
2

+

L
-----------------------ω i

6r 6r
2

–

L
------------------ω j 1 4r– 3r

2
+( )ψi 2r– 3r

2
+( )ψj 1 6r 6r

2
+–( )γ0++ + +

 1 r–( )ψi rψj r 1– r+( )β2 γ0+ + +=

r 1– r+( )β2

6r– 6r
2

+

L
-----------------------ω i

6r 6r
2

–

L
------------------ω j 3r– 3r

2
+( )ψi 3r– 3r

2
+( )ψj 6r– 6r

2
+( )γ0+ + + +=

ψ
6r

L
----- 1– r+( )ω i

6r

L
----- 1 r–( )ω j 1 4r– 3r

2
+( )ψi r 2– 3r+( )ψj 6r 1 r+–( )r0+ + + +=

UB
M

2

2EI
--------- xd

0

L

∫
EIL

2
---------

M

EI
-----⎝ ⎠

⎛ ⎞
2

rd
EIL

2
--------- κ

2
rd

Et
3

12
-------

L

2
---

dψ

Ldr
--------–⎝ ⎠

⎛ ⎞
2

rd

0

1

∫=

0

1

∫=

0

1

∫= =

κ
dψ

ds
-------–

1

L
---

dψ

ds
-------–= =
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(14)

Denote  and 

Bending energy 

(15)

where t is the sectional depth of the beam. Shear energy US per unit width of the beam is

(16)

where μ is the Poisson’s ratio. In Eq. (16), the effective area Ar used for shear energy determination

is taken as 5/6 of the actual sectional area because of the parabolic shear stress distribution across

the section. Total strain energy U is given by

(17)

The total energy is dependent on the deflection, rotation and the shear deformation and the

equilibrium point is obtained by minimizing the total energy with respect to all these dependent

parameters. In the present formulation, the minimum energy principle with respect to the shear

deformation  is applied in addition to those for vertical deflection and rotation. By

performing partial differentiation on Eq. (17)  with substitution of

UB and US from Eqs. (15) and (16) gives 

(18)

Simplifying and re-arranging

(19)

Denote (20)

Eq. (19) is now re-written as

(21)

dψ

Ldr
--------

6 12r+–

L
2

--------------------ω i
6 12r–

L
2

----------------ω j
4– 6r+

L
------------------ψi

2– 6r+

L
------------------ψj

6– 12r+

L
---------------------γ0+ + + +=

 
6–

L
2

------ω i
6

L
2

-----ω j
4–

L
------ψi

2–

L
------ψj

6–

L
------γ0+ + + +⎝ ⎠

⎛ ⎞ 12

L
2

------ω i
12–

L
2

---------ω j
6

L
---ψi

6

L
---ψj

12

L
------γ0+ + + +⎝ ⎠

⎛ ⎞r+=

A
6–

L
2

------ω i
6

L
2

-----ω j
4–

L
------ψi

2–

L
------ψj

6–

L
------γ0+ + + +⎝ ⎠

⎛ ⎞
= B

12

L
2

------ω i
12–

L
2

---------ω j
6

L
---ψi

6

L
---ψj

12

L
------γ0+ + + +⎝ ⎠

⎛ ⎞
=
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Et

3

12
-------

L

2
---
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Ldr
--------–⎝ ⎠

⎛ ⎞
2

r
Et

3

12
-------

L

2
--- A Br+( )2 r

Et
3
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-------

L

2
--- A

2
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3
---B

2
+ +=d

0

1

∫=d
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1
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Et

3
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-------
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2
---
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⎛ ⎞
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------

12
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2

------ω i
12–
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6
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---ψi
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-------------dx

0
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-----------------------γ0
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⎛ ⎞
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------ω i
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---------ω j
6
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---ψi
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---ψj
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+

⎩ ⎭
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⎧ ⎫

 
∂

∂γ0
-------

5EtL

24 1 μ+( )
-----------------------γ0

2
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⎨ ⎬
⎧ ⎫

+ 0=
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2
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2
+
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2

1 μ+( )
------------------------------------------
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L
------ ω i ω j–( ) ψi ψj+( )–=

δ
6t

2
1 μ+( )

5L
2
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------------------------------------------=

γ0
2δ–

L
---------ω i

2δ

L
------ω j δψi– δψj–+=
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Let the displacement vector of the shear deformable beam be represented by the vector [ωi ψi ωj

ψj]
T. From Eq. (21), the strain displacement BS matrix for the shear force is obviously given by

(22)

Substituting Eq. (21) into Eq. (14), we get

(23)

From Eq. (23), the strain displacement BB matrix for the bending is given by

(24)

The stiffness matrix for the shear strain is (25)

where  and BS is from Eq. (22)

Expanding and integrating Eq. (25) gives the shear stiffness matrix as

(26)

Similarly, the stiffness matrix for the bending is given as follows, with Bb from Eq. (24)

(27)

Expanding and integrating gives the bending stiffness matrix as

(28)

BS
2δ–

L
---------  δ–   

2δ

L
------  δ–=

ψd

Ldr
---------–

6 1 2r–( ) 1 2δ–( )

L
2

----------------------------------------ω i
6– 1 2r–( ) 1 2δ–( )

L
2

-------------------------------------------ω j
1 3 1 2δ–( ) 1 2r–( )+

L
-------------------------------------------------ψi+ +=

 
1– 3 1 2r–( ) 1 2δ–( )+

L
-----------------------------------------------------ψj+

BB
6 1 2r–( ) 1 2δ–( )

L
2

----------------------------------------  
1 3 1 2δ–( ) 1 2r–( )+

L
-------------------------------------------------  

6– 1 2r–( ) 1 2δ–( )

L
2

-------------------------------------------
1– 3 1 2δ–( ) 1 2r–( )+

L
-----------------------------------------------------=

Ks BS

T
GArBS L rd⋅ ⋅

0

1

∫=

GAr
E

2 1 μ+( )
--------------------

5

6
---bt

5Ebt

12 1 μ+( )
-----------------------= =

Ks
5Ebt

12 1 μ+( )
-----------------------

4δ
2

L
--------  2δ

2
  

4δ
2

L
--------–   2δ

2

2δ
2
  Lδ

2
  2δ

2
  – Lδ

2

4δ
2

L
--------–   2δ

2
–   

4δ
2

L
--------  2δ

2
–

2δ
2
  Lδ

2
  2δ

2
–   Lδ

2

=

Kb Bb

T
EI Bb L rd⋅ ⋅ ⋅

0

1

∫=

Kb EI

12

L
3

------ 1 2δ–( )2  6

L
2

----- 1 2δ–( )2  12

L
3

------ 1 2δ–( )2  –
6

L
2

----- 1 2δ–( )2

6

L
2

----- 1 2δ–( )2  4

L
--- 1 3δ– 3δ

2
+( )  6

L
2

----- 1 2δ–( )2  –
2

L
--- 1 6δ– 6δ

2
+( )

12

L
3

------ 1 2δ–( )2  –
6

L
2

----- 1 2δ–( )2  –
12

L
3

------ 1 2δ–( )2  6

L
2

----- 1 2δ–( )2–

6

L
2

----- 1 2δ–( )2  2

L
--- 1 6δ– 6δ

2
+( )  6

L
2

----- 1 2δ–( )2  –
4

L
--- 1 3δ– 3δ

2
+( )

=
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where . If thickness of the beam tends to 0 so that δ tends to 0, Ks will tends to 0 while

Kb will tends to the classical beam deflection stiffness matrix. The results as given by Eqs. (26) and

(28) are hence free from shear locking phenomenon. The total stiffness of the shear deformable

beam is 

(29)

At r = 1/2, substituting Eq. (21) into Eq. (12) and simplifying 

(30)

Eq. (30) will be used in the formulation of the pseudo 8 node thick plate element in the following

section.

3. Formulation of a rectangular shear deformable plate

The foregoing derivation for shear deformable beam is extended to the formulation of rectangular

plate in this section and the formulation is basically similar to the three-node Mindlin plate by

Tessler and Hughes (1985). The authors have however adopted a pseudo 8 node element

formulation to increase the accuracy of the element so that a good accuracy can be achieved even

for a coarse mesh. Consider a rectangular plate of corner nodes 1, 2, 3, 4 and side lengths 2a and

2b as indicated in Fig. 2. Fictitious mid-side nodes 5, 6, 7 and 8 are added in the formulation but

they will be statically eliminated so that only the corner nodes will be retained in the final stiffness

matrix formulation. This approach is adopted as a 4 nodes element possesses good numerical

accuracy but is more convenient to be used as compared with an 8 nodes element. Actually, most of

the commonly used thick plate elements in various commercial programs are four nodes element

(excluding those for research purpose). The 6 nodes triangular element by Sheikh and Dey (2001) is

accurate but is less satisfactory for practical use because of the presence of the mid-side nodes. Any

point load applied directly on the mid-side nodes will create numerical problem which is not

satisfactory for practical problems.

For the plate as shown, the nodal displacement ae of the corner nodes are given as

(31)

From Eq. (21), the shear strains at the edges  of the element are

;

;  (32)

(taking note that the rotations ψy1 and ψy2 are clockwise positive when viewed at edge 

instead of anticlockwise as derived in Eq. (21))

I bt
3
/12=

K Ks Kb+=

ψ
r

1

2
---=

3 1 2δ–( )–

2L
-------------------------ω i

3 1 2δ–( )
2L

----------------------ω j
1

4
---–

3

2
---δ+⎝ ⎠

⎛ ⎞ψi
1

4
---–

3

2
---δ+⎝ ⎠

⎛ ⎞ψj+ + +=

a
e

ω1  ψx1  ψy1  ω2  ψx2  ψy2  ω3  ψx3  ψy3  ω4  ψx4  ψy4[ ]T=

12 23 34 41, , ,

γs12

δa

a
-----ω1–

δa

a
-----ω2 δaψy1 δaψy2+ + += γs23

δb

b
-----ω2–

δb

b
-----ω3 δbψx2– δbψx3–+=

γs34

δ12

a
------ω4–

δ12

a
------ω3 δaψy4 δaψy3+ + += γs41

δb

b
-----ω1–

δb

b
-----ω4 δbψy1– δbψy4–+=

12 34,
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where ; (33)

t = thickness of the plate, μ = Poisson’s ratio

It can easily be seen that when t→0, δa, δb→0, and γsi→0.

The shear strain  within an element can be expressed as

(34)

and  (i = 1, 2, 3, 4) are the classical bilinear interpolation functions for Q4 quadrilateral element.

Substituting Eq. (32) into Eq. (34) and simplifying

(35)

(36)

So the B matrix for shear is given by  and , where

 (37)

The D matrix for shear is 

(38)

The stiffness matrix for shear is given as

(39)

δa

t

2a
------⎝ ⎠

⎛ ⎞
2

1 μ+( )

5

6
--- 2

t

2a
------⎝ ⎠

⎛ ⎞
2

1 μ+( )+

-------------------------------------------
3t

2
1 μ+( )

10a
2

6t
2

1 μ+( )+

-----------------------------------------= = δb
3t

2
1 μ+( )

10b
2

6t
2

1 μ+( )+

-----------------------------------------=

γ γx  γy[ ]T=

γx γxiNi

0
 γy γyiNi

0

∑=∑=

Ni

0
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------------------------ω1
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---------------------ψy1

1 η–( )δa

2a
---------------------ω2

1 η–( )δa

2
---------------------ψy2+ + +=

 
1 η+( )δa
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---------------------ω3
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1 η+( )– δa

2a
-------------------------ω4
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2
---------------------ψy4+ + + +
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2
------------------------ψx1
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2
------------------------ω2
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2
------------------------ψx2+ + +=

 
1 ξ+( )δb

2b
---------------------ω3
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2
------------------------ψx3

1 ξ–( )δb
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--------------------ω4
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2
------------------------ψx4+ + + +

γ BSa
e
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2
---------------------  
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2
---------------------
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------------------------  
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2
------------------------  0  
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------------------------  
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2
------------------------  0

=

BS2

1 η+( )δa

2a
---------------------  0  

1 η+( )δa
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---------------------  

1 η+( )– δa
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-------------------------  0  

1 η+( )δa
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---------------------

1 ξ+( )δb
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---------------------  

1 ξ+( )– δb

2
------------------------  0  

1 ξ–( )δb
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--------------------  
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2
------------------------  0

=

DS G
5

6
---t 1  0
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⋅ ⋅ E
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5t

6
----⎝ ⎠

⎛ ⎞ 1  0
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∫
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In the formulation of the bending stiffness matrix, normal (in the vertical plane perpendicular to

the edge) and tangential rotations (in the vertical plane containing the edge) at the mid-sides nodes

5, 6, 7, 8 at the 4 edges as shown in Fig. 3(b) are first determined. For the rotations about axes

parallel to the sides where these nodes are situated, the rotations are taken as average of the end

nodes 1, 2, 3 and 4 for the present bilinear element as

(40)

For rotations about axes perpendicular to the sides, they are determined by Eq. (30) as

ψx5
1

2
--- ψx1 ψx2+[ ]; ψy6

1

2
--- ψy2 ψy3+[ ]; ψx7

1

2
--- ψx3 ψx4+[ ]; ψy8

1

2
--- ψy1 ψy4+[ ]====

Fig. 3(a) Degree of freedom for thick plate

Fig. 3(b) Pseudo 8 node thick plate element
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(41)

The bending energy for the pseudo 8 node element is determined by the classical Q8 element

shape functions as

 (42)

Eliminating ψx5 to ψx8 and ψy5 to ψy8 by Eq. (41), so that Eq. (42) become

(43)

(44)

The 4 node element formulation as proposed is hence a pseudo 8 node formulation which will

increase the accuracy of the solution. It should be pointed out that different order are used for

bending and shear energy terms which is better than the classical Q8 Mindlin plate element

formulation (Zienkiewicz 1991).

The curvature matrix of the plate element is given by 

(45)

Using

ψy5

3 1 2δa–( )
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(46)

By appropriately differentiating Eqs. (43) and (44), the B matrix for bending as equated by

 would be BB = , where 

(47)

The other B matrices are similar to Eq. (47) and will not be given here. The Db matrix for

bending is given by [Mx  My  Mxy]
T = Dbκ as

(48)

So, the stiffness matrix for bending can be formed by expanding and integrating the following

expression

(49)

The total stiffness of the plate element will be (50)

4. Extension of “PLATE” to general quadrilateral element

With minor changes to the formulation (but more complicated equations), the rectangular thick

“PLATE” element as given in previous section can be extended to a general quadrilateral element as

follows. From Eq. (32), the shear strains at the edge ij of a general quadrilateral element is

(51)

where, , (52)
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 (53)

For convenience, a term  is defined and is given  

 (54)

then  (55)

(56)

As the axes are not along the main directions, transformation of strain from local to global axes

will be required, and the nodal shear strain will become

 (57)

where  if j < 5 and = 1 if j = 5;  if k > 1 else k = 4. The nodal shear strain can be

expressed in terms of the nodal displacement as

(58)

or

Eqs. (35) and (36) will become

(59)

where (60)

and the shape function matrix N is given by (61)

Shear stiffness for this general quadrilateral element will still be given by Eq. (39) but Bs as given
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by Eq. (60) will be used.

The normal rotation ψn and tangential rotation ψs for the mid-side nodes can be expressed as 

 (62)

where θij is the angle of the line  with the X-axis.

(63)

(64)

or  (65)

For node 5, the normal shear strain is

(66)

Similar equations can be written for nodes 6, 7, 8 and will not be repeated here. According to

Eq. (12), the tangential rotations at mid-side nodes 5, 6, 7, 8 are 
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Similar equations can also be established for nodes 6,7 and 8 and will not be repeated here. For
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(72)

Similar results can be written for the other mid-side nodes which will not be repeated here. It is

now possible to express the shear strain in terms of the nodal displacement within the general

quadrilateral element by extending Eq. (42) with equations Eqs. (70) and (72). The authors have

adopted the symbolic algebra program Mathcad for generating the resulting strain-displacement

matrix BB. The complete equations formed by the use of program Mathcad are lengthy and will not

be reproduced here. 

5. Problems of the IB element and the performance of the “PLATE” element

IB element is commonly used by many engineers in Hong Kong, China and many other countries.

The authors have discovered two interesting problems with the use of the IB element which will be

discussed here. The first case is a 1.5 m thick plate (as pile cap) supported on steel H-piles as

illustrated in Fig. 4 and the rectangular IB element is used for the analysis. The plate is loaded with

UDL, line loads and point loads and is analyzed for different degrees of meshing determined by the

use of different maximum element sizes. For illustration purpose, My moment which is the bending

moment along the axis parallel to grid X1 to X4 are obtained for the free edge (unsupported) of the

cap between grid X3 and X4 near grid XC and is plotted in Figs. 4 and 5. This moment is

considered as it should be 0 along this free edge so that comparisons will be meaningful.

Whilst My moment should theoretically be zero along the free edge, it can be seen from Fig. 5

that the IB element give high values of My for a maximum element size of 1m which is the also

default value as adopted in some popular programs. My becomes smaller as the maximum element

size reduces to 0.2 m for the IB element. This phenomenon has also illustrated a well known fact

that results from finite element analysis can converge to accurate values at fine meshing.
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Fig. 4 Moment at cantilever end for a thick plate 
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The structure is then re-analyzed with the IB element with a maximum element size equal to 1 m

under (i) thin plate option for 1.5 m structural thickness; (ii) thick plate option of 1.5 m thickness;

(iii) thick plate option of 0.3 m thickness; (iv) thick plate option of 0.03 m thickness. In Fig. 6, the

“thin” plate option has yielded very small values for the My moments which is considered to be

very accurate. However, it is surprising to note that under the option of “thick plate”, My moments

diverge to very high values when the plate thickness is reduced instead of converging to nearly zero

as obtained by the thin “Kirchhoff Plate”. That means, if the element size is maintained constant,

results from IB element will diverge with decreasing plate thickness!

In comparison, the structure is analyzed by “PLATE” developed in the present paper with the

same mesh. My moment are small when the plate thickness is thin as shown in Fig. 7, and this has

demonstrated that “PLATE” can converge to thin plate solution without “shear locking” while the

convergence of the IB element is poor showing that it actually experiences “shear locking”.

Fig. 5 My along free edge for different mesh size by IB element (plate thickness 1.5 m)

Fig. 6 My along free edge for plate thickness by IB element (maximum element size 1 m)
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Ibrahimbegovic (1993) has demonstrated that IB element is free from shear locking for several

different cases but has not considered the case for a cantilever edge which is now proved to exhibit

“shear locking” phenomenon. The reason for this surprising phenomenon is that severe warping of

the section has occurred along free edge and the minimization of shear strain energy as given by

 and Eq. (19) which will reduce the over-stiff rigidity arising from the finite element

discretization is absent in the IB element. 

The second interesting case is a 1 unit width thin square plate supported on four stiff walls along

its perimeter and a unit distributed load is applied on the square plate. The wall loading for this case

will be independent of the thickness and Young’s modulus of the plate. For the present problem,

there are 21 rows of element along the x-direction and 18 rows of element along the y-direction in

the finite element model. The structure itself is symmetric in nature while the mesh along x and y

directions are not the same. For the IB thin plate element, the wall loadings along x and y directions

differ by 4.8% while the corresponding difference by “PLATE” is 3%. This example illustrates that

the use of the IB element is more affected by the design of the mesh as compared with the use of

“PLATE”. 

Another interesting problem with the IB element is discovered for the raft footing foundation

supported on ground in Hong Kong which is shown in Fig. 8. Assembly of the rectangular IB

elements with some triangular elements at periphery of the footing is used for the analysis of this

raft footing. The concrete structural thickness is 800 mm and it is supported on soil with subgrade

reaction constant equal to 300 kPa/m2. A very fine mesh has been adopted for this project so that

the results are not affected by the mesh design. There are altogether 3 surprising “shear jumps”

arising from the use of the IB element within the raft foundation for which the shear force varies

significantly over a small distance. VXZ along a line of the footing is shown in Fig. 9 and a shear

jump at x equal to 24 m is noticed. As no point load or support is applied at these shear jump

locations and these shear jump locations are not at the periphery of the footing, such shear jumps

are surprising and the results are considered as reasonable. Yet this problem can easily be

overlooked by the engineer as it is a common practice that the engineer uses the averaged result

over a certain structural width instead of the local result for design. In comparison, the authors have

∂U/∂γ0 0=

Fig. 7 My along free edge for different plate thickness based on present formulation (maximum element size =
1.0 m)
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Fig. 9 Shear jump at raft footing by IB element (y = 7.7 m)

Fig. 8 Shear jump for a raft footing

 Fig. 10 Raft footing analysis by “PLATE” (y = 7.7 m)
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performed the same analysis by the “PLATE” (quadrilateral elements instead of rectangular

elements are used in this problem) and no shear jump is found. Plot of VXZ along the same strip of

Fig. 9 is produced in Fig. 10, revealing no shear jump at x = 24 m. The reason for such a strange

phenomenon arising from the use of IB element is not clear, but the authors suspect that the ‘over-

stiff’ behaviour of the IB element as demonstrated in Fig. 6 may be one of the possible reasons

behind this unreasonable phenomenon. The results of Fig. 8 and Fig. 9 are usually close with the

maximum difference less than 5% except for the shear jump. Such results also illustrate that the

accuracy of IB element and “PLATE” are similar when the mesh is fine.

Finally, a standard problem of a square plate simply supported on four sides with hard support

condition (rotation along the support is zero) and a uniformly distributed load q is applied. Rigorous

solutions given by Reismann (1988) and Sziland (2004) are used for comparison in the study. The

authors have reviewed most of the thick/thin plate elements within 2000 to 2006, and some useful

results from the modern elements are given in Tables 1 and 2. The maximum moment Mx and

deflection ω which are at the centre of the plate are analyzed and normalized with respect to

0.01qL2 and qL4/D so that the moment and deflection coefficients under different degrees of

meshing can be compared.

From Tables 1 and 2, it is noticed that “PLATE” can provide very good accuracy even when the

mesh is very coarse, which is not easily achieved in the finite element analysis. For the moment

coefficients, they are slightly less accurate as compared with the deflection coefficients which are

expected from displacement based finite element analysis. But even so, the moment coefficients are

very good for a coarse mesh if the t/L ratio is less than 0.1. For a mesh size of 8 × 8 which is still

relatively coarse, the results by the present element are very good for both the moment and

deflection. The results are even better for further finer meshes. On the other hand, the performance

of the popular IB element is relatively poor for both the deflection and moment with a coarse mesh.

For a mesh size of 32 × 32 which is relatively fine, the accuracy of the IB element is fair for the

deflection but is still relatively poor for the moment unless the thickness of the plate is small. In

conclusion, the performance of the popular IB element is not good enough and the rate of

convergence of the results with increasing number of elements is only fair. Plate is also slightly

more accurate than RDKQM and DKTM/RDKTM. Compared with ARS-Q12, the moment

coefficients from PLATE is better than the ARS-Q12 when t/l ≤ 0.15, while the reverse situation

will happen when t/l ≥ 0.15. The comparisons of the 6 node triangular element by Sheikh and Dey

are similar to that for ARS-Q12. For the thickness/span ratios commonly encountered in civil

engineering, “PLATE” can provide very accurate solutions with coarse meshes. 

Over the past two decades, many thick plate elements have been developed (Zienkiewicz 2000).

The use of bubble functions by Taylor and others which is similar to the addition of incompatible

mode by Wilson (1973) is generally an effective way to increase the accuracy of solution. But

physically it is less direct than the present formulation of “PLATE” where only energy minimization

is used. Those elements based on the use of bubble functions (used by Taylor in program FEAP),

stabilization matrix (Hughes 1987) or substitute shear strain (RDKQM, DKTM, RDKTM) are

mathematically simpler than the present formulation. But the present formulation possesses the

advantage of using total energy consideration without the need of artificial compensations in form

of bubble functions or stabilization matrices. Even though the resulting matrices from the present

formulation are more complicated in the form, the present formulation is easier to understand as

compared with most of the modern thick plate formulation. Zienkiewicz and Taylor (2000) have

carried out a detailed comparison between the normalized moment and deflection coefficients for
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Table 1 Bending moment (Mx) coefficients at the centre of plate for different thickness/span ratios and mesh
sizes (μ = 0.3 and the bending moment coefficient by rigorous solution is 0.04789)

t/L = 0.001

2×2 4×4 8×8 16×16 32×32

IB 0.03921 0.04878 0.04808 0.048 0.04798

“PLATE” 0.0487 0.04779 0.04784 0.04787 0.04788

ARS-Q12 0.05009 0.04839 0.04801 0.04792 —

t/L = 0.01

IB 0.03923 0.04892 0.04865 0.04836 0.04805

“PLATE” 0.04872 0.04781 0.04786 0.0479 0.0479

RDKQM 0.05015 0.04842 0.04804 — —

DKTM/RDKTM 0.04779 /0.05165 0.04819 /0.04876 0.04805 /0.04818 — —

ARS-Q12 0.05012 0.04842 0.04804 0.04794 —

Sheikh and Dey 0.0502 0.04847 0.04805 — —

t/L = 0.1

IB 0.04079 0.05291 0.05076 0.04959 0.0493

“PLATE” 0.05061 0.04937 0.0486 0.04812 0.04795

ARS-Q12 0.05223 0.04841 0.04834 0.04801 —

Sheikh and Dey 0.05124 0.04884 0.04814 — —

t/L = 0.15

IB 0.04242 0.0542 0.05177 0.05067 0.05037

“PLATE” 0.05249 0.05026 0.04876 0.04814 0.04795

Sheikh and Dey 0.05140 0.04886 0.04814 — —

t/L = 0.2

IB 0.04423 0.05531 0.05288 0.05185 0.05157

“PLATE” 0.05448 0.05088 0.04884 0.04814 0.04795

RDKQM 0.05430 0.04973 0.04837 — —

DKTM/RDKTM 0.05775/0.05556 0.05062/0.05042 0.04859/0.04858 — —

ARS-Q12 0.05429 0.04972 0.04837 0.04801 —

Sheikh and Dey 0.05147 0.04887 0.04814 — —

t/L = 0.25

IB 0.04601 0.05631 0.05397 0.05302 0.05276

“PLATE” 0.05634 0.05129 0.04888 0.04814 0.04795

Sheikh and Dey 0.05150 0.04888 0.04814 — —

t/L = 0.3

IB 0.04764 0.0572 0.05497 0.05409 0.05385

“PLATE” 0.05797 0.05157 0.0489 0.04815 0.04795

ARS-Q12 0.05523 0.04981 0.04837 0.04801 —

t/L = 0.35

IB 0.04905 0.05797 0.05587 0.05505 0.05482

“PLATE” 0.05932 0.05176 0.04891 0.04815 0.04795

ARS-Q12 0.05549 0.04983 0.04838 0.04801 —
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Table 2 Deflection coefficients at the centre of plate for different thickness/span ratios and mesh sizes (μ =
0.3)

t/L = 0.001 (coefficient = 0.004062 by rigorous solution)

2×2 4×4 8×8 16×16 32×32

IB 0.002891 0.003724 0.003523 0.003847 0.003853

“PLATE” 0.003784 0.004045 0.004059 0.004061 0.004061

ARS-Q12 0.004045 0.004060 0.004062 0.004062 —

t/L = 0.01 (coefficient = 0.004064 by rigorous solution)

IB 0.002895 0.003733 0.003848 0.003869 0.003892

“PLATE” 0.003787 0.004048 0.004061 0.004064 0.004064

RDKQM 0.004048 0.004062 0.004063 — —

DKTM/RDKTM 0.003972/0.004058 0.004044/0.004069 0.004061/0.004065 — —

ARS-Q12 0.003993 0.004046 0.004060 — —

t/L = 0.1 (coefficient = 0.004273 by rigorous solution)

IB 0.003307 0.004226 0.004233 0.004203 0.004194

“PLATE” 0.003997 0.004229 0.004256 0.004267 0.004272

ARS-Q12 0.004047 0.004062 0.004063 0.004064 —

Sheikh and Dey 0.004212 0.004258 0.004269 — —

t/L = 0.15 (coefficient = 0.004536 by rigorous solution)

IB 0.003793 0.00463 0.0046 0.004573 0.004566

“PLATE” 0.004276 0.004485 0.004518 0.004531 0.004535

Sheikh and Dey 0.004484 0.004523 0.004533 — —

t/L = 0.2 (coefficient = 0.004906 by rigorous solution)

IB 0.004426 0.005131 0.005081 0.005055 0.005049

“PLATE” 0.004687 0.004857 0.004888 0.004899 0.004903

RDKQM 0.004858 0.004889 0.004900 — —

DKTM/RDKTM 0.005001/0.004902 0.004932/0.004904 0.004913/0.004906 — —

ARS-Q12 0.004857 0.004889 0.004900 0.004903 —

Sheikh and Dey 0.004864 0.004894 0.004902 — —

t/L = 0.25 (coefficient = 0.005379 by rigorous solution)

IB 0.005184 0.005731 0.005664 0.005638 0.005631

“PLATE” 0.005233 0.005348 0.005369 0.005377 0.005377

Sheikh and Dey 0.005352 0.005371 0.005376 — —

t/L = 0.3 (coefficient = 0.005956 by rigorous solution)

IB 0.006056 0.006428 0.006342 0.006314 0.00631

“PLATE” 0.005923 0.005951 0.005953 0.005956 0.005956

ARS-Q12 0.005950 0.005953 0.005956 0.005956 —

t/L = 0.35 (coefficient = 0.006641 by rigorous solution)

IB 0.007036 0.00722 0.007113 0.007081 0.007073

“PLATE” 0.006753 0.006678 0.006645 0.006642 0.006641

ARS-Q12 0.006667 0.006646 0.006642 0.006641 —
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various thick plate elements and the results from “PLATE” are added to the comparisons which are

shown in Figs. 11 and 12.

With reference to the results by Zienkiewicz and Taylor (2000), it is noted that the “PLATE”

element has demonstrated very high accuracy and is practically the best element among those

elements as shown in Figs. 11 and 12. For a mesh of 4 × 4, results from “PLATE” are practically

exact which are not possible with all of the other thick plate elements. Interestingly, “PLATE” is

more accurate than the 9 nodes elements, and this result has demonstrated that, apart from the order

of the element, the formulation of the element is an important factor for the success of a good thick

plate element. 

Though the “PLATE” element yields very accurate results, its formulation is however more

complicated than the IB element which is commonly used by many engineers. Nevertheless, once

the element is programmed, it can be used in a way similar to any other classical thick plate

element with only minor increase in computation efforts as most of the computer time is devoted to

solution of stiffness matrix equations rather than stiffness matrix formulations. By using the Fortran

compiler in developing “PLATE”, the authors have compared solution time with the commercial

program using the IB elements based on the same compiler. The total solution times for a mesh

with 16641 nodes are virtually the same for IB element and “PLATE”. For a smaller mesh, the use

of “PLATE” will take only slightly longer solution time and a much better accuracy can be

achieved. 

6. Discussion and conclusion

In the present paper, the authors have discovered some problems with the IB element which is

being used by many engineers in different countries for thick plate analysis. As demonstrated in

Figs. 5 and 6, very surprising results may be obtained along the free edge where there is serious

warping. The popular IB element may experience shear lock phenomenon at cantilever edge if the

thickness is small and the element size is large. On the other hand, “PLATE” can perform well for

cantilever edge at different plate thickness and element size.

Fig. 11 Normalized displacement coefficient    Fig. 12 Normalized moment coefficient
with respect to thin plate solution for simply supported, uniformly loaded square plate (t/l = 0.01) 
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In addition, the authors have also discovered some surprising shear jump phenomenon as shown

in Fig. 8. Actually, the authors have also discovered surprising moment and twisting moment jump

from the present study, but these problems are less critical compared with the shear jump

phenomenon as shear force is formed by the derivative of the moment. The authors suggest that

engineers should perform proper analyses and designs based on knowledge and judgment and more

efforts should be spent in the analysis and detailed study of the results. In particular, besides the

averaged results used for analysis, the local results should also be studied which may reveal

problems. This problem has emerged but is often left unnoticed which is due to the over-reliance on

the use of computer software and the averaged nodal results for design by some engineers without

full awareness of these “jumps” across elements. Designers are strongly advised to check the

“stresses” in the individual elements to spot if the “jumps” are significant before the average nodal

results are used for design.

In view of the problems with the popular IB element, the authors have developed a new thick

plate element “PLATE” which can overcome the problems of the IB element. “PLATE” has better

shear strain treatment and will produce better results as compared with the IB element, especially at

locations with heavy warping. The authors have studied four cases (two of which originate from

real jobs in Hong Kong) and the problems of the popular IB element are clearly illustrated.

“PLATE” has performed well in all these interesting cases. The formulation of “PLATE” is based

on energy minimization which is more direct to engineers as compared with the use of bubble

functions, substitute shear strain or stabilization matrices. Since a very high accuracy can be

achieved by “PLATE”, the more cumbersome efforts in forming the stiffness matrix of the element

in computation can be well balanced off by the use of a coarse mesh but with greater accuracy.

Compared with the recent thin/thick plate elements, the present formulation is better than those

based on the substitute shear strain and are comparable to the other modern thin/thick plate

elements. For most practical applications where the thickness/span ratio is less than 0.2, the present

formulation provides a good solution for engineering use which is illustrated in Tables 1 and 2.

9 nodes or 8 nodes elements can provide good accuracy which can be seen from Figs. 8 and 9.

They are however not convenient to be used in practice and the accuracy of “PLATE” is actually as

good as those 9 nodes elements. For practical applications, most of the engineers and computer

softwares adopt 4 nodes elements to suit the superstructure layout and loadings. From Fig. 11 and

12, the accuracy of “PLATE” is far better than many 4 nodes elements and the present thick plate

element can be useful to large transfer plate where a fine mesh can be very time consuming in

analysis.

References

Abdalla, J.A. and Ibrahim, A.K. (2007), “A geometrically nonlinear thick plate bending element based on mixed
formulation and discrete collocation constraints”, Struct. Eng. Mech., 26(6), 725-739.

Bathe, K.J. and Dvorkin, E.N. (1985), “A Four node plate bending element based on Mindlin/Ressiner plate
theory and mixed interpolation”, Int. J. Numer. Meth. Eng., 21, 367-383.

Bathe, K.J., Brezzi, F. and Cho, S.W. (1989), “The MITC7 and MITC9 plate elements”, Comput. Struct., 32,
797-814.

Batoz, J.L. and Lardeur, P. (1989), “A discrete shear triangular nine D.O.F. element for the analysis of thick to
very thin plates”, Int. J. Numer. Meth. Eng., 28, 533-560.

Cen, S., Long, Y.Q., Yao, Z.H. and Chiew, S.P. (2006), “Application of the quadrilateral area co-ordinate



Problems with a popular thick plate element 349

method: A new element for Mindlin-Reissner plate”, Int. J. Numer. Meth. Eng., 66, 1-45.
Chen, W.J. and Cheung, Y.K. (2000), “Refined quadrilateral element based on Mindlin/Reissner plate theory”,

Int. J. Numer. Meth. Eng., 47, 605-627.
Chen, W.J. and Cheung, Y.K. (2001), “Refined 9-Dof triangular Mindlin plate elements”, Int. J. Numer. Meth.

Eng., 51, 1259-1281.
Computers and Structures Inc. (2002), Safe 7.0 User’s and Verification Manual.
Computers and Structures Inc. (2002), Sap2000 8.0 User’s Manual.
Gruttmann, F. and Wagner, W. (2004), “A stabilized one-point integrated quadrilateral Reissner-Mindlin plate

element”, Int. J. Numer. Meth. Eng., 61, 2273-2295.
Hartmann, F. and Katz, C. (2004), Structural Analysis with Finite Elements, Springer.
Hughes, T.J.R. (1987), The Finite Element Method, Prentice Hall.
Ibrahimbegovic, A. (1992), “Plate quadrilateral finite elements with incompatible modes”, Commun. Appl.

Numer. Meth., 8, 497-504.
Ibrahimbegovic, A. (1993), “Quadrilateral finite elements for analysis of thick and thin plates”, Comput. Meth.

Appl. Mech. Eng., 10, 195-209.
Jirousek, J., Wroblewski, A. and Szybinski, B. (1995), “A new 12 d.o.f. Quadrilateral element for analysis of

thick and thin plates”, Int. J. Numer. Meth. Eng., 38, 2619-2638. 
Katili, I. (1993), “A new discrete Kirchhoff-Mindlin element based on Mindlin-reissner plate theory and assumed

shear strain fields – Part I: An extended DKT element for thick-plate bending analysis”, Int. J. Numer. Meth.
Eng., 36, 1859-1883.

Lyly, M. and Stenbergy, R. (1998), “The stabilized MITC plate bending elements”, Computational Mechanics,
New Trends and Applications, CINME Press, Barcelona, Spain.

Onate, E., Zienkiewicz, O.C., Suarez, B. and Taylor, R.L. (1992), “A general methodology for deriving shear
constrained Reissner-Mindlin plate element”, Int. J. Numer. Meth. Eng., 33, 345-367.

Ozdemir, Y.I., Bekiroglu, S. and Ayvaz, Y. (2007), “Shear locking-free analysis of thick plates using Mindlin’s
theory”, Struct. Eng. Mech., 27(3), 311-331.

Ozgan, K. and Daloglu Ayse, T. (2007), “Alternative plate finite elements for the analysis of thick plates on
elastic foundations”, Struct. Eng. Mech., 26(1), 69-86.

Reddy, J.N. (2000), Theory and Analysis of Elastic Plates, Taylor and Francis.
Sheikh, A.H. and Dey, P. (2001), “A new triangular element for the analysis of thick and thin plates”, Commun.

Numer. Meth. Eng., 17, 667-673.
Soh, A.K., Cen, S., Long ,Y.Q., Long, Z.F. (2001), “A new twelve DOF quadrilateral element for analysis of

thick and thin plates”, Euro. J. Mech. A/Solids, 20(2), 299-326.
Sze, K.Y. (2002), “Three-dimensional continuum finite element models for plate/shell analysis”, Pro. Struct. Eng.

Mater., 4, 400-407.
Szilard, R. (2004), Theory and Applications of Plates Analysis of Plates, John Wiley.
Timoshenko, S. and Krieger, W. (1959), Theory of Plates and Shells, McGraw-Hill.
Reismann, H. (1988), Elastic Plates, Theory and Application, John Wiley.
Tessler, A. and Hughes, T.J.R. (1985), “A three-node Mindlin plate element with improved transverse shear”,

Comput. Meth. Appl. Mech. Eng.
Urugal, A.C. (1999), Stress in Plates and Shells 2nd edition, McGraw-Hill.
Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates, Elsevier.
Wilson, E.L., Taylor, R.L., Doherty, W. and Ghaboussi, J. (1973), “Incompatible displacement models”, Numer.

Comput. Meth. Struct. Mech., Academic press.
Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method 5th edition, 2, Butterworth-Heinemann.




