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A MOM-based algorithm for moving force identification: 
Part I – Theory and numerical simulation
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Abstract. The moving vehicle loads on a bridge deck is one of the most important live loads of
bridges. They should be understood, monitored and controlled before the bridge design as well as when
the bridge is open for traffic. A MOM-based algorithm (MOMA) is proposed for identifying the time-
varying moving vehicle loads from the responses of bridge deck in this paper. It aims at an acceptable
solution to the ill-conditioning problem that often exists in the inverse problem of moving force
identification. The moving vehicle loads are described as a combination of whole basis functions, such as
orthogonal Legendre polynomials or Fourier series, and further estimated by solving the new system
equations developed with the basis functions. A number of responses have been combined, some
numerical simulations on single axle, two axle and multiple-axle loads, being either constant or time-
varying, have been carried out and compared with the existing time domain method (TDM) in this paper.
The illustrated results show that the MOMA has higher identification accuracy and robust noise immunity
as well as producing an acceptable solution to ill-conditioning cases to some extent when it is used to
identify the moving force from bridge responses. 
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1. Introduction

The study of moving vehicle loads on bridge deck is an important issue from the aspects of

design, diagnosis and maintenance of bridges, as they contribute to the live load component in a

bridge design code (Ting and Yener 1983). Direct measurements of the forces using instrumented

vehicles are expensive and are subjected to bias (Cantineni 1992, Heywood 1994). Systems have

been developed for so called ‘weigh-in-motion’ of vehicles (Peters 1984, 1986), but they all

measure only the equivalent static axle loads. It has been observed that the induced dynamic

deflection and stresses can be a significantly higher than those observed in the static case as a

structure is subjected to moving loads, for example, a dynamic increment of 125% was obtained on

a small composite bridge (Chan and O’Conner 1990).

In the last decade, a few indirect identification methods were successively proposed and

incorporated into a moving force identification system (MFIS) (Yu 2002). Numerical simulations,

illustrative examples and comparative studies show that each method involved in the MFIS could

effectively identify moving forces with acceptable accuracy and both time domain method (TDM)

and frequency time domain method (FTDM) were found better than others (Chan et al. 2001).

However, there still exist some limitations if these methods could actually be operated in practice.

For example, the identification results were sensitive to noise as they are the natural output of an ill-

conditioned inverse problem. The TDM and FTDM have higher identification accuracy but they are

time consuming. The CPU executive time for both the Interpretation Method I (IMI) and II (IMII)

are shorter, but their identification accuracy is less than that from both the TDM and FTDM (Chan

et al. 2001).

In fact, there is a convolution integral relationship between the bridge responses and the moving

loads on a bridge in time domain in terms of structural dynamics. The integral equations are often

discretized with the method of moments (MOM) (Harriington 1968) which is one of the most

widespread and generally accepted techniques for electromagnetic problems (Jorgensen et al. 2004,

Pawlak 1992, Chew et al. 2001, Qjidaa and Radouane 1999, Liao and Pawlak 1996), as it requires

less unknowns than techniques based on differential equations (Jorgensen et al. 2004) and it is

robustness for noise and digitizing (Pawlak 1992). However, at the same time it necessitates the

solution of a matrix system with a dense and often ill-conditioned matrix (Chew et al. 2001). This

requires a set of basis functions that does not lead to an ill-conditioned matrix. The selection of

basis functions is a crucial point when solving the integral equation by the MOM. Various moments,

including geometric, complex, Legendre, Zernike, Pseudo-Zernike, Fouries-Mellin, radial, and

orthogonal moments may be used (Pawlak 1992, Qjidaa and Radouane 1999), in which Legendre or

Zernike moments are better than the others, and the Fourier moments are not time-consuming

(Qjidaa and Radouane 1999). Here, we will use Legendre and Fourier moments because of the

efficient algorithms for their computation (Liao and Pawlak 1996).

In this paper, based on the MOM and the theory of moving force identification, a MOM-based

algorithm (MOMA) is proposed for identifying the dynamic axle loads with the aim to overcome

the limitations induced from the ill-conditioned problem. The moving vehicles loads were described

as a combination of whole basis functions, and further were estimated by solving the new system

equations developed with the basis functions. Two solutions to the over-determined set of system

equations, the singular value decomposition (SVD) and the Tikhonov regularization method, are

introduced and some simulations have been conducted. Compared with the existing time domain

method (TDM), the illustrated results show that the MOMA has higher identification accuracy, less
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noise sensitive and an acceptable solution to the ill-conditioned problem to some extent when the

basis functions number were adopted properly. If the Tikhonov regularization method was used, the

identification results of both the TDM and MOMA would be improved, especially for the TDM. 

2. Background of theory

2.1 Motion equation of bridge-vehicle system

A bridge superstructure is modeled with a simply supported beam as shown in Fig. 1. The effects

of shear deformation and rotary inertia are not taken into account (Bernoulli-Euler beam). If the

force f (t) moves from left to right at a speed c, then an equation of motion in terms of modal

coordinate qn(t) can be expressed as

, (1)

Where

, , (2)

They are the nth modal frequency, the modal damping ratio and the modal force, respectively. ρ

and L are the constant mass per unit length and the span length of bridge respectively. The moving

force identification is an inverse problem in structural dynamics, in which the unknown time-

varying force f (t) is identified from measured displacements, accelerations or bending moments of

real structures.

2.2 Method of Moments (MOM) and basis functions

2.2.1 Method of Moments (MOM)

The MOM is a general procedure for solving linear equations of the type , where L is an

integro-differential operator, R is a known vector function, and f is an unknown vector function. Let

f be expanded in a series of  in the domain of L, as

(3)
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where, the αn are the constants, the fn are the expansion functions or basis functions. For exact

solutions, Eq. (3) is usually an infinite summation and the fn form a complete set of basis functions.

For approximate solutions, Eq. (3) is usually a finite summation. Substituting Eq. (3) into ,

and using the linearity of L, we have

  (4)

It is assumed that a suitable inner product <f, R> has been determined for the problem. Now

define a set of weighting functions, or testing functions,  in the range of L, and take

the inner product of Eq. (4) with each wm. The result is

(5)

. Discretizing the equation  via the above procedure of the MOM yields the

matrix equation  . If the matrix [l] is nonsingular, its inverse  exists. The an

are then given by  and the solution for f is given by Eq. (3). The solution may be

exact or approximate, depending upon the choice of the basis functions fn and weighting functions

wn. The particular choice wn = fn is known as Galerkin’s method (Harriington 1968).

2.2.2 Basis functions
The selection of basis functions is a crucial point when solving the integral equation by the

MOM. Here, the orthogonal Legendre polynomials and Fourier series are selected as the basis

functions because of the efficient algorithms for their computation (Liao and Pawlak 1996) as well

as their better features than others (Pawlak 1992, Qjidaa and Radouane 1999).

2.2.2.1 Legendre polynomials
For each order of n, the Legendre polynomials can be defined by either the series

(6)

or the recurrence formula (Poularikas 1999)

, (7)
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The graphs of Legendre polynomials , , are sketched in Fig. 2 over the

interval [−1, 1].

Their orthogonality are expressed as follows

 (8)

If a function  is defined in the interval [0, s], it is necessary in the application to expand the

function in a series in the application to expand the function in a series of orthogonal polynomials

in this interval. Clearly transforming the interval [0, s] into the interval [−1, 1] in the time domain,

therefore, Eq. (7) can be rewritten as 

 Ρ0(t) = 1, Ρ1(t) = 2t/s − 1, …
 (n + 1) ⋅ Ρn+1(t) = (2n + 1) ⋅ (2t/s − 1) ⋅ Ρn(t) − n ⋅ Ρn−1(t)  (n ≥ 1, t ∈ [0, s])  (9)

2.2.2.2 Fourier series
Assuming the time-varying load function  satisfies the Dirichlet conditions, the Fourier series

corresponding to the function  is

(10)
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Setting the function  to be an even or odd function and considering the shape of function f(t)

in the time interval [0, L/c] only, Eq. (10) can be simplified as 

(while f (t) is even function)  (11a)

(while f (t) is odd function) (11b)

2.3 Moving force identification based on Method of Moments (MOM)

The method of moments is based on the radical idea that the functional equation is rewritten in

discrete terms. Assuming  can be expressed as follows in terms of a series of basis function

ψ0(t), ψ1(t), ψ2(t), …, ψn(t).

 (12)

Arranging Eq. (12) into a matrix form

   (13)

Where  or , representing the basis functions, are the Legendre

polynomials or Fourier series respectively in this paper.

2.3.1 Identification from bending moment responses

Eq. (1) can be solved in time domain by the convolution integral and the dynamic deflection

v(x, t) of the beam at point x and time t can be obtained as (Chan et al. 2001)

 (14)

Where , therefore the bending moment of the beam at point x and time t is

  (15)

Let the test function ωj = δ(t − tj), after substituting Eq. (12) into Eq. (15), multiplying by ωj,

integrating the resultant equation with respect to t between 0 and infinite, and using the properties

of the test function ωj, the Eq. (15) can be expressed as 
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 (17)

Where, the superscript m is the basis functions number, tj = jΔt, Δt is the sampling interval and N

is the number of sample points for the measured bending moment responses. 

Eqs. (16) and (17) can be rewritten in discrete terms and rearranged into a set of equations 

 (18)

   (19)

Where, , and

are the matrix of basis functions, the time-series vector of the measured bending moment responses

and the coefficient vector respectively. B refers to the reference (Law et al. 1997).

If N − 1 = m + 1, the coefficient α can be obtained directly by solving Eq. (18). If N − 1 > m + 1

or N − 1 < m + 1, the least-squares method can be used to find the coefficient α, and then

substituting α into Eq. (13), the time history of the moving loads can be obtained finally.

2.3.2 Identification from accelerations

The accelera  at point x and time t is

(20)

Where 

After substituting Eq. (12) into Eq. (20), multiplying by ωj, integrating the resultant equation with

respect to t between 0 and infinite, and using the properties of the test function ωj, the acceleration

response of the beam can be expressed as in discrete terms

 (21)

Where , A refers to the reference (Law et al. 1997).

The coefficient α can be calculated by solving the Eq. (21), and then substituting α into Eq. (13),

the force vector { f } can be found.
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ljk
2EIπ

2

ρL
3

--------------
n
2

ωn′
------sin

nπx

L
--------- e

ξnωn tj τ–( )–

sinωn′ tj τ–( )sin
nπcτ

L
------------ψk τ( ) τd

0

tk

∫
n 1=

∞

∑=

M
N 1–( ) 1×

= L
N 1–( ) m 1+( )×

· α
m 1+( ) 1×

L
N 1–( ) m 1+( )×

= B
N 1–( ) NB 1–( )×

· Ψ
NB 1–( ) m 1+( )×

Ψ

ψ0 1( )  ψ1 1( )  …  ψm 1( )

ψ0 2( )  ψ1 2( )  …  ψm 2( )

      

ψ0 NB 1–( )  ψ1 NB 1–( )  …  ψm NB 1–( )

=
…

… … …

M

m 2( )

m 3( )

m N( )⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

…

α

α0

α1

αm⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

…

v·· x t,( )

v·· x t,( ) 2

ρL
------sin

nπx

L
--------- f t( )sin

nπct

L
----------- h

··
t t τ–( )f τ( )sin

nπcτ

L
------------ τd

0

t

∫+

n 1=

∞

∑=

h
··
t t( ) 1

ωn′
-------e

ξnωnt–

ξnωn( )2 ωn′
2

–[ ]sinωn′t 2ξnωnωn′–[ ]cosωn′t+{ }=

V
··

N 1×

= H
N m 1+( )×

· α
m 1+( ) 1×

H
N m 1+( )×

= A
N NB 1–( )×

· Ψ
NB 1–( ) m 1+( )×



142 Ling Yu, Tommy H.T. Chan and Jun-hua Zhu

them can be used together to identify the moving force. The vectors M in Eq. (18) and  in Eq. (21)

should be scaled to have dimensionless units; then the two equations can be combined, to give

  (22)

Where  is the norm of a matrix.

The above procedure is derived for the identification of a single force. They can be modified for

the identification of multi-forces in terms of the linear superposition principle.

2.4 Solutions

As mentioned above, it is easy to see that both the MOMA and the TDM will usually result in a

system of equation with the form 

Ax = b  (23)

Where, x is the unknown load vector, b is the time series vector of the measured bending moment

or acceleration response. The system matrix A is associated with the bridge-vehicle system. In

principle, Eq. (23) will have a solution given by the least-squares method as

x = A+b  (24)

Assuming the size of matrix A belongs to k × n, if k > n then the system Ax = b is an over-

determined system of equation, A+ = (ATA)−1AT, if k < n, Eq. (23) is an under-determined equation,

A+= AT(AAT)−1. 

2.4.1 Singular Value Decomposition (SVD) solution

As matrix A is usually close to rank deficient, A+ is best calculated from the singular value

decomposition (SVD) of A (Lindfield and Penny 1995). The SVD technique, applied to structural

dynamics problems in the last fifteen years, is one of the most important tools in numerical analysis.

If matrix A is real, the SVD of A is USV T, its inverse can easily be calculated from A+= VS −1UT.

For simplicity, assuming that A has no exact zero singular values, it can be shown that the least

squares solution vector x is given by 

  (25)

The solution vector x here is called SVD solution. Eq. (25) clearly illustrates the difficulties

associated with standard matrix solutions of Eq. (23). If the numerator does not decay as fast as the

singular value σi of the denominator, the solution is dominated by terms containing the smallest σi.

Consequently, the solution x may have many sign changes and thus appears to be random. When A

is rank deficient, only the r(r ≤ min (k, n)) non-zero singular values of the matrix are taken into

account so that S is a r × r matrix where r is the rank of A. to make the multiplication of Eq. (25)

conformable, the first r columns of V and the first r columns of U in Eq. (25) are used.

2.4.2 Regularization solution

For the moving force identification problem, since the solution to Eq. (23) is ill-conditioned, the
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regularization method developed by Tikhonov and Arsenin (Tikhonov and Arsenin 1977) can be

used to provide bounds to the solution. The Tikhonov regularization method is based on the radical

idea that minimizes the deviations of Ax from b in Eq. (23) for a stable solution by means of an

auxiliary non-negative parameter. This is equivalent to imposing certain constraints in the form of

added penalty terms with adjustable weighting (regularization) parameters to the solution. The

Tikhonov function can be defined as

  (26)

Where λ is a non-negative regularization parameter, the solution of Eq. (26) is obtained in the

Tikhonov regularization with the damped least-squares method as (Santantamarina and Fratta 1998)

x = (ATA+λI)−1ATb   (27)

Where I is an identity matrix and the singular value decomposition (SVD) is used in the pseudo

inverse calculation. Applying the Tikhonov regularization, the main difficulty is how to effectively

find the optimal regularization parameters λ (Law et al. 2001)). Here, the generalized cross-

validation (GCV) method is used to determine the optimal parameter λ and the S-curve method is

used to plot the error against the different parameter λ (Busby and Trujillo 1997). If the true force

ftrue were known, the true force is compared with the identified values fidentified, and the relative

quadratic percentage error (RQPE) between the time histories of true force ftrue and identified force

fidentified is defined as

 (28)

As an example, a typical S-curve is shown in Fig. 3. It is clearly noted from Fig. 3 that the

optimal regularization parameter λ corresponds to the minimum RQPE value.
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Fig. 3 Typical S-curve under 10% noise
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3. Numerical simulation

3.1 Bridge-vehicle and simulation parameters considered

In order to check the correctness and effectiveness of the proposed method, the following moving

force identification cases are simulated and illustrated.

(a) Single vehicle load

f (t) = 40 000 × [1 + 0.1 sin(10πt) + 0.05 sin (40πt)] N

(b) Two-axle vehicle loads

(i) Constant loads 

f1(t) = 58 800 N

f2(t) = 137 200 N

s = 8 m

(ii) Time-varying loads

f1(t) = 58 800 × [1 + 0.1 sin(10πt) + 0.05 sin (40πt)] N

f2(t) = 137 200 × [1 − 0.1 sin(10πt) + 0.05 sin (50πt)] N

ls = 8 m

(c) Multi-axle vehicle loads

(i) Constant loads

f1(t) = 58 800 N

f2(t) = 137 200 N

f3(t) = 150 000 N

ls1 = 3 m, ls2 = 2.5 m.

(ii) Time-varying loads

f1(t) = 58 800 × [1 + 0.1 sin(10πt) + 0.05 sin (40πt)] N

f2(t) = 137 200 × [1 − 0.1 sin(10πt) + 0.05 sin (50πt)] N

f3(t) = 150 000 × [1 + 0.1 sin(10πt) + 0.05 sin (40πt)] N

ls1 = 3 m, ls2 = 2.5 m.

The parameters of the beam bridge are as follows: EI = 1.27914 × 1011 N⋅m2, ρ = 12 000 kg/m,

L = 40 m, f1 = 3.2 Hz, f2 = 12.8 Hz, f3 = 28.8 Hz. The moving speed c = 40 m/s. the analysis

frequency bandwidth is from 0 Hz to 40 Hz and therefore the first three modes of the beam are

included in the calculation. The sampling frequency fs is 200Hz (Yu 2002, Chan et al. 2001, Law

et al. 1997).

Random noise is added to the calculated responses to simulate the polluted measurements as

Rmeasured = Rcalculated ⋅ (1 + Ep ⋅ Noise)  (29)

Where Ep represents specified error level ranging from 0.0 to 1.0; Noise is a standard normal

distribution vector with zero mean value and unit standard deviation.
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3.2 Study cases

3.2.1 Single vehicle load

Bending moment and/or acceleration responses at 1/2 span and/or 1/4 span are used to identify the

single moving load. Nine sensor arrangement cases are studied, and Table 1 and Table 2 show the

comparison on the relatively quadratic percentage error (RQPE) values between the true and the

identified loads respectively by the SVD and the regularization solution. In the table, the letters ‘m’

and ‘a’ represent the bending moment and acceleration responses respectively, which are used to

identify the single moving load. Fractions 1/4 and 1/2 represent the measurement locations at

quarter and middle spans respectively. Underlined RQPE values result from Fourier series basis

functions, the values in parentheses from Legendre polynomial basis functions. There are same

meanings in the following tables if no further stated. From Tables 1 and 2, it can be found that:

(1) Whether under 1% or under 5% noise levels as listed in Table 1, the MOMA results are

Table 1 Comparison on RQPE of single load identified via SVD

Sensor 
location

1% Noise 5% Noise

TDM MOMA TDM MOMA

1/4m 43.8 1.33 (3.77) * 6.66 (18.9)

1/2m * 4.02 (6.15) * 20.1 (30.7)

1/4m&1/2m 21.8 1.08 (2.48) * 5.38 (12.3)

1/4a 1.03 0.32 (0.34) 5.17 1.61 (1.72)

1/2a 1.21 0.18 (0.39) 6.03 0.92 (1.96)

1/4a&1/2a 0.27 0.12 (0.17) 1.34 0.61 (0.84)

1/2m&1/2a 0.87 0.23 (0.25) 4.37 1.15 (1.24)

1/4m&1/4a 0.78 0.14 (0.16) 3.89 0.69 (0.83)

1/2m&1/4a 0.85 0.20 (0.21) 4.26 0.97 (1.08)

Note: * indicates the RQPE exceeds 100%, 1/4 and 1/2 represent the measurement location at a quarter,
middle span respectively. Underlined values are for Fourier basis functions, and values in parentheses for
Legendre basis functions.

Table 2 Comparison on RQPE of single load identified via regularization

Sensor 
location

1% Noise 5% Noise

TDM MOMA TDM MOMA

1/4m 11.6 1.33 (3.46) 21.6 6.66 (14.1)

1/2m 12.7 4.02 (5.08) 22.9 15.2 (18.4)

1/4m&1/2m 9.88 1.08 (1.86) 18.7 5.38 (9.23)

1/4a 1.03 0.32 (0.34) 5.17 1.61 (1.59)

1/2a 1.21 0.18 (0.27) 6.02 0.91 (1.73)

1/4a&1/2a 0.27 0.12 (0.16) 1.34 0.61 (0.72)

1/2m&1/2a 0.87 0.22 (0.25) 3.74 1.12 (1.20)

1/4m&1/4a 0.78 0.14 (0.15) 3.84 0.69 (0.66)

1/2m&1/4a 0.85 0.20 (0.21) 4.15 0.97 (1.02)
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clearly better than the TDM results when the SVD solution is adopted. The MOMA has clearly

higher identification accuracy and is less sensitive to noise than the TDM for all cases, whether

using Fourier series or using Legendre polynomial basis functions. For the MOMA, if the Fourier

series basis functions are adopted, the identified results are better than those using the Legendre

polynomial basis functions. However, the RQPE values by both the TDM and MOMA method are

increasing as the noise level increases. In addition, when the SVD is adopted under the 1% noise,

Fig. 4 shows the time histories and their power spectral density (PSD) of the moving true and

identified loads when the single moving time-varying load is identified from two bending moment

responses at 1/4m&1/2m. It can be seen that the MOMA is a good agreement with the true load,

but the TDM does not agree with the true load because it clearly includes the significant higher

frequency components after the 40 Hz.

(2) For case comparison, Table 1 also shows that the RQPE values can be dramatically reduced if

the bending moment responses are partly or completely replaced with the acceleration responses at

the same sensor locations, especially for the TDM. Obviously, two responses are used to identify

the single moving load, the corresponding results are better than those by only using one response

for the TDM. For the MOMA, there are same conclusions when the Legendre basis functions are

adopted. However, if the Fourier basis functions are adopted, there is a different conclusion. In fact,

the RQPE values from one acceleration response are close to the results by using responses from

two combination sensor locations, i.e., one bending moment and one acceleration response. In

addition, when the SVD is adopted under the 5% noise, Fig. 5 also shows the time histories and

their PSD of the moving true and identified loads when the single moving time-varying load is

identified from two acceleration responses at 1/4a&1/2a. It can be seen that both the TDM and the

MOMA are in good agreement with the true load, whether from the time histories or from their

PSD curves.

Fig. 4 Single load identified from bending moment responses (1/4m&1/2m, Fourier basis function, SVD)
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 (3) If the regularization solution is adopted, it can be seen from Table 2 that the TDM results are

greatly improved when compared with the RQPE values by SVD solution in Table 1, especially

when only the bending moment responses are used to identify the single moving load. Even so, the

TDM results are still much worse than the MOMA results. For the MOMA, the identified results

can also be slightly improved when the Legendre basis functions are adopted, particularly under the

higher 5% noise level. When the Fourier basis functions are adopted for the MOMA, or when only

the acceleration responses or the combination of bending moment and acceleration responses are

used for the TDM, there are almost no difference between the regularization results in Table 2 and

the SVD results in Table 1.

(4) From the RQPE values in Tables 1 and 2, it can be found that the MOMA identification

results, adopting either Fourier basis function or Legendre basis function, are close to each other,

especially when only the acceleration responses or the combination of bending moment and

acceleration responses are used to identify the moving loads. In addition, the MOMA has higher

computation efficiency when Fourier basis function is adopted. Therefore, the Fourier basis

functions are only adopted for the MOMA in the following studies.

3.2.2 Two axle vehicle loads (Constant and Time-varying Loads)

In order to evaluate the correctness of MOMA for the identification of two axle vehicle loads, the

MOMA are also used to identify both the two axle constant and time-varying loads from bending

moment and/or acceleration responses at 1/4, 1/2, and 3/4 spans in twelve combination cases. Table 3

shows the comparison on the RQPE values of two axle constant loads identified by both the TDM

and MOMA under the 5% noise level as well as including the effect of two different solutions, i.e.

the SVD and regularization solutions. Selecting four out of twelve combination cases, Table 4 gives

the comparison on the RQPE values of two axle time-varying loads identified by TDM and MOMA

Fig. 5 Single load identified from two acceleration responses (1/4a&1/2a, Fourier basis function, SVD)
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when the SVD solution is adopted only. In addition, the effect of different noise levels on the RQPE

values are also considered in Table 4. From Tables 3 and 4, some conclusions can be made as

follows.

(1) For any of cases in both Tables 3 and 4, the MOMA results are obviously better than the

TDM results whether for two constant load identification or for two time-varying load

identification. For the cases of two axle constant load identification, the RQPE values by the

MOMA are very low and less than 1.06% for all twelve cases in Table 3. They are dramatically

lower than the RQPE values by the TDM. It shows that the MOMA is a very good identification

method, which is especially suitable for two axle constant load identification.

Table 3 Comparison on RQPE of two axle constant loads under 5% noise

Sensor location
TDM MOMA

Axle 1 Axle 2 Axle 1 Axle 2

1/4m&1/2m * 36.5 * 28.5 1.06 0.76 0.25 0.05

1/4m&1/2m&3/4m * 34.4 * 27.6 0.79 0.39 0.37 0.04

1/4a&1/2a 55.8 14.1 25.8 10.9 0.18 0.18 0.24 0.24

1/4a&1/2a&3/4a 2.58 2.58 1.40 1.40 0.10 0.10 0.21 0.21

1/2m&1/2a * 35.0 * 24.6 0.26 0.26 0.15 0.15

1/4m&1/2m&1/2a * 25.2 * 23.2 0.13 0.13 0.11 0.11

1/4m&1/2m&1/4a&1/2a 55.0 16.6 25.9 10.8 0.04 0.04 0.18 0.18

1/4m&1/4a * 28.2 * 23.5 0.17 0.17 0.20 0.20

1/4m&1/4a&1/2a 62.8 14.6 28.2 11.9 0.25 0.25 0.20 0.20

1/2m&1/4a * 38.9 * 25.5 0.41 0.41 0.18 0.18

1/4m&1/2m&1/4a * 29.8 * 22.2 0.23 0.23 0.13 0.13

1/4a&1/2a&1/2m 53.2 16.6 24.9 10.2 0.14 0.14 0.22 0.22

Notes: * indicates the error exceeds 100%, the underlined values are for regularization solution, and others for
SVD solution.

Table 4 Comparison on RQPE of two axle time-varying loads Identified via SVD

Sensor location
1% Noise 5% Noise 10% Noise

Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2

1/4m&1/2m&3/4m
97.8 55.4 * * * *

7.35 1.81 36.7 9.03 73.5 18.1

1/4m&1/2m&1/2a
* 29.6 * * * *

4.45 1.50 22.3 7.50 44.5 15.0

1/4m&1/4a&1/2a
31.5 22.1 * * * *

1.31 0.76 6.54 3.81 13.1 7.62

1/4a&1/2a&3/4a
0.93 0.63 4.66 3.13 9.30 6.25

0.86 0.31 4.29 1.56 8.58 3.11

Notes: * indicates the RQPE values exceeds 100%, the underlined values are for MOMA, and others for
TDM.
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(2) Compared the SVD results with the regularization results, it can be found from Table 3 that

the RQPE values for all cases, except for the case of 1/4a&1/2a&3/4a, are significantly reduced if

the regularization solution are adopted instead of the SVD solution for the TDM. For the MOMA,

the RQPE values are also significantly improved when the bending moment responses are only used

to identify the two moving loads. However, when only the acceleration responses, or the

combination of acceleration and bending moment responses are used to identify the two moving

loads, the RQPE values are close to each other whether the SVD or the regularization solution is

adopted.

(3) For case comparison, Table 3 also shows that, the more the measurement station is, or the

more the number of measured acceleration involved is, the better the identified results are. It shows

that adopting more responses for two moving load identification is beneficial to both the TDM and

the MOMA. From Table 4, it can be seen that the more the number of bending moment responses

replaced with acceleration responses is, the better both the TDM and the MOMA results are. The

best sensor arrangement is when all three sensors are accelerometers, i.e. 1/4a&1/2a&3/4a, for both

the two methods. 

(4) Fig. 6 shows the TDM and MOMA identified results from three bending moment responses at

locations of 1/4m&1/2m&3/4m under 1% noise when the SVD (Fig. 6(a)) and regularization

(Fig. 6(b)) methods are adopted respectively. It can be seen from Fig. 6 that the MOMA results are

clearly better than that of TDM whether using the SVD or regularization methods, which means

that the MOMA can overcome the solution of ill-posed problem to some extent. In addition, the

TDM identification accuracy has been greatly enhanced if the regularization method is adopted

Fig. 6 Two axle time-varying load (1/4m&1/2m&3/4m 1% Noise) (a) With SVD Solution (b) With
Regularization Solution 
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instead of the SVD method. 

(5) It can also be found from Table 4 that the RQPE values are almost proportional to the noise

levels. Obviously, the MOMA identification accuracy is higher than the TDM accuracy for each

case. It shows that the MOMA immunity to the noise is higher than the TDM immunity when 1%,

5% and 10% noise were added into the responses. In other words, the proposed MOMA method is

more suitable for identification of moving loads from the measured response signals contaminated

by measurement noise.

3.2.3 Multi-axle vehicle loads

Bending moment and/or acceleration responses at 1/5, 2/5, 3/5 and 4/5 spans in 10 combinations

described in Table 5 are used to identify the three axle loads. In a manner similar to single and two

axle load identification, the following conclusions are obtained.

(1) When no noises are added into the responses, the accurate results are obtained. This means

that the MOMA and TDM are correct and are suitable for the identification of both three axle

constant and time-varying loads.

(2) For the three axle constant load identification, when the regularization method is adopted and

1% noises are added into the responses, the QRPE values from both the TDM and MOMA are

shown in Table 5. It can be found from Table 5 that the MOMA has higher accuracy and it can

provide better results than the TDM although the TDM results have been greatly improved if they

are compared with the SVD results. 

(3) For the time-varying load identification, when 1% noises are added into the responses, the

QRPE values from both the TDM and MOMA are shown in Table 6 when the regularization is

adopted. It can be found that although the MOMA identification results are better than the TDM

results, both of them have higher QRPE values. Compared with the RQPE values by the SVD, it

can be seen that the two methods have been greatly improved and become effective if the

regularization method is adopted, but the corresponding QRPE values are still higher than the

expected. As a reference, Fig. 7 also plots the best identified results of the two methods. It can be

seen that the MOMA results are better than the TDM. 

Table 5 Comparison on RQPE of three axle constant loads identified via regularization

Sensor location

1% Noise

TDM MOMA

Axle 1 Axle 2 Axle 3 Axle 1 Axle 2 Axle 3

1/5m&2/5m&3/5m&4/5m 46.9 21.1 23.2 0.29 0.21 0.18

1/5a&2/5a&3/5a&4/5a 14.5 16.0 18.8 0.15 0.09 0.05

1/5a&2/5a&3/5a&1/5m 19.9 17.2 19.5 0.50 0.00 0.07

1/5a&2/5a&3/5a&2/5m 18.7 17.1 19.6 0.06 0.18 0.01

2/5a&3/5a&1/5m&2/5m 21.2 17.8 19.5 0.26 0.02 0.07

2/5a&3/5a&2/5m&3/5m 22.0 17.5 20.1 0.11 0.11 0.03

1/5a&1/5m&2/5m&3/5m 39.4 19.5 21.4 0.31 0.15 0.09

2/5a&1/5m&2/5m&3/5m 41.9 20.1 21.6 0.07 0.08 0.05

1/5a&2/5a&3/5a&2/5m&3/5m 18.1 16.8 19.5 0.12 0.17 0.01

2/5a&3/5a&1/5m&2/5m&3/5m 21.5 17.3 19.3 0.27 0.03 0.02

Notes: 1/5, 2/5, 3/5 and 4/5 represent the measurement location at 1/5, 2/5, 3/5 and 4/5 span respectively.
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Table 6 Comparison on RQPE of three axle time-varying loads Identified via regularization

Sensor location

1% Noise

TDM MOMA

Axle 1 Axle 2 Axle 3 Axle 1 Axle 2 Axle 3

1/5m&2/5m&3/5m&4/5m 47.2 20.8 25.2 29.4 13.6 17.8

1/5a&2/5a&3/5a&4/5a 17.4 16.7 21.2 17.4 13.4 17.1

1/5a&2/5a&3/5a&1/5m 21.9 17.5 21.6 18.9 13.4 16.3

1/5a&2/5a&3/5a&2/5m 20.5 17.6 21.8 17.4 13.5 16.2

2/5a&3/5a&1/5m&2/5m 21.7 17.5 21.0 18.0 13.9 17.0

2/5a&3/5a&2/5m&3/5m 22.2 17.2 21.5 17.8 13.9 17.6

1/5a&1/5m&2/5m&3/5m 39.7 19.2 23.6 28.7 14.9 18.6

2/5a&1/5m&2/5m&3/5m 42.3 19.9 23.7 25.9 14.1 17.2

1/5a&2/5a&3/5a&2/5m&3/5m 19.9 17.2 21.5 17.1 13.1 15.9

2/5a&3/5a&1/5m&2/5m&3/5m 21.7 17.0 20.9 17.2 13.8 17.0

Fig. 7 Identified Three axle Time-varying loads with regularization (1/5a&2/5a&3/5a&4/5a 1% Noise)
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3.3 Accuracy and discussion

3.3.1 Evaluation on MOMA

(1) Simulation results above all show that the MOMA is better than the existing TDM from all

the aspects. The MOMA has higher identification accuracy and robust immunity to noise. It is a

very good identification method for moving loads on bridge, especially for the constant load

identification. 

(2) The basis function has a great effect on the MOMA. The different patterns of basis functions

will cause different computation efficiency. In this paper, two basis functions are adopted for the

MOMA and have been further studied. The results show that the Fourier basis function is better

than the Legendre basis function because of its higher efficiency and accuracy. In order to increase

the accuracy and to save the computational cost, further study is required to optimize the basis

function so that the basis function features can be fully understood and made better use of.

(3) As the basis function was adopted finally, the basis function number should be determined

with care. The different the basis function number is, the different the identification accuracy and

efficiency is in practice. In general, the more the basis function number is, the higher the MOMA

identification accuracy is, but it also causes higher computational cost and greater effect due to the

ill-posed problem (Chew et al. 2001). Therefore, the basis function number should be appropriately

determined in order to keep the MOMA more effective.

3.3.2 effect of vehicle axle

(1) With the vehicle axle increasing, the TDM identification accuracy has been reduced and its

computational cost has been increased largely, whether for the constant load identification or for the

time-varying load identification cases. The satisfactory results could be only obtained for the single

force identification if the TDM is used to identify the moving vehicle loads.

(2) Vehicle axle has no effect on the MOMA in terms of computational cost and accuracy for the

constant load identification. Although the accuracy for multiple axle time-varying load identification

is reduced, the MOMA can still provide the better results and higher efficiency than the TDM. 

3.3.3 Effect of noise 

(1) The TDM is sensitive to the noise when the bending moment responses are only used to

identify the constant or time-varying moving loads. If the bending moment responses are partly or

completely replaced with the acceleration responses, the TDM results can be improved clearly.

(2) The MOMA are less sensitive to the noise when it is used to identify the constant moving

loads for all cases. For the time-varying load identification cases, although the MOMA results are

worse than those for the constant moving load cases, the MOMA accuracy is still higher than the

TDM. Both the TDM and the MOMA identification results could be improved if the regularization

method is adopted, especially for the TDM.

4. Conclusions 

In this paper, a MOM-based algorithm (MOMA) has been proposed for the identification of

moving loads on bridges. Based on the numerical simulation results, the following conclusions can

be made. (1) The proposed MOMA is a successful method for the identification of moving loads
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from the responses induced by the moving vehicles on bridges. (2) The MOMA is obviously better

than the existed TDM from all the aspects, especially for the constant load identification cases. (3)

The MOMA can give satisfactory results with higher accuracy and efficiency when whether the

SVD or regularization method is used. (4) The MOMA has robust immunity to the noise. It can

improve the solutions of ill-posed problem to some extent. (6) It is recommended to use

regularization method as the bending moment responses are only used to predict the time-varying

loads, especially for the TDM.

In order to evaluate the proposed MOMA, further experiment evaluation and comparative studies

have been done and will be provided in a separate report.
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