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Abstract. In the present study, the discrete singular convolution (DSC) method is developed for
buckling analysis of columns and thin plates having different geometries. Regularized Shannon’s delta
(RSD) kernel is selected as singular convolution to illustrate the present algorithm. In the proposed
approach, the derivatives in both the governing equations and the boundary conditions are discretized by
the method of DSC. The results obtained by DSC method were compared with those obtained by the
other numerical and analytical methods.
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1. Introduction

Plates of arbitrary shape have been widely used in civil, aerospace, mechanical engineering and

marine industries. Knowledge of the buckling characteristics of these structures is important. The

buckling analysis of beams and plates may be either analytical or numerical. The analytical or

rigorous approach consists of methods for seeking direct solutions to the governing differential

equations of plates. It is well known that the analytical solution of problems can be obtained for

only a certain simple cases. Generally, analytical solution cannot be found. Consequently,

approximate numerical methods are the only alternative that can be employed. Recently, the method

of discrete singular convolution (DSC) proposed by Wei (2001) has been increasingly applied to

solve many engineering and sciences problems. As stated by Wei (2001a) singular convolutions

(SC) are a special class of mathematical transformations, which appear in many science and

engineering problems, such as the Hilbert, Abel and Radon transforms. In fact, these transforms are

essential to many practical applications, such as computational electromagnetic, signal and image

processing, pattern recognition, topography, molecular potential surface generation and dynamic
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simulation. It was stated that by Wei (2001, 2001a) DSC not only provides a rigorous justification

for a number of informal manipulations in physical science and engineering, but also opens a new

area of mathematics, which in turn gives impetus in many other mathematical disciplines, such as

operator calculus, differential equations, functional analysis, harmonic analysis and transformation

theory (Zhao and Wei 2002). 

This paper deals with the application of the DSC method for the buckling analysis of columns,

rectangular, skew, and circular plates with clamped and simply supported boundary conditions. To

the author knowledge, it is the first time the DSC method has been successfully applied to plate

problems for the analysis of buckling. Results are compared with existing solutions available from

other analytical and numerical methods. In the present paper, details of the DSC method are not

given; interested readers may refer to the works of Wei et al. (2002, 2002a), Zhao et al. (2002,

2005), and Civalek (2007, 2007a, 2007b). In the present study, a new computational algorithm, the

discrete singular convolution (DSC), is introduced for solving the buckling problems of columns

and plates. Plates of different shapes such as rectangular, circular, square, and skew subjected to

different boundary conditions are selected to demonstrate the accuracy of the method.

2. Discrete singular convolution (DSC)

The method of discrete singular convolution (DSC) is an effective and simple approach for the

numerical verification of singular convolutions, which occur commonly in mathematical physics and

engineering. The discrete singular convolution method has been extensively used in scientific

computations in past ten years. For more details of the mathematical background and application of

the DSC method in solving problems in engineering, the readers may refer to some recently

published reference (Wei 2000, Wei et al. 2001, Zhao et al. 2002). The mathematical foundation of

the DSC algorithm is the theory of distributions and wavelet analysis. Consider a distribution, T and

 as an element of the space of the test function. Following notations given by Wei (2001), a

singular convolution can be defined by Wei (2001)

(1)

where  is a singular kernel. The mathematical property or requirement of f (x) is determined

by the approximate kernel Tα. Recently, the use of some new kernels and regularizer such as delta

regularizer (Wei et al. 2002) was proposed to solve applied mechanics problem. The Shannon’s

kernel is regularized as (Zhao et al. 2005)

; σ > 0 (2)

where Δ is the grid spacing. It is also known that the truncation error is very small due to the use of

the Gaussian regularizer, the above formulation given by Eq. (2) is practically and has an essentially

compact support for numerical interpolation. Eq. (2) can also be used to provide discrete

approximations to the singular convolution kernels of the delta type (Zhao et al. 2005)
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where  and superscript (n) denotes the nth-order derivative, and 2M+1 is the

computational bandwidth which is centred around x and is usually smaller than the whole

computational domain. In the DSC method, the function f(x) and its derivatives with respect to the x

coordinate at a grid point xi are approximated by a linear sum of discrete values f (xk) in a narrow

bandwidth [x − xM, x + xM]. This can be expressed as (Wei 2001)

; (4)

where superscript n denotes the nth-order derivative with respect to x. 

3. Buckling of plates and columns

3.1 Buckling of linear elastic columns

The non-dimensional governing differential equation for buckling behavior of an elastic column is

given by 

(5)

in which, X = x/L, W = w/L and . Eq. (5) can be given by applying the DSC as

. for (6)

Numerical applications have been done for a linearly elastic beam under three different boundary

conditions, namely simply supported-simply supported (S-S), clamped-simply supported (C-S),

clamped-clamped (C-C). Following, DSC form of clamped and simply supported boundary

conditions are given.

  For clamped supported:  and (7a, 7b)

For simply supported:  and (8a, 8b)

Eq. (6) can be rewritten as,

 for (9)

Wei et al. (2002, 2002a) and Zhao et al. (2002) proposed a practical method to incorporate the

boundary conditions. More recently, Zhao et al. (2005) applied the iteratively matched boundary

method to impose the free boundary conditions for solid mechanic problem. In this paper, details of

imposing of boundary conditions in DSC method are not given in detail; interested readers may

refer to the works of Wei et al. (2002, 2002a), Zhao et al. (2002), and Civalek (2007b, 2008). By
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the DSC rule, the governing equations and the corresponding boundary conditions can be replaced

by a system of simultaneously linear algebraic equations in terms of the displacements at all the

sampling points. Thus, the buckling load of column under a given axial load P can be found by

solving resulting eigenvalue equations.

3.2 Buckling of circular plates 

Consider a thin, circular plate of uniform thickness subject to a uniform compressive radial load

Fc distributed around the edge of the plate. There were two different governing equations in the

literature (Bert et al. 1994). Both the third order and the fourth order differential equation can be

used to obtain the buckling load. In this study, only third-order governing equation is used. This

equation is given by 

(10)

where, a is known as the outside radius of the plate and D denotes the flexural rigidity of plates,

and it is given as D = Eh3/12(1 − ν2), ν is the Poisson’ ratio, E is the modulus of elasticity of the

plate material, h is the uniform plate thickness, u is the displacement in the z direction. Applying

the DSC method to Eq. (10), one obtains

(11)

The regularity condition at the centre of the plate is given in DSC form

(12)

The boundary conditions for a clamped outside edge are also given in DSC form

and (13a, 13b)

Similarly, the boundary conditions for a simply supported outside edge are

and (14a, 14b)

where the repeated index j means summation from 1 to N. We only keep the discretized equations

for j = 2 to (N − 2) in Eq. (11) because there is one boundary condition at R = 0 and there are two

boundary conditions at R = 1. Consequently, we solve the remaining eigenvalue problem to obtain

the natural frequencies.

3.3 Buckling analysis of rectangular plates 

The governing differential equation of buckling of a thin rectangular plate is given by following

non-dimensional form
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 (15)

Where u is the transverse displacement of the midsurface of the plate, U is the dimensionless

mode function of the deflection, X = x/a, Y = y/b are the dimensionless coordinates, a and b are the

dimensions of the plate parallel to x-axis and y-axis, k = a/b is ratio of the plate edge length or

aspect ratio, and Hx is the uniaxial compression load. D denotes the flexural rigidity of plates and

it’s given as D = Eh3 /12(1 − ν2), ν is the Poisson’ ratio, E is the modulus of elasticity, h is the

uniform plate thickness. DSC form of Eq. (15) is

(16)

The boundary conditions for a plate clamped on all four edges (C-C-C-C) are the displacement

and rotation must be zero on edge 

(17a, 17b)

(18a, 18b)

The boundary conditions for a plate simply supported on all four edges (S-S-S-S) are the

displacement and moment must be zero on edge 

(19a, 19b)

(20a, 20b)

Substituting the discredited boundary conditions into Eq. (16) gives the following typical

eigenvalue equation as similar to the Eq. (9) for beam

(21)

The eigenvalues, the buckling loads, of the [S] matrix are obtained by inverse iteration with

shifting (Bathe 1982). Thus, solving Eq. (21) yields buckling loads.

3.4 Buckling analysis of skew plates

It is known that, there are no closed- form solutions for the buckling behavior of skew plates.

Therefore, numerical methods must be utilized to solve the problem. Consider a thin isotropic skew

plate. The governing differential equations for skew plates under uniaxial compression Fx along the

x direction and its differential quadrature form are given respectively (Wang et al. 1994)
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Numerical applications have been done for a thin skew plate under two different boundary

conditions, namely simply supported-simply supported (S-S), clamped-clamped (C-C). Simply

supported boundary conditions are

(23a)

(23b)

The clamped boundary conditions are

(24a)

(24b)

After the applying the DSC algorithm, the discretized form of Eq. (22) can be given by

 

(25)

4. Results and comparisons

Table 1 and Table 2 summarize numerical results of buckling loads by DSC for the case of linear

elastic columns with three different boundary conditions. The buckling load by Chajes (1974) using

the finite difference (FD) method is also presented in Table 1 for comparison. It is shown in Table 1

that DSC results using five grid points are more accurate than the FD for five grid points. From

Table 2, one can conclude that for all numerical methods, the solutions converge as the grid number

is increased. A reasonably converged solution may be achieved for 5 grids by DSC. In addition to

this, a reasonably converged solution may be obtained for 9 grid points using FEM. The best

solution is obtained for N = 7 grid points by using DSC method.

Table 3 tabulates the critical buckling loads obtained by DSC method for circular plates with

clamped and simply supported boundary conditions. Table 3 includes both the different numerical

solutions and the exact solutions. Authors used the finite element method (FEM) for this problem

before (Civalek 1998). Results obtained from finite element method are indicated by FEM. HDQ
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Table 3 for comparison. For N = 9, HDQ and DQ results are also obtained once again for this

problem. The obtained buckling loads are compared with those calculated with the DQ, HDQ,

FEM, and the exact method. The DSC results are generally in agreement with the results produced

from the analytical (Iyengar 1988) and the DQ results (Bert et al. 1994). Buckling loads of simply

supported circular plates with different values of Poisson’s ratios are given in Table 4. It is shown in

this table that, when the number of grid points is larger than 16, the DSC results are independent of

grid. It is also shown that the increasing value of Poisson’s ratios always increases the buckling

load. Table 5 summarizes numerical results of non-dimensionalized buckling loads by DQ and DSC

for cases of square plates with four different support conditions. As can be seen, the DSC results

compare very well with the analytical solutions from references (Iyengar 1988) for only 9 × 9 grid

Table 1 Comparison of buckling loads for different columns

Finite difference
Chajes, 1982 (N = 5)

Exact
Iyengar, 1988

DSC
(N = 5)

DSC
(N = 9)

C-C 41.360 39.478 40.434 39.480
S-S 11.548 9.869 10.469 9.868
C-S 22.296 20.142 20.965 20.142

Table 2 Comparison of column buckling loads for different numerical methods

Support
Conditions

Chajes, 
1982 

(N = 5)

Civalek, 2004 Present results Exact
Iyengar, 

1988
FEM

(N = 5)
FEM

(N = 7)
FEM

(N = 9)
HDQ

(N = 5)
HDQ

(N = 7)
DSC

(N = 5)
DSC

(N = 7)

C-C 41.360 40.254 39.984 39.614 39.547 39.478 40.434 39.480 39.478
S-S 11.548 10.376 9.816 9.897 9.851 9.869 10.469 9.869 9.869
C-S 22.296 21.946 20.664 20.285 20.205 20.141 20.965 20.143 20.142

Table 3 Critical buckling load of the circular plates (ν = 0.30; )

Support 
conditions

DSC 
(N = 9)

FEM (N = 11)
Civalek, 1998

DQ 
(N = 9)

HDQ
(N = 7)

HDQ 
(N = 9)

Iyengar, 1988

S-S 4.29 4.12 4.20 4.19 4.20 4.20
C-C 14.67 14.74 14.68 14.66 14.68 14.68

Table 4 Buckling loads of simply supported circular plates with different values of Poisson’s 
ratios ( )

ν DSC (N = 11) DSC (N = 16) DSC (N = 21)

0.0 3.485 3.405 3.403
0.1 3.712 3.650 3.648
0.2 3.911 3.816 3.815
0.3 4.213 4.201 4.189
0.4 4.415 4.441 4.436
0.5 4.688 4.680 4.674
0.6 5.237 5.115 5.112

Ncr Ncra
2/D=

Ncr Ncra
2/D=
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points. It is observed that by increasing the number of grid points within the range 5 ≤ Nx = Ny ≤ 9,

the DSC results approach monotonically the corresponding exact results.

Buckling loads obtained for square plates are presented in Table 6 together with the exact

solutions (Iyengar 1988), finite element (Civalek 1998), and harmonic differential quadrature

(Civalek 2004). Results obtained from the finite element method are indicated by FEM. Reasonably

accurate results can be achieved by using only 9 × 9 grid points for DSC. From the table, the

convergence of the DSC method is seen to be very good. It is also shown in this table that, DSC

method produces better convergent solutions than the FEM when a similar number of grid points

are used. In case of the rectangular plate; the obtained results are presented for aspect ratios of k =

a/b = 1/5, 2/5, 4/5, 5/5. Six different type plate configurations are taken into consideration. Table 7

presents the non-dimensional buckling load for rectangular plates. The buckling coefficients for

clamped skew plates are listed in Table 8 together with those given by Wang et al. (1994). The

numerical results had been obtained for k = 1. Four different skew angles θ are taken into

consideration. HDQ and DQ results are obtained using various number of grid points for

comparison. Reasonably accurate results can be achieved by using 9 grid points in HDQ and DQ.

However, a reasonably converged solution may be obtained for 11 grid points using FEM. The non-

dimensional buckling coefficients of skew plates with simply supported boundary conditions

obtained by DSC are listed in Table 9. The number of discrete points considered along the non-

dimensional X- and Y-axes was taken to be seven and eleven of these cases. 

Table 5 Buckling loads of square plates (ν = 0.30; )

Support 
conditions

DQ (7 × 7)
Civalek, 2004

HDQ (7 × 7)
Civalek, 2004

DSC 
(9 × 9)

Exact
Iyengar, 1988

S-S-S-S 4.19 4.18 4.20 4.20
C-C-C-C 14.57 14.62 14.66 14.68
C-S-C-S 63.78 64.85 66.29 66.32
S-C-S-C 6.82 7.05 7.68 7.69

Ncr Ncra
2/D=

Table 6 Comparison of buckling loads of square plates (ν = 0.30; )

Support
conditions

Civalek, 2004
DSC

(7 × 7)
DSC 

(9 × 9)

FEM 
Civalek, 

1998

FEM 
Civalek, 

1998

Iyengar, 
1988HDQ

(5 × 5)
HDQ 
(7 × 7)

HDQ 
(9 × 9)

HDQ 
(11 × 11)

S-S-S-S 4.12 4.18 4.20 4.20 4.85 4.20 4.12 4.16 4.20
C-C-C-C 14.18 14.62 14.68 14.68 15.11 14.66 13.98 14.56 14.68
C-S-C-S 64.01 64.85 66.30 66.32 67.03 66.29 68.79 68.34 66.32
S-C-S-C 6.93 7.05 7.67 7.69 7.95 7.68 - 7.63 7.69

Table 7 Non-dimensional buckling load of rectangular plates for various aspect ratios

a/b C-C-C-C C-C-C-S C-C-S-S C-S-S-S C-S-C-S S-C-S-S

1/5 40.38 40.65 20.85 21.01 40.13 10.55
2/5 44.13 42.91 23.73 22.96 42.66 13.64
4/5 70.01 59.66 42.01 36.10 54.99 33.58
5/5 99.12 78.33 61.68 48.64 66.33 56.02

Ncr Ncra
2/D=
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5. Conclusions

In the present study, DSC method was introduced to study the buckling analysis of plates and

columns. The discretizing and programming procedures are straightforward and easy. Several test

examples for different plate shapes have been selected to demonstrate the convergence properties,

accuracy and simplicity in numerical implementation of DSC procedures. This has verified the

accuracy and applicability of the DSC method to the class of problem considered in this study.
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