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Abstract. The use of metric trial functions to represent the real stress field in what is called the
unsymmetric finite element formulation is an effective way to improve predictions from distorted finite
elements. This approach works surprisingly well because the use of parametric functions for the test
functions satisfies the continuity conditions while the use of metric (Cartesian) shape functions for the
trial functions attempts to ensure that the stress representation during finite element computation can
retrieve in a best-fit manner, the actual variation of stress in the metric space. However, the issue of how
to handle situations where there is locking along with mesh distortion has never been addressed. In this
paper, we show that the use of a consistent definition of the constrained strain field in the metric space
can ensure a lock-free solution even when there is mesh distortion. The three-noded Timoshenko beam
element is used to illustrate the principles. Some significant conclusions are drawn regarding the optimal
strategy for finite element modelling where distortion effects and field-consistency requirements have to
be reconciled simultaneously.

Keywords: mesh distortion; locking; unsymmetric parametric-metric formulation; metric trial function;
Timoshenko theory; three-node beam element.

1. Introduction

Conventional displacement type finite element formulations use identical trial and test functions

(Galerkin elements) and perform well when used in regular meshes. When these meshes are

distorted, their performance degrades rapidly and this has been well known (Stricklin et al. 1977,

Backlund 1978, Gifford 1979, Arnold et al. 2002). Many efforts have been made over several

decades to improve mesh distortion sensitivity.

Recently, Rajendran and co-workers (Rajendran and Liew 2003, Ooi et al. 2004, Rajendran and

Subramanian 2004) introduced what they called the unsymmetric formulation. Here, two separate

sets of shape functions, viz., the so-called compatibility (or continuity) enforcing isoparametric shape
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functions (in natural space) and the so-called completeness enforcing metric shape functions (in

Cartesian space) are used tactically. The former satisfy exactly the minimum inter- as well as intra-

element displacement continuity requirements, while the latter ensure all the (linear and where

necessary, higher order) completeness requirements. Numerical results from test problems reveal

that the unsymmetric elements (e.g., the new plane stress element, Rajendran and Liew 2003) can

reproduce accurately displacement fields under various types of admissible mesh distortions only if

the continuity enforcing shape functions are based on isoparametric functions and are actually used

as the test functions while the completeness enforcing shape functions are based on metric forms

and are used as the trial functions. The physical insight into why the test functions should be

continuity enforcing and why this is ensured if isoparametric functions are adopted is easy to

understand (Rajendran and Subramanian 2004).

Prathap et al. (2006) showed recently that the reason why the unsymmetric parametric-metric

(PM) formulation has the greatest mesh distortion immunity is because the stress representation is

managed in the metric (Cartesian) space. However, Prathap et al. (2007) showed later that the

unsymmetric PM formulation, even though it is practically a very useful device to meet the

continuity requirements and the best-fit stress recovery requirements simultaneously in a distorted

element, is not strictly variationally correct. This is a very small price to pay for the great

improvement in performance even under severe distortion.

So far, the issue of the performance of these elements in a regime where there is locking has not

been specifically addressed. Prathap and Naganarayana (1992) showed that where there is locking,

the distortion of the mesh causes this to be aggravated. Even if locking is removed by some

enabling device (reduced integration, use of substitute functions, assumed strain field approached,

etc.) for a uniform mesh, the performance will degrade dramatically when the mesh is distorted. The

field-consistency requirement under mesh distortion is a tricky condition as their studies with the

three-noded Timoshenko beam element showed. 

In this paper, we implement an unsymmetric as well as a symmetric three-noded Timoshenko

beam element with field-consistency features so that they perform well even under severe distortion.

Both use metric shape functions for the trial functions. The shear strain is made field-consistent

(Prathap 1993) in the metric space. Carefully designed numerical experiments show that in a one

dimensional situation where continuity across element edges or surfaces is a non-issue, the

symmetric consistent metric element performs more accurately than the unsymmetric element. The

extension of this to general two-dimensional and three-dimensional will be an interesting challenge,

as now the metric-metric (MM) approach will fail to ensure continuity, and only the parametric-

metric (PM) will remain as a viable candidate. This will be attempted in future work. 

2. The 3-noded Timoshenko beam element using parametric and metric functions

The three-noded isoparametric quadratic shear flexible beam element based on Timoshenko theory

(henceforth, TB3 element) is well known and excellent descriptions of it are found in most

textbooks. Therefore, the preliminary details of the formulation of the element, separately

maintaining a bending stiffness matrix and a shear stiffness matrix, are omitted here. We shall

instead focus attention on how the solution to the locking problem is complicated if the element’s

mid-node is displaced.

Fig. 1 shows the 3-noded beam element of length L with nodes at x1, x2 and x3. We assume that
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the node x2 is not at the centre of the beam so that the distortion parameter d = x2 − L/2. The

parametric (better known as isoparametric) formulation requires the interpolation of the x coordinate

using x = Nixi and the displacement fields w = Niwi, θ = Niθi, where Ni are the quadratic interpolation

parametric functions, xi are the nodal coordinates, wi are the nodal vertical displacements and θi are

the nodal rotation terms.

If r is the natural coordinate so that x1 is at r = −1, x2 is at r = 0 and x3 is at r = 1, then x and the

displacements and rotations are interpolated by

 x = r(r – 1)/2x1 + (1 – r2)x2 + r(r + 1)/2x3  (1a)

 w = r(r – 1)/2w1 + (1 – r2)w2 + r(r + 1)/2w3  (1b)

 θ = r(r – 1)/2θ1 + (1 – r2)θ2 + r(r + 1)/2θ3 (1c)

Although a quadratic interpolation is assumed for the displacement field, we note that when node

x2 is not at the centre of the beam so that the distortion parameter d is non-zero, the bending strain

κ = dθ/dx is no longer a linear function of x. 

Indeed we have,

(2)

where the denominator represents the Jacobian, J, governing the transformation from x to r spaces.

If x2 is not exactly mid-way between x1 and x3, J is no longer a constant and it is this that accounts

partly for the inaccuracy of the distorted element (Prathap et al. 2006). Rajendran and co-workers

(Rajendran and Liew 2003, Ooi et al. 2004, Rajendran and Subramanian 2004) proposed that

distortion immunity is obtained if the interpolation for the real strain/stress is derived from trial

functions in the metric, i.e., x space. The metric part of the formulation now uses w = Miwi, θ =

Miθi where Mi are the quadratic metric functions. It is a simple exercise to derive these functions

(Rajendran and Subramanian 2004). 

A major part of the inaccuracy is, however, due to what is called the shear locking problem which

is initiated by the shear strain term. The transverse shear strain can be written as 

(3)

The field-consistency requirements become very complicated (Prathap and Naganarayana 1992)

due to the fact that θ is quadratic in x, and also in r, while the remaining term, which originates

from the transverse displacement w, is linear in x but is transcendental in r due to the presence of

the Jacobian (dx/dr) term in the denominator. It is this inconsistency that causes the poor accuracy

(locking, slow convergence, stress oscillations) of the exactly integrated element. Prathap and

Naganarayana (1992) experimented with several techniques to remove locking even under

distortion. The optimal element was found to be one which had a linear variation of the strain fields

κ
dθ

dx
------

θ3 θ1–( )/2 r θ1 θ3 2θ2–+( )+

x3 x1–( )/2 r x1 x3 2x2–+( )+

--------------------------------------------------------------------= =

γ θ
dw

dx
-------– θ

dw/dr

dx/dr
---------------–= =

Fig. 1 The 3-noded beam element with nodes at x1, x2 and x3
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in the natural (parametric) space. At that time, the question did not arise whether a better

performance could have been achieved if the stress/strain had been defined to have a linear

variation in the metric (Cartesian) space. The approach where the stress field is represented using

metric (Cartesian) trial functions now allows this possibility and we shall implement it here. Thus a

symmetric (MM) and unsymmetric (PM) formulations are potential candidates for further study. 

 

3. Formulation of PP, MM and PM versions of the 3-noded beam element

The parametric shape functions for 3-noded beam element are defined as

 N1 = r(r – 1)/2, N2 = (1 – r2) and N3 = r(r + 1)/2 (4)

From Eqs. (2), (3) and (4), the strain displacement matrix can be written as

(5)

Rajendran and co-workers have given a very elaborate account of the formulation of the

unsymmetric problem and derivation of metric shape functions (Rajendran and Liew 2003, Ooi

et al. 2004, Rajendran and Subramanian 2004). However, for the sake of completeness, this is

summarized for 3-noded beam element as shown below. 

The quadratic variation of transverse displacement w and rotation θ in metric space is of the form 

(6a)

(6b)

w and θ interpolated with the metric shape functions are expressed as 

(7a)

(7b)

The metric shape functions Mi at any point x for this element can be derived by solving the

equations representing completeness conditions (Rajendran and Subramanian 2004) which must be

satisfied in order to reproduce the displacement and rotation fields exactly as given by Eq. (6).

These equations can be written in compact form as 

(8)

where the term i indicates node number and  correspond to those present in the displacement and

rotation fields of Eq. (6).

Using Eqs. (2), (3) and (7), strain displacement matrix corresponding to metric shape functions

are 

Bp

0  
1

J
---

∂ N1

∂ r
----------  0  

1

J
---

∂ N2

∂ r
----------  0  

1

J
---

∂ N3

∂ r
----------

1

J
---

∂ N1

∂ r
----------  – N1  

1

J
---

∂ N2

∂ r
----------  – N2  

1

J
---

∂ N3

∂ r
----------  – N3

=

w a0 a1x a2x
2

+ +=

θ b0 b1x b2x
2

+ +=

w Miwi=

θ Miθi=

M( )ixi

p

i 1=

3

∑ x
p
; p 0 1 2, ,= =

x
p



Mesh distortion, locking and the use of metric trial functions for displacement type finite elements 293

(9)

The stiffness matrices for the PP, MM and PM elements are then

(10)

(11)

and

(12)

The consistent load vector for the PP and PM cases is identical and is given by

(13)

where b is the body force. The consistent load vector for the MM element will then be

(14)

Numerical integration is used to derive the various matrices. The exactly integrated versions

(taking a 4-pt Gaussian rule to be sufficiently accurate to achieve this even under severe distortion)

will be called the PP4, MM4 and PM4 elements. One simple, and simplistic way, to eliminate

locking is to apply the selective reduced integration using a 3-pt Gaussian integration rule for the

bending energy and a 2-pt Gaussian rule for the shear energy. Where required to be introduced, we

shall call these versions the PP2, MM2 and PM2 elements. Note that the PP and MM elements are

symmetric elements while the PM element is based on an unsymmetric formulation. Prathap et al.

(2007) showed that only the symmetric elements gave stresses which are a best fit of the exact

solution while the unsymmetric element is slightly in error on this account. 

4. Formulation of the field-consistent versions of the PM and MM beam elements

It has been well established (Prathap and Naganarayana 1992) that the PP element locks (poor

performance, stress oscillations, etc.) in its original form based on isoparametric shape functions and

exact numerical integration. The version based on selective numerical integration, PP2, is free of

locking if the element is undistorted, but locking reappears when the mid-node is moved from the

mid-point of the element. In the PP form, the element can be made free of locking where there is

mesh distortion only by a non-trivial approach of ensuring consistency of the shear strains in the

parametric space.

We shall now try to see how a field-consistent element, where consistency is taken to imply a

Bm

0  
∂ M1

∂ x
----------- 0  

∂ M2

∂ x
-----------  0  

∂ M3

∂ x
-----------

∂ M1

∂ x
-----------  – M1  

∂ M2

∂ x
-----------  – M2  

∂ M3

∂ x
-----------  – M3

=

Kpp Bp( )
T
DBp xd∫=

Kmm Bm( )
T
DBm xd∫=

Kpm Bp( )
T
DBm xd∫=

fpp fpm N( )
T
b xd∫= =

fmm M( )
T
b xd∫=
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linear variation of shear strain in the Cartesian (metric) space, can be implemented. From Eq. (3),

we can see that if we can derive a substitute function , which is linear in x, to replace θ which is

quadratic in x,  will be consistent with dw/dx in the Cartesian space. The substitute shear strain

field  will then be field-consistent even under severe distortion. Let the metric interpolation for

the section rotation be written as

(15)

Let this be re-written as

(16)

where typically, for node 1

The coefficients for the other nodes follow a similar cyclic pattern.

Let the substitute shape function be written as 

(17)

It is known that the variationally correct manner to determine the coefficients (bj)i from (aj)i is to

use the orthogonality condition (Prathap 1993)

(18)

The variational statement as given by Eq. (18) yields a set of two equations as follows:

(19a)

(19b)

From Eq. (19), coefficients b0 and b1 can be easily derived.

Fig. 2 shows a typical representation of the parametric (N), metric (M) and smoothed metric (SM)

shape functions at Node 1 for a case where the element spans from x = 0 to x = 1 and the mid node

is at x = 0.3. These functions are then used to derive the field-consistent versions of PM and MM

formulations, which we will call the PM4-C and MM4-C elements. It is to be emphasized here that

for the shear terms only, the test functions will remain the original parametric and metric functions

and the trial functions will now use the consistent smoothed metric functions. Only then will

continuity be assured where several elements are assembled together.

θ

θ

γ

θ
θ1 x x2–( ) x x3–( )

x1 x2–( ) x1 x3–( )
---------------------------------------
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---------------------------------------+ +=
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2
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5. Numerical experiments with the 3-noded beam element

We take up a single element test where the beam is fixed at x1 = 0 and is free at x3 = 10. The

length of the bar is therefore L = 10. The Young’s modulus is taken as E = 1500, width of section w

= 2 and depth t = 0.2 so that area of cross-section A = 0.4. Simpler loading cases like a concentrated

moment M applied at the tip, or a concentrated load P applied at the tip which results in constant

bending stress or linear bending stress and constant shear stress variations along the length of the

beam do not allow us to discriminate clearly between the merits of the various symmetric and

unsymmetric formulations. Therefore, we examine carefully the performance of the various elements

for the case where a uniformly distributed load of intensity q = 0.16 is applied over the length of the

beam. For the units assumed above, this will lead to a tip deflection w = 100, and shear stress τ =

0.4(L − x) and the bending stress at outermost fibre in the beam is σ = 6(L – x)2.

As already outlined earlier, several elements are developed for the purpose of the present

investigation. The PP elements are based on the standard symmetric formulation using the

parametric interpolations for both trial and test functions. The PP4 element uses the 4-pt. Gaussian

integration rule for the evaluation of the bending and shear stiffness matrices. The PP2 is the

conventional way of using selective reduced integration to improve the performance of the three-

noded Timoshenko beam element, using a 3-pt Gaussian integration rule for the bending energy and

a 2-pt Gaussian rule for the shear energy. The PM element uses parametric interpolations for the test

functions and metric interpolations for the trial functions and this is an unsymmetric formulation.

The PM4 and PM3 and PM2 use the various exact and selectively reduced integration strategies

respectively. The PM4-C version is based on using the substitute shape function for the section

rotation in the manner described above. Similar interpretations apply for the MM variations.

Fig. 2 A typical representation of the parametric (N), metric (M) and smoothed metric (SM) shape functions
at Node 1
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Table 1 displays results from a single element test where the mid-node is placed at x = 5 and a

uniformly distributed load of intensity q = 0.16 is applied vertically. This is a case where there is no

distortion and the PP, PM and MM versions are identical. However, the consistent versions PM-C

and MM-C are newly introduced. Table 1 shows that without reduced integration (PP4, PP3, etc.),

Table 1 Results from single element test where mid-node is placed at x = 5 and a uniformly distributed load
of intensity q = 0.16 is applied vertically 

x Exact PP4 PP3 PP2 PM4-C PM3-C MM4-C MM3-C

Deflection in z-direction

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.00 35.42 16.75 16.74 33.34 33.36 33.36 33.35 33.33

10.00 100.00 66.82 66.77 99.99 100.03 100.06 100.03 99.94

Bending stress 

0.00 600.00 201.18 201.02 499.89 500.09 500.16 500.01 499.57

2.11 373.51 200.67 200.51 373.10 373.25 373.33 373.22 372.89

5.00 150.00 199.98 199.82 199.90 199.99 200.08 200.01 199.84

7.89 26.71 199.29 199.13 26.71 26.73 26.83 26.81 26.78

10.00 0.00 198.79 198.63 −100.08 −100.11 −100.00 −99.99 −99.90

Shear stress 

0.00 4.00 13.96 13.96 2503.87 4.00 4.00 4.00 4.00

2.11 3.16 3.15 3.15 3.16 3.16 3.15 3.15 3.15

5.00 2.00 −2.98 −2.98 −1247.94 2.00 2.00 2.00 2.00

7.89 0.84 0.85 0.84 0.84 0.84 0.84 0.84 0.84

10.00 0.00 9.96 9.96 2499.87 0.00 0.00 0.00 0.00

Table 2 Results from single element test where mid-node is placed at x = 4 and a uniformly distributed load
of intensity q = 0.16 is applied vertically

x Exact PP4 PM4 MM4 PM4-C MM4-C Best-fit

Deflection in z-direction

0.000 0.00 0.00 0.00 0.00 0.00 0.00

4.000 24.32 9.66 17.44 10.95 25.10 24.02

10.000 100.00 40.35 108.77 68.16 102.74 100.02

Bending stress

0 600.00 259.91 327.07 205.20 524.26 499.98 500.00

1.447 438.97 164.46 326.71 204.86 430.47 413.18 413.18

4.000 216.00 86.23 326.06 204.24 264.92 259.97 260.00

7.220 46.37 37.35 325.26 203.47 56.14 66.76 66.80

10.000 0.00 11.79 324.56 202.81 −124.10 −100.04 −100.00

Shear stress

0 4.00 −212.20 11.96 13.89 4.00 4.00 4.00

1.447 3.42 75.36 4.34 5.93 3.42 3.42 3.42

4.000 2.40 −1.07 −2.71 −2.00 2.40 2.40 2.40

7.220 1.11 −43.84 0.09 −0.89 1.11 1.11 1.11

10.000 0.00 102.59 12.99 10.05 0.00 0.00 0.00
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Table 3 Results from single element test where mid-node is placed at x = 5 + d and a uniformly distributed
load of intensity q = 0.16 is applied vertically

d
Bending stress Shear stress 

x Exact PM4-C MM4-C Exact PM4-C MM4-C

−2.0

0.00 600.00 548.15 500.37 4.00 4.00 4.00

0.78 510.06 493.87 453.54 3.69 3.69 3.69

3.00 294.00 339.35 320.24 2.80 2.80 2.80

6.55 71.27 92.03 106.87 1.38 1.38 1.38

10.00 0.00 −147.85 −100.09 0.00 0.00 0.00

−1.5

0.00 600.00 535.93 500.55 4.00 4.00 4.00

1.11 473.85 461.12 433.70 3.55 3.55 3.56

3.50 253.50 300.74 290.37 2.60 2.60 2.60

6.89 58.15 73.16 86.98 1.25 1.25 1.25

10.00 0.00 −136.04 −99.98 0.00 0.00 0.00

−1.0

0.00 600.00 524.26 499.98 4.00 4.00 4.00

1.45 438.97 430.47 413.18 3.42 3.42 3.42

4.00 216.00 264.92 259.97 2.40 2.40 2.40

7.22 46.37 56.14 66.76 1.11 1.11 1.11

10.00 0.00 −124.10 −100.04 0.00 0.00 0.00

−0.5

0.00 600.00 511.74 499.95 4.00 4.00 4.00

1.78 405.42 400.72 393.18 3.29 3.29 3.29

4.50 181.50 231.06 230.00 2.20 2.20 2.20

7.55 35.91 40.61 46.83 0.98 0.98 0.98

10.00 0.00 −111.99 −99.94 0.00 0.00 0.00

0.0

0.00 600.00 500.09 500.01 4.00 4.00 4.00

2.11 373.21 373.25 373.22 3.15 3.16 3.15

5.00 150.00 199.99 200.01 2.00 2.00 2.00

7.89 26.79 26.73 26.81 0.85 0.84 0.85

10.00 0.00 −100.11 −99.99 0.00 0.00 0.00

the elements are poor in performance both in prediction of deflections and stresses. The reduced

integrated version (PP2), as is well known, shows very accurate deflections and bending stresses

(consistent with a best fit of exact stresses) but the shear stresses, if computed directly from the

strain-displacement relations, show wild oscillations about the Gauss points where they are correct.

The PM-C and MM-C are remarkably accurate and for the undistorted element, there is no

difference that the order of integration makes.

Table 2 displays results from a single element test where the mid-node is placed at x = 4 and a

uniformly distributed load of intensity q = 0.16 is applied vertically. We see clearly that the best

performance is obtained with the MM-C element. The bending stresses are now exactly the best-fit

of the exact stresses in metric (Cartesian) space, as predicted. However, as we have seen for the bar

element earlier (Prathap et al. 2007), the bending stresses from the PM4-C are clearly not a best-fit

as the unsymmetric formulation no longer ensures this. There is a slight departure of the bending

stress from the best fit trend and this is probably a function of the distortion parameter d. The

elements where field-consistent trial functions have not been employed in representing the shear

strain (PP4, PM4 and MM4) are clearly poor in performance.
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Table 3 Continued

d
Bending stress Shear stress 

x Exact PM4-C MM4-C Exact PM4-C MM4-C

0.5

0.00 600.00 487.59 500.33 4.00 4.00 4.00

2.45 342.32 346.80 353.44 3.02 3.02 3.02

5.50 121.50 171.10 170.11 1.80 1.80 1.80

8.22 19.01 14.59 6.80 0.71 0.71 0.71

10.00 0.00 −87.83 −100.07 0.00 0.00 0.00

1.0

0.00 600.00 476.33 500.13 4.00 4.01 4.00

2.78 312.78 322.75 333.32 2.89 2.89 2.89

6.00 96.00 144.85 140.09 1.60 1.60 1.60

8.55 12.56 3.79 −13.14 0.58 0.58 0.58

10.00 0.00 −76.13 −99.95 0.00 0.00 0.00

1.5

0.00 600.00 464.33 500.75 4.00 4.00 4.00

3.11 284.56 299.83 313.74 2.75 2.76 2.76

6.50 73.50 120.88 110.30 1.40 1.40 1.40

8.89 7.44 −5.23 −33.08 0.45 0.45 0.45

10.00 0.00 −64.06 −99.95 0.00 0.00 0.00

2.0

0.00 600.00 452.61 501.31 4.00 4.01 4.00

3.45 257.68 278.67 294.03 2.62 2.62 2.62

7.00 54.00 99.34 80.33 1.20 1.20 1.20

9.22 3.65 −12.70 −53.19 0.31 0.31 0.32

10.00 0.00 −52.06 −100.09 0.00 0.00 0.00

Fig. 3 Bending stresses from PM4-C for varying distortion parameter d show that the best-fit nature of finite
element stresses is disturbed in the PM formulation
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Table 3 shows that the departure of the bending stresses from the best fit is a function of the

distortion parameter d. This implies that the loss of variational correctness (interpreted here as the

closeness to the best fit) of the PM-C formulation is directly related to the degree of distortion. This

is captured in Fig. 3 where the bending stresses from PM4-C for varying distortion parameter d

show that the best-fit nature of finite element stresses is disturbed in the PM formulation. However,

the MM-C is totally immune to mesh distortion.

5. Conclusions

In this paper, we have demonstrated that the use of a consistent definition of the constrained strain

field along with the use of metric trial functions approach can ensure a lock-free solution even when

there is mesh distortion. The three-noded Timoshenko beam element is used to illustrate the

principles. Some key conclusions that emerge from this study regarding the optimal strategy for

finite element modelling where distortion effects and field-consistency requirements have to be

reconciled simultaneously can be tabulated as:

1. The PM or MM approach per se does not address the locking problem.

2. The stresses/strains that need to be consistently defined (no spurious constraints) must be

represented in consistent form in the Cartesian (metric) space.

3. In a one-dimensional problem, continuity between elements is enforced at a point (and not

across element edges or surfaces as in two and three dimensions) and therefore both PM and

MM approaches are viable.

4. We have seen (Prathap et al. 2007) that the PM formulation is not variationally correct (i.e., it

is not a best fit to the exact solution) while the MM formulation is. Thus where lack of

continuity is not an issue, as in the one-dimensional problem here, the MM-C approach gives

the best result. 
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