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Abstract. This paper presents a new identification approach to prestress force. Firstly, a bridge deck is
modeled as a prestressed Timoshenko beam. The time domain responses of the beam under sinusoidal
excitation are studied based on modal superposition. The prestress force is then identified in the time
domain by a system identification approach incorporating with the regularization of the solution. The
orthogonal polynomial function is used to improve the noise effect and obtain the derivatives of modal
responses of the bridge. Good identification results are obtained from only the first few measured modal
data under both sinusoidal and impulsive excitations. It is shown that the proposed method is insensitive
to the magnitude of force to be identified and can be successfully applied to indirectly identify the
prestress force as well as other physical parameters, such as the flexural rigidity and shearing rigidity of a
beam even under noisy environment. 
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1. Introduction

Prestress force has been used very often in long span structures, and it is one of the most

important factors to describe the load-carrying capacity of a structure. Interests in the safety

assessment of the existing prestressed concrete bridges have been increased in recent years. A quick

and non-destructive test method to assess the condition of the prestress force in the structure is

required for its maintenance program. 

Work has been done on the identification of prestress force in a Bernoulli-Euler beam (Law and

Lu 2005). In practice lots of bridges have large cross-section, so the effects of rotatory inertia and

shear deformation must be taken into account. The aim of this paper is therefore to address the

problem of prestress force identification in a bridge deck that can be modeled as a simply supported
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Timoshenko beam. The bridge deck may lose some of its prestress force due to creep with long

period of service under design or overloaded vehicles. A large reduction of the prestress force from

the design value could lead to serviceability and safety problems. Therefore assessment on the

magnitude of the prestress force or the loss of pretress force in the bridge deck is important for its

load-carrying capacity. However the existing prestress force cannot be estimated directly unless the

bridge deck has been instrumented at the time of construction. Several researchers (Abraham et al.

1995) tried to predict the loss of prestress force based on a damage index derived from the

derivatives of mode shapes. Others (Miyamoto et al. 2000) studied the behavior of a beam with

unbonded tendons, and a formula was proposed to predict the modal frequency for a given prestress

force with laboratory and field test verifications. Saiidi et al. (1994) reported a study that the

sensitivity of modal frequency decreases with higher vibration modes, and the prestress force affects

the first few lower modes more significantly than the higher ones. Consequently the prestress force

would be difficult to identify from the modal frequencies. Abraham et al. (1995) also reported that

the mode shapes remain almost identical with different prestress force in the beam, and it will also

be difficult to identify the force from the measured mode shapes. More recently, Kim et al. (2004)

proposed a nondestructive method to detect prestress-loss in beam-type PSC bridges using a few

natural frequencies. An inverse-solution algorithm is proposed to detect the prestress-loss by

measuring the changes in natural frequencies, and the prestress loss in a two-span continuous PSC

beams has been identified successfully.

In the present work, the dynamic response of a prestressed Timoshenko beam is studied based on

modal superposition method. An inverse problem to identify the prestress force is then formulated.

The prestress force, flexural rigidity and shearing rigidity of the beam are all included in the

identification equation in time domain. Considering that the inverse problem always yields

unbounded results due to the non-continuity of the dependence of the results on the measured

responses, the damped least squares method is adopted to smooth out the large variations in the

identified prestress force. Orthogonal polynomial function (Law and Zhu 2000) is used to

approximate the measured strain responses to remove the measurement noise effect. The

effectiveness of using an impulsive force in the identification is also illustrated. The magnitude of

prestress force that can be identified is studied and the recommendation is made for the

identification of very small prestress forces. The effectiveness of the proposed method was verified

from both numerical study and experimental work. The works reported illustrated that identification

of prestress force with normal modal testing technique is feasible even with noisy data.

2. Forward problem 

2.1 Differential equation of motion

The bridge deck is modeled as a simply supported uniform prestressed Timoshenko beam

subjected to an external excitation force  acting at a distance xp from the left support as shown

in Fig. 1. The coupled equation for the total deflection y and rotation ψ of the cross-section under a

compressive axial force Tp can be written as

(1)

P t( )

ρA
∂

2
y x t,( )

∂ t
2

-------------------- c
∂ y x t,( )

∂ t
------------------ kAG

∂
2
y

∂ x
2

---------
∂ ψ

∂ x
--------–⎝ ⎠

⎛ ⎞ Tp
∂

2
y x t,( )

∂ x
2

--------------------+–+ P t( )δ x xp–( )=



Identification of prestress force in a prestressed Timoshenko beam 243

(2)

where y is the total deflection due to bending and shear, ψ is the slope of deflection due to bending,

ρ is the mass density of the beam, A is the cross-sectional area, c is the viscous damping

coefficient, E is the Young’s modulus, G is the shear modulus, k is the shear coefficient of cross-

section, I is the moment of inertia of the beam cross-section, Tp is the externally applied

compressive axial force (note that compression is positive and tension is negative),  is the

Dirac delta function and  is the external excitation.

2.2 Modal responses

The kinetic energy T, the strain energy U, the work done WTp due to the prestress force, the work

done Wc due to the viscous damping in the beam, and the work done W due to the external force

can be expressed respectively as
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Fig. 1 The prestressed Timoshenko beam model
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(7)

The vibration responses of the beam  in modal co-ordinates can be expressed as

 (8)

 (9)

where  are the assumed vibration modes satisfying the boundary conditions,  is the

generalized co-ordinates.

Substituting Eqs. (8) and (9) into Eqs. (3)-(7), we have
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 and  denote the first derivative of  and  with respect to time t and x,

respectively. mij is the generalized mass, kij is the generalized stiffness and  is the generalized

force. The Lagrange equation can be written as 

(16)

Substituting Eqs. (10)-(14) into Eq. (16), we have

,  (17)

Eq. (17) can be expressed in matrix form as
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2.2 Assumed mode shapes

The general form of the vibration modes for a uniform Timoshenko beam can be written as
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where A1~A4 and B1~A4 are arbitrary constants, α and β are frequency parameters. 

The vibration modes of a simply-supported Timoshenko beam are (Abramovich 1991)
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Then Eq. (18) can be reduced into the following form

+

(24)

The modal responses of the beam are computed in the time domain numerically using the

Newmark’s integration method (Newmark 1959). The natural frequency of the beam can be written

as (Abramovich 1991)

(25)

where

,

3. Inverse problem 

3.1 Identification of the prestress force from measured displacements

Express the measured displacements  at a point xm from the left support in modal co-

ordinates
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where  is the vector of displacements at Nm measurement locations. The modal

displacement can be written in the form of the least-squares pseudo-inverse

 (28)

The modal velocity and acceleration of the beam responses can be obtained from Eq. (28) by

numerical methods. However, when the measurements are polluted by noise, the use of central

difference method to calculate the modal velocity and acceleration may lead to large computational

error. Therefore the generalized orthogonal polynomial (Law and Zhu 2000) is used to model the

measured displacement so as to reduce error as
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where  is the approximate displacement at the jth measuring point. Nf is the order of the

orthogonal polynomial function. The velocity and acceleration are then approximated by the first

and second derivatives of the orthogonal polynomial.
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Rewrite Eq. (32) in a compact form
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ỹ
·

{ } ỹ
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··
{ }, , q

q· q· q··

K′[ ] q t( ){ } M[ ] q·· t( ){ } C[ ] q· t( ){ } K[ ] q t( ) F t( )–{ }+ +=

H{ }n 1× Tp G{ }n 1×=



248 Z. R. Lu, J.K. Liu and S. S. Law

where 

  

where  and vector [G] contains all the terms on the right-hand-side of Eq. (32).

The prestress force Tp can be calculated directly by the simple least-squares (LS) method 

(34)

In order to have bounds on the ill-conditioned solution, the damped least-squares (DLS) method is

used and singular value decomposition is used in the pseudo-inverse computation. Eq. (34) can be

written in the following form using the DLS method
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with the second term in Eq. (36) providing bounds to the solution.

3.2 Identification of press force from measured strains

The strain at the bottom of the beam at a point xm from the left support can be expressed similar

to Eq. (26) in terms of the generalized co-ordinates as
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3.3 Identification of prestress force, flexural rigidity and shear rigidity

Other variables in the system should be also included in the identification in reality. Since the

dimensions of the beam can be measured accurately and the modal damping can be estimated from

a preliminary spectral analysis before the identification, the variables subjected to variations are the

flexural rigidity EI and the shear rigidity kGA of the beam section. If a uniform uncracked beam is

considered in the problem, then we have Tp, EI and kGA as the three variables in the identification.

Rewrite Eq. (32) as

(40)
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(42)

or by the DLS method

(43)

4. Simulation and results

4.1 The prestress beam

A 20 m long simply supported Timoshenko beam with an axial prestress force of 0.1Tcr =

1.056 × 107 N or 0.3Tcr = 3.1677 × 107 N is studied. The parameters of the beam are: ρA = 5.0 × 103

kg/m, E = 5 × 1010 N/m2, L = 20 m, b = 0.6 m, and h0 = 1.2 m. The first six natural frequencies of

the beam are: 3.442, 13.521, 29.560, 50.607, 75.621, 103.621 (Hz) and 3.036, 11.925, 26.070,

44.633, 66.695, 91.389 (Hz) for the two prestress states, respectively. The damping ratios for these

six modes are all assumed to be 0.02. The prestress force is constant along the beam. The external

exciting force is

acting at 7 m from the left support to excite the lower few modes. 

4.2 Identification of the prestress force alone

White noise is added to simulate the polluted measurements as follows

 

where  y and ε are the vectors of polluted displacement and strain respectively, Ep is the noise level,

Noise is a standard normal distribution vector with zero mean and unit standard deviation, var(•) is

the variance of the time history,  and  are the vectors of calculated displacement

and strain respectively. 5% and 10% noise levels are considered. 

The first three modes are used in the calculation. Measured displacements at 1/4L, 1/2L and 3/4L

are used in the identification. The magnitude of the prestress force is . The

sampling frequency is 1000 Hz, which is larger than two times the highest frequency of interest at

103.621 Hz. The beam is assumed to be at rest initially.

Fig. 2 shows the identified results from measured strains with 5% and 10% noise levels. There is

only a slight difference in the time histories of the identified prestress in the two cases. This is

because the measurements have been approximated with 20 terms of the orthogonal functions and

the velocities and accelerations are subsequently obtained by directly differentiating the functions.

This shows that the orthogonal function approach is effective in eliminating the noise in the

measured data.

The large responses at the start and end of the time histories are typically ill-solutions in the

problem due to the discontinuity of the solution in time at these two moments.

X H[ ]T H[ ]( )
1–

H[ ]T S[ ]=

X H[ ]T H[ ] λI+( )
1–

H[ ] S{ }=

f t( ) 8000 1 0.1sin 10πt( ) 0.05sin 40πt( )+ +[ ]N=

y ycalculated Ep*Noise*var ycalculated( )+=

ε εcalculated Ep*Noise*var εcalculated( )+=

ycalculated εcalculated

0.3Tcr 3.1677 10
7
N×=
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4.3 Sensitivity of proposed method to magnitude of prestress force 

In most cases of construction with prestress, the prestress force in a beam component is relatively

small. A study is therefore made to analyze the errors involved in such identification with different

magnitude of prestress force under different noise levels. The same beam and excitation as the

above study are used. Five prestress levels and three noise levels are studied and the summation of

errors of the identified force and the error expressed as  are

shown in Table 1. The time histories of the identified prestress force which are 0.01Tcr, 0.1Tcr and

0.3Tcr under 10% noise levels are shown in Fig. 3.

It is found from Table 1 that the noise level is not a significant factor. It seems that a small

prestress force would include large relative percentage error in the identification. However, Fig. 3

shows that all the curves are fluctuating around their corresponding true prestress values except

those close to the starting and end points. The total summation errors for the three curves are almost

the same. That indicates the effectiveness of the proposed method is insensitive to the level of

prestress force to be identified. Large relative percentage error is due to the small valve of the

denominator when magnitude of the prestress force is small. Furthermore, the central ninety

percentage of the force time history will give (nearly) true values of the force with smaller

fluctuations.

error Tpid Tptrue– / Tptrue 100%×=

Fig. 2 Prestress force identified from three modes (
___ True, ...... Identified 5% noise, ----- Identified 10%

noise) 

Table 1 Error percentage in the identified force

Prestress force 1% noise 5% noise 10% noise

0.01Tcr 172.6/(8.12 × 107) 184.0/(9.36 × 107) 190.7/(1.03 × 108)

0.05Tcr 77.87/(1.77 × 108) 78.8/(2.23 × 108) 83.89/(2.64 × 108)

0.1Tcr 43.2/(2.06 × 108) 43.89/(2.14 × 108) 46.32/(2.47 × 108)

0.2Tcr 25.76/(2.57 × 108) 28.13/(3.09 × 108) 29.24/(3.59 × 108)

0.3Tcr 17.05/(2.54 × 108) 17.3/(3.21 × 108) 19.16/(4.06 × 108)

Note: (•) denotes the sum of squares error.
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4.4 Identification using impulsive excitation

An impulsive force is also used to identify the prestess force. It acts on the beam between t =

0.05s to 0.15s. The magnitude of the prestress force is 0.1Tcr = 1.056 × 107 N. The magnitude of the

force is assumed to be 9500 N and it is applied at 7 m from the left support, which can be

expressed as 

The sampling frequency is 1000 Hz, and the first three modes and three displacement

measurements evenly distributed along the beam are used in the identification. 10% noise is

included in the identification. Fig. 4 shows that the identified prestress force is very close to the true

one for most of the time history. 

f t( )
190000 t 0.05–( )N 0.05 t 0.01≤ ≤( )

190000 0.15 t–( )N 0.1 t 0.15≤ ≤( )⎩
⎨
⎧

=

Fig. 3 Identification of different magnitude of prestress force (
___ True, ----- Tp = 0.3Tcr, -.-.-. Tp = 0.1Tcr, .....

Tp = 0.01Tcr) 

Fig. 4 Prestress force identified from impulsive force ( 
___

 True, ----- Identified)
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4.5 Identification of the prestress force, the flexural rigidity and shearing rigidity of the

beam

The same system as for the last study is used here with a prestress force of 0.1Tcr, and the flexural

rigidity EI and the shearing rigidity kGA of the beam are 4.32 × 109 Nm2 and 1.125 × 1010 N,

respectively. The sampling frequency is 1000 Hz, and the first three modes and three evenly

distributed displacement measurements are used in the identification. 10% noise is also included in

the identification.

Fig. 5 shows that the identified prestress force, flexural rigidity and shearing rigidity are

fluctuating around the true values, which further verify the effectiveness of the proposed method

with multiple parameters identification.

4.6 Comparison with the Euler-Bernoulli beam model 

Both Timoshenko beam model and Euler-Bernoulli beam model are used in the simulation study

for a comparison purpose. The same prestressed beam is studied. The external exciting force is

and it is applied at 7 m from the left support to excite the lower few modes. White noise is added

to the calculated displacements and strains to simulate the polluted measurements. 5% and 10%

noise levels are considered. The first three modes are used in the calculation. Measured

displacements at 1/4L, 1/2L and 3/4L are used in the identification. The sampling frequency is 1000

Hz. Table 2 shows the identified results from Timoshenko beam model and Euler beam model. It

can be seen that the prestress force identified by Timoshenko beam model are more satisfactory

than that identified by Euler-Bernoulli beam model.

f t( ) 8000 1 0.1sin 10πt( ) 0.05sin 40πt( )+ +[ ]N=

Fig. 5 Identification of Tp, EI and kGA ( 
___

 True, ----- Identified)
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5. Experimental verification

The proposed method is further verified with a simply supported prestress concrete beam in the

laboratory. The experimental setup is shown diagrammatically in Fig. 6. It is 4.0 meters long with a

150 mm × 300 mm uniform cross-section and a clear span of 3.8 meters. A seven-wire straight

strand was placed in a 57 mm diameter duct located at the centre of gravity of the beam cross-

section throughout the length of the beam. The duct remains ungrouted such that the prestress force

Table 2 Error percentage in the identified force

Prestress force 1% noise 5% noise 10% noise

0.01Tcr
T 172.6/(8.12 × 107) 184.0/(9.36 × 107) 190.7/(1.03 × 108)

E 173/(7.77 × 107) 218.3/(1.1 × 108) 237.88/(1.37 × 108

0.05Tcr
T 77.87/(1.77 × 108) 78.8/(2.23 × 108) 83.89/(2.64 × 108)

E 75.53/(1.79 × 108) 81.46/(2.16 × 108) 86.46((2.53 × 108)

0.1Tcr
T 43.2/(2.06 × 108) 43.89/(2.14 × 108) 46.32/(2.47 × 108)

E 46.37/(2.06 × 108) 48.33/(2.48 × 108) 50.29/(2.8 × 108)

0.2Tcr
T 25.76/(2.57 × 108) 28.13/(3.09 × 108) 29.24/(3.59 × 108)

E 31.02(3.03 × 108) 31.86(3.30 × 108) 32.8(3.66 × 108)

0.3Tcr
T 17.05/(2.54 × 108) 17.3/(3.21 × 108) 19.16/(4.06 × 108)

E 21.6/(3.43 × 108) 21.62/(3.48 × 108) 22.91/(3.56 × 108)

Note: (•) denotes the sum of squares error, T denotes the Timoshenko beam, E denotes the Euler-Bernoulli
beam

Fig. 6 Test setup for the prestressed concrete beam
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can be monitored as a reference. The elastic modulus of concrete and the steel strand are

respectively 31.5 × 109 N/m2 and 194 × 109 N/m2 and the mass density of concrete is 2.398 × 103

kg/m3. The yield strength of the strand is 192 kN. The beam is instrumented with seven equally

spaced strains to measure the dynamic strain responses of the beam.

5.1 Modal tests

Dynamic modal test is conducted on the concrete beam without prestress force first. The beam is

excited with impacts from a Dytran Instruments 12 lb instrumented impulse hammer, model 5803A

in the vertical direction at a fixed point 3L/8 from the left support. Seven accelerations located at

1L/8, 2L/8, 3L/8, 4L/8, 5L/8, 6L/8, 7L/8 are used for the modal test. A commercial data logging

system INV303E and the associated signal analysis package DASP2003 are used in the data

acquisition. One load cell is located at one end of the strand to measure the magnitude of prestress

force applied on the concrete beam. After 180 kN prestress force is applied to the prestressing

strand, another modal test is conducted on the prestressed beam. The first three natural frequencies

of the intact beam and the prestressed beam are shown in Table 3. The experimental natural

frequencies match the analytical natural frequencies well except the last one. 

5.2 Identification of prestress force

The strain measurements from the forced vibration test are used for prestressed force

identification. An impulsive force is applied with the impact hammer at 3L/8 from the left support

of the beam. The sampling rate is 2000 Hz. Time histories of both the excitation force and the

strains are recorded, and data obtained from the third and fourth strain gauges are used in the

prestress force identification.

The flexural rigidity of the beam before prestressing is calculated as 1.0599 × 107 N-m2. The

beam is assumed to be simply supported. Rayleigh damping model is adopted in calculating the

structural response, and the measured modal damping ratios for the first three modes are

respectively 0.03, 0.14 and 0.12. The analytical modal frequencies are shown in Table 3.

After the beam is prestressed, the flexural rigidity of the beam section is calculated to be

1.060 × 107 N-m2. The prestress force is identified using data from 0 second to 1.0 second after the

hammer impact. Measured strains from the 3rd and the 4th strain gauges were used for prestress

force identification. Fig. 7 shows the measured time history from the two strain gauges. The

orthogonal polynomial function is used to remove the measurement noise. The measured modal

Table 3 Analytical and experimental natural frequencies (Hz)

Mode No.
Analytical Experimental

Without prestress With prestress Without prestress With prestress

1 34.78 34.38 35.53 34.68

2 135.11 133.56 134.42 133.16

3 290.60 287.28 293.43 289.76

4 488.02 482.44 490.21 485.64

5 714.67 706.49 718.86 712.54
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damping ratios for the first three modes are 0.029, 0.14 and 0.11 respectively. The load cell at the

end of the strand shows that the prestress force is 162.7 KN. The identified magnitude of the

prestress force is 148.3 KN, the relative error is 8.9%. This shows the proposed method has the

potential for practical prestress force identification.

6. Conclusions

A method is proposed to identify the prestress force in a Timoshenko beam with or without

including the flexural rigidity and shearing rigidity of the beam. The noise effect on the

measurements is improved using the orthogonal polynomial function. Both the sinusoidal and

impulsive excitation could give very good results with the lower three measured modes and data

obtained from three measuring points. It is shown that the proposed method is insensitive to the

magnitude of force to be identified. Both numerical simulation and experimental work in this paper

indicate that indirect measurement of the prestress force in the Timoshenko beam is feasible even

under noisy environment.
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Appendix: Notation 

The following symbols are used in this paper.
ρ : mass density of the beam material
A : cross-sectional area
h0 : the height of the beam
b : the width of the beam
c : the viscous damping of the beam
P(t) : the external exciting force
E : Young’s modulus
G : shear modulus
I : the second moment of inertia of the beam cross-section
Tp : prestress force
y(x, t) : transverse displacement of the beam
ψ(x, t) : angle of rotation of cross-section
Yi(x), φi(x) : the assumed ith mode shape of the beam
k : shear coefficient
qi(t) : modal co-ordinate
[M] : modal mass matrix
[C] : modal damping matrix
[K] : modal stiffness matrix
[K'] : modal stiffness reduction due to the prestress force
N : number of modes used
Nf : number of the polynomial terms used
λ : regularization parameter




