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1. Introduction

Circular plates have many applications in civil, aerospace, petroleum, nuclear and, mechanical

engineering. This paper deals with the application of the DSC method for the free vibration analysis

of thin circular and annular plates with clamped and simply supported boundary conditions. In the

DSC method, the function f (x) and its derivatives with respect to the x coordinate at a grid point xi

are approximated by a linear sum of discrete values f (xk). This can be expressed as (Wei 2000)

(1)

where superscript n denotes the nth-order derivative with respect to x. The Shannon’s kernel is

regularized given below is used

(2)

where Δ is the grid spacing.

2. Free vibration analysis of circular and annular plate

The governing equation for circular plate under the axisymmetric motion is given 

(3)

where R = r/a, a is the outside radius of the plate, h thickness of plate, D the flexural rigidity, and

Ω is the dimensionless frequency and its given . Eq. (3) can be given by applying

the DSC as
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(4)

Similarly, the boundary and regularity conditions can be written. Consequently, we solve the

remaining eigenvalue problem to obtain the natural frequencies.

3. Results and discussions

The following combinations of boundary conditions have been considered: both inner and outer

edges clamped (C-C), inner edge clamped, outer edge simply supported (C-S). Table 1 summarizes

numerical results of frequencies by DSC for clamped circular plates. The frequency obtained by Du

et al. (1995) using the GDQ method is also presented in Table 1 for comparison. Leissa (1969)

gives the fundamental frequency for clamped support conditions. It is shown that, the results

compare very well with the analytical (Blevins 1984), solution of Leissa (1969) and GDQ solutions

(1995). As observed from Table 1, the obtained natural frequencies found by DSC are very

accurate. The effect of Poisson’s ratio on fundamental frequency for simply supported circular plates

is shown in Table 2. Differential quadrature (DQ) results (Bert et al. 1994) are presented in this

table, together with existing theoretical results (Leissa 1969). For the fundamental frequency, N = 16

grid points give acceptable results for simply supported boundary conditions. It can be seen that, the

DSC results are generally in agreement with the results produced from the analytical (Leissa 1969)

and the DQ results (Bert et al. 1994). First four modes of natural frequencies obtained for simply

supported circular plates are presented in Table 3 together with the analytical solutions (Leissa

1969). The natural frequencies obtained by the present author (Civalek 2004) using the harmonic

differential quadrature (HDQ) method are also presented in Table 3 for comparison. The DSC

results are generally in agreement with the results produced from the analytical (Leissa 1969) and

the HDQ results (Civalek 2004). It is found that the DSC method possesses both the advantages of

HDQ and the flexibility of the DQ. Table 4 tabulates the frequencies obtained by DSC method for
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Table 1 First two frequencies of the clamped circular plates

Frequencies
Leissa
(1969)

GDQ
(Du et al. 1995)

Exact
 (Blevins 1984)

DSC
(N = 17)

Ω1 10.21 10.20 10.22 10.23
Ω2 39.77 44.68 39.77 40.01

Table 2 Comparison for fundamental non-dimensional frequencies of circular plates

ν

Simply supported

DQ
(Bert et al. 1994)

Leissa
(1969)

DSC
 (N = 7)

DSC 
(N = 9)

DSC
 (N = 11)

DSC 
(N = 16)

0.0 4.443 4.444 5.857 5.112 4.584 4.451
0.1 4.619 4.619 5.996 5.147 4.673 4.620
0.4 5.078 5.078 7.253 6.117 5.286 5.084



Discrete singular convolution method and applications to free vibration analysis 239

thin circular plates with simply supported boundary conditions. These tables also include both the

different numerical solutions and the analytical solutions. Author used the finite element (Civalek

1998) and harmonic differential quadrature method (Civalek 2004) for this problem before. From

the table, the convergence of the DSC method is seen to be very good. Fig. 1(a) describes the

manner of variation of frequency parameter with respect to circumferential wave number. It is

shown that the increasing value of radial or circumferential wave always increases the frequency

parameter. As expected, the C-C plate has the highest frequency parameter, followed by the S-S

plate. With the increase of circumferential wave number, the effect of the boundary conditions on

the frequency parameter is significant. 

In case of the annular plate; the obtained results are presented in Table 5 for different radius ratios

of b/a. Four different type plate configurations (S-C, S-S, C-C, and C-S) are taken into consideration.

Table 5 presents the non-dimensional fundamental frequencies for annular plates. In this table, a is

the inner radius and b is the outer radius of annular plates. The C-C annular plate has the highest

frequency parameter, followed by the S-C, C-S, and S-S plates. It is shown that the increasing value

of radius ratio b/a always increases the frequency parameter. With the increase of b/a ratio, the effect

of the boundary conditions on the frequency parameter is significant. In other words, the effect of

radius ratio on frequency is much more significant than that of boundary condition. Axisymmetric

frequency parameters of annular plates are given in Table 6, it is observed that a good agreement

between the present calculated results and the results of literature (Leissa 1969, Civalek 2004) has

Table 3 Natural frequencies of simply supported circular plate

Method
Mode

1 2 3 4

DSC (N = 16) 5.02 30.37 74.88 140.52
Leissa (1969) 4.93 29.72 74.15 138.31

HDQ (Civalek 2004) 4.94 29.85 74.96 139.83

Table 4 First three frequencies of simply supported circular plate

Mode
Leissa 
(1969)

Present results

HDQ (Civalek 2004) FEM (Civalek 1998) DSC

1 4.93 4.86 4.78 5.02
2 13.89 13.85 13.81 14.03
3 25.61 26.01 24.96 26.11

Fig. 1 Variation of frequency parameters (a) circular plate, (b) annular plate
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been obtained. The C-C annular plate has the highest frequency parameter. From the results presented

in this table, it is clear that the present DSC results are in excellent agreement with those obtained

using a variety of numerical methods. Variation of frequency parameter with radius ratio   b/a for

annular plates depicted in Fig. 1(b). The frequency parameter increases slowly for small b/a ratio (b/

a ≤ 0.4) and then rapidly increases with increasing radius ratio b/a (b/a > 0.4).

It is found that the convergence of DSC approach is very good and the results agree well with

those obtained by other researchers. 
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Table 5 Non-dimensional fundamental frequency of annular plate

b/a S-C S-S C-C C-S

0.1 22.85 14.56 28.02 18.42
0.2 27.11 16.85 35.14 23.87
0.3 34.49 21.11 46.02 32.63
0.4 45.17 28.17 62.17 42.57
0.7 175.64 110.87 570.04 173.34

Table 6 Axisymmetric frequency parameters for annular plates (ν = 0.33, b/a = 0.5)

Support conditions Exact (Vogel et al. 1965) Leissa (1969) DSC

C-C 89.30 89.42 90.24
C-S 64.06 65.17 66.07
S-C 59.91 61.81 60.33
S-S 40.01 43.19 42.58




