
Structural Engineering and Mechanics, Vol. 29, No. 2 (2008) 117-134 117

Dynamic analysis of 3-D structures with adaptivity in 
RBF of dual reciprocity BEM

S.H. Razaee
†
 and A. Noorzad

‡

Department of Civil Engineering, Engineering Faculty, Tehran University, Tehran, Iran

(Received December 2, 2005, Accepeted March 7, 2008)

Abstract. A new adaptive dual reciprocity boundary element method for dynamic analysis of 3-D
structures is presented in this paper .It is based on finding the best approximation function of a radial
basis function (RBF) group  which minimize the error of displacement field expansion. Also,
the effects of some parameters such as the existence of internal points, number of RBF functions and
position of collocation nodes in discontinuous elements are investigated in this adaptive procedure. Three
numerical examples show improvement in dynamic response of structures with adaptive RBF in dual
reciprocity with respect to ordinary BEM.
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1. Introduction 

The Boundary Element Method (BEM) is a powerful numerical method for structural analysis.

The BEM as applied to elastodynamic analysis in the frequency or time domain, usually employs

the corresponding elastodynamic fundamental solution.

However, the use of the elastodynamic fundamental solution increases the computational effort

due to large computation of convolution integral in forced vibration analysis and in addition creates

problems of accuracy and efficiency in free vibration analysis, where eigenvalues are computed by

the inefficient method of determinant.

Nardini and Brebbia (1982) introduced the Dual Reciprocity Boundary Element Method (DR/

BEM) in which much simpler elastostatic fundamental solution is used. For dynamic analysis, this

method creates an inertial volume integral due to acceleration term. The volume integral is

transformed into a surface integral with the aid of the reciprocal theorem. Thus, they succeeded in

creating a BEM which combines the dimensionality reduction advantage with the simplicity of the

elastostatic fundamental solutions. The 3-D DR/BEM has been applied by Wang and Banerjee

(1988, 1990) and Wilson et al. (1990) to free vibration analysis of axisymmetric structures.

However, no extensive studies concerning the influence of the selected approximation function on

the obtained results have been provided in their works. A development has been made by

Agnantiaris, Polyzos and Beskos (1998, 2001) for implementation of DR/BEM to three-dimensional
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(3-D) elastodynamic analysis including both free and forced vibration problems. Later, they used

some local radial basis functions (RBFs) with or without augmentation to free vibration analysis of

non-axisymmetric and axisymmetric structures. Also, Golberg et al. (1996, 1998) performed some

researches on the use of various approximation functions such as mutiquadraticlocal RBF 

and effect of augmentation term in thin plate spline RBF .

This paper presents an adaptive procedure in a group of local RBF  for best selection of

it’s parameters.

As the dynamic analysis in BEM depends on important factors such as internal points number,

parametric position of collocation nodes in discontinuous elements and RBFs number (geometrical

boundary points number), the effects of these factors in the adaptive procedure are discussed in

third section. After finding the best parameters of the problem, dynamic analysis with DR/BEM can

be performed more accurate than ordinary procedure of DR/BEM.

Three numerical examples of a cube, beam and sphere are presented in fourth section. The

accuracy of natural frequencies, response amplitude of harmonic forced vibration in frequency

domain and displacements time history of transient loading in time domain show the efficiency of

presented method.

2. The DR/BEM Formulation in elastodynamics

The motion of a linearly elastic body of domain Ω and boundary Γ is described by the Navier-

Cauchy partial differential equation as

(1)

Where  is the displacement vector at point x and time t, λ and μ being the Lame elastic

constants and ρ the mass density. Assuming zero body forces and zero initial conditions, the integral

representation of the Eq. (1) is formed as

(2)

Where  is the jump tensor.  and  are the fundamental solutions of

displacement and traction tensors in static problems.  and  are the displacement and

traction vectors at point ζ. The unknown solution  is expressed inside Ω as a series of

unknown time dependent coefficients  and known basis functions  of the form

(3)

Where M is RBF number, which equal to the number of selected geometrical boundary points. It is

common to use RBFs because of their simplicity

(4)

Where r is the Euclidean distance from point x to point . Inserting expression (3) into the domain

integral of Eq. (2) and reusing the reciprocity principle, the domain integral transforms into a

r2 c2
+( )

r
2
lnr( )

f r
n

c+=

μΔxu x t,( ) λ μ+( )∇x∇xu x t,( )+ ρu·· x t,( )=

u x t,( )

c x( )ui x t,( ) Gij x ζ,( )φj ζ t,( ) Fij x ζ,( )uj ζ t,( )–[ ]dΓ ζ( ) Gij x ζ,( )ρu··j ζ t,( )dΩ ζ( )
Ω

 

∫–
Γ

 

∫=

c x( ) Gij x ζ,( ) Fij x ζ,( )
ui x t,( ) φj ζ t,( )
u x t,( )

αi

m
t( ) f

m
x( )

ui x t,( ) αi

m
t( )f m

x( )
m 1=

M

∑=

f
m

x( ) f r x ζ
m,( )( )=

ς
m



Dynamic analysis of 3-D structures with adaptivity in RBF of dual reciprocity BEM 119

boundary integral 

(5)

Where  is the particular solution (displacement) of the Navier-Cauchy partial differential

equation and  is the corresponding traction field. For the presented RBF, f = rn + c these

functions are 

(6)

and

(7)

Discretizing of the boundary Γ into a finite number of boundary elements with a total number of

N nodes and rewriting of Eq. (2) in conjunction with Eq. (5) for all these nodes, the matrix equation

is obtained as

(8)

Where [F] and [G] are the elastostatic influence matrices, {U} and {φ} are the boundary

displacement and traction vectors, respectively. [ψ] and [η] are matrices containing sub-matrices of

 and  types. These sub-matrices correspond to the m-order radial function and each row to

the j nodal point. Applying expansion (3) to all geometrical boundary points M and assembling of

the resulting equations produces

(9)

Eq. (8) can be rewrite as follows

(10)
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It should be noted that if  where L is the number of internal points, Eq. (11a) should be

modified as

(11b)

The above equation can be used in frequency domain by considering time harmonic dependent

boundary displacement and traction vectors. This leads to

(12)

where ω is the circular frequency of the harmonic excitation. For calculation of natural modes and

frequencies, Eq. (12) is used by setting the external disturbances equal to zero. This results to a

generalized algebraic eigenvalue problem represented by the equation

(13)

where [A] is the BEM influence matrix created from moving the columns of [G] corresponding to

all unknown boundary variables to [F]. [H*] is obtained from [H] by putting zeros in its sub-

columns related to known displacements.

It should be noted that matrices [A] and [H*] are both fully populated and non-symmetric. For

solving the generalized algebraic eigenvalue problem of Eq. (13), an appropriate algorithm should

be selected.

3. Adaptivity in RBF of dual reciprocity 

The general errors in the BEM can be divided into the following four categories (Zhao and Wang

1999):

(a) Idealization error: This error is due to the transformation from the physical problem into a

mathematical model.

(b) Implementation error: This error refers to the numerical schemes used to implement the

boundary integral equation, e.g., the numerical scheme to compute various integrals, equation

solver, etc. Because of the singular and the nearly singular integrals involved, the

implementation error should be dealt carefully. Although the BEM implementation has been

improved by using advanced integral schemes, the implementation error is still an important

factor to the success of the BEM analyses.

(c) Round-off and precision error: This error results from repeating computation, and can be kept

at a lower level by careful programming and by using higher precision.

(d) Discretization error: This error in the BEM analyses includes the geometric discretization error.

Adaptive methods such as h, P, r and their combinations concern with this type of error.

There is another error in Dual Reciprocity BEM of approximating the displacement field with

approximating functions which is presented in Eq. (3). The effect of this error appears in calculation

of [H] in Eq. (11a) or (11b). A group of RBF that covers suitable local RBFs such as r + 1, r, r3,

r3 + 1 in 3-D application of DR/BEM is f = rn + c with major parameter of ‘n’ and augmentation

parameter of ‘c’. It should be noted that ‘n’ is real positive number but ‘c’ has no restriction. The
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effect of augmentation parameter ‘c’ has been tested for the three presented examples and its effect

is negligible. This is the fact that also mentioned by Prtridge (2000) and Agnantiaris (2001) for the

effect of augmentation term in radial basis functions. Thus, in adaptive RBF scheme the

concentration will be on ‘n’ exponent.

Based on Eq. (13), [B] is introduced as

(14)

The eigenvalues of [B] are inverse square of the problem’s natural frequencies. As, the accuracy

any dynamic analysis directly relates to accuracy of [B] elements, the error estimator is introduced

in L2 norm

(15)

Where ND is the dimension of [B],  and  are elements of [B] corresponding to RBFs of f =

rn' and f = rn''.

The RBF adaptivity is based on the minimization of ε in sequence of ‘n’ and derivation of nopt.. In

this paper, searching for nopt. is limited to the interval 0.0 < n < 4.0 that seems to be enough.

The following steps should be considered for implementation of RBF adaptivity:

1- Assignment of suitable RBFs number (M)

The RBFs number is one of the important parameters in DR/BEM used in displacement field

expansion. They should be well distributed for better description of the geometry. The RBFs

number usually is equal to all geometrical boundary points’ number but it is possible to use a

selection of them which are more important in problem’s geometrical description.

2- Assignment of parametric position of collocation nodes (λ) in discontinuous elements (Fig. 1)

3- Minimization of ε in sequence of ‘n’ and derivation of nopt.

4- Assignment of internal points (I.P.)
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Fig. 1 Quadrilateral discontinuous element
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Internal points may improve the accuracy of the analysis in some problems especially in case of

coarse meshes. They should be distributed in the structure as uniformly as possible.

For checking the efficiency of the method, the results of natural frequencies are compared with

references.

4. Numerical Examples

Example. 1- An elastic solid cube of side L = 6 (m) with bottom fixed face is solved by the RBF

adaptivity in DR/BEM method. The material properties are as follows:

Shear modulus μ = 106 (Pa),

Poisson’s ratio ν = 0.3,

Mass density ρ = 100 (Kg/ m3) 

The cube is discretized with nine-node-quadratic-quadrilateral discontinuous elements (Fig. 1) to

24 elements (Fig. 2a). This kind of elements is used in order to accommodate the corner and edge

effects. The eigenfrequencies of the cantilever cube are normalized with the expression

 where E is elasticity modulus. 

RBFs number is equal to M = 98 f based on usage of all geometrical nodes.

As shown in Table 1(a), the results of first eight natural frequencies of the cube with other fixed

parameters show that M = 98 has the minimum errors between other geometrical boundary point

numbers.

In second step, λ = 0.50, 0.60, 0.67, 0.75, 0.80, 0.83, 0.90 are tested and the results are shown in

Table 1(b). The results of first eight natural frequencies of the cube with other fixed parameters

show that all above tested ratios are acceptable but λ = 0.83 is the best selection for this problem.

With above selected parameters the specification of the RBF f = rn for 0.0 < n < 4.0 are as

follows:

The result of RBF adaptivity (Fig. 3) shows that the interval of 0.5 < n < 1.1 produce agreeable

results and nopt. is equal to 0.8. Checking the adaptivity results, the errors of first eight natural

frequencies are derived (Figs. 4a-f) based on analytic results calculated by Leissa and Zhang (1983).

They showed that each mode has own nopt. but n = 0.8 has acceptable errors in all first eight modes.

ω* ωL ρ/E=

Fig. 2(a) Cube surface discritization to 24 quadrilateral discontinuous elements
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The last step is decision about internal point’s number and locations. In three cases of internal

points I.P. = 0, 8, 27, the results are presented in each mode (Table 1(c)).

Fig. 2(b) Beam surface discritization to 56 quadrilateral discontinuous elements

Fig. 2(c) Sphere surface discritization to 24 quadrilateral elements

Table 1(a) Normalized eigenfrequencies of the cantilever cube (24El., λ = 0.67, f = 1 + r, I.P. = 0)

Mode
(Type)

(M = 26)

ei (%)

(M = 98)

ei (%)

(M = 152)

ei (%)

1, 2
0.670

(Bending)
0.664
(0.84)

0.665
(0.77)

0.665
(0.75)

3
0.909

(Torsion)
0.896
(1.47)

0.902
(0.81)

0.902
(0.76)

4
1.599

(Longitudinal)
1.601
(0.13)

1.597
(0.10)

1.596
(0.16)

5, 6
1.769

(Bending)
1.766
(0.18)

1.755
(0.82)

1.755
(0.81)

7
2.180

(Torsion)
2.232
(2.38)

2.167
(0.62)

2.162
(0.84)

8
2.581

(Longitudinal)
2.559
(0.87)

2.517
(2.48)

2.516
(2.52)

ω i

*

ω̂
i

* ω̂
i

* ω̂
i

*
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In this example, 8 internal points are the corners of a cube with side 4 (m) in the main cube and

27 internal points are located on the similar cube adding the center of each face and center of the

whole cube. Comparing the differences between three cases results, I.P = 27 can be selected. As

shown in Table 1(c), using 27 internal points improves the accuracy of cube’s eigenfrequencies in

modes 3-7. 

Using the results of the RBF adaptive procedure, dynamic analysis can be done. For the first

loading case, the cube is subjected to a uniform harmonically varying with time normal tensile

traction of amplitude P0 = 100 (Pa) acting on the cantilever cube on the top face. The amplitude of

the harmonic displacement Uz at the middle point of the loaded face is plotted versus angular

frequency (Fig. 5a). The results of the RBF adaptive DR/BEM are shown to be in close agreement

with those obtained by Agnantiaris specially in low frequencies but the adaptive procedure have

more accuracy specially in mode 4 which is main mode of resonance.

Table 1(b) Normalized eigenfrequencies of the cantilever cube (24El., M = 98, f = 1 + r, I.P. = 0)

Mode
(Type)

(λ = 0.50)

ei (%)

(λ = 0.60)

ei (%)

(λ = 0.67)

ei (%)

(λ = 0.75)

ei (%)

(λ = 0.80)

ei (%)

(λ = 0.83)

ei (%)

(λ = 0.90)

ei (%)

1, 2
0.670

(Bending)
0.659
(1.57)

0.660
(1.44)

0.665
(0.77)

0.665
(0.81)

0.669
(0.13)

0.671
(0.10)

0.674
(0.66)

3
0.909

(Torsion)
0.895
(1.58)

0.895
(1.59)

0.902
(0.81)

0.900
(1.04)

0.905
(0.39)

0.907
(0.23)

0.910
(0.15)

4
1.599

(Longitudinal)
1.595
(0.25)

1.601
(0.12)

1.597
(0.10)

1.601
(0.12)

1.602
(0.16)

1.603
(0.27)

1.609
(0.61)

5, 6
1.769

(Bending)
1.745
(1.37)

1.757
(0.66)

1.755
(0.82)

1.762
(0.37)

1.764
(0.26)

1.767
(0.10)

1.773
(0.21)

7
2.180

(Torsion)
2.166
(0.64)

2.168
(0.55)

2.167
(0.62)

2.173
(0.31)

2.173
(0.33)

2.175
(0.24)

2.180
(0.00)

8
2.581

(Longitudinal)
2.508
(2.83)

2.527
(2.11)

2.517
(2.48)

2.527
(2.11)

2.533
(1.85)

2.538
(1.68)

2.545
(1.39)

Table 1(c) Normalized eigenfrequencies of the cantilever cube (24El., λ = 0.83, f = r0.8, M = 98)

Mode
(Type)

(I.P = 0)

ei (%)

(I.P = 8)

ei (%)

(I.P = 27)

ei (%)

1, 2
0.670

(Bending)
0.670
(0.00)

0.670
(0.00)

0.670
(0.00)

3
0.909

(Torsion)
0.905
(0.44)

0.906
(0.33)

0.907
(0.21)

4
1.599

(Longitudinal)
1.612
(0.82)

1.608
(0.55)

1.602
(0.19)

5, 6
1.769

(Bending)
1.785
(0.92)

1.779
(0.56)

1.769
(0.00)

7
2.180

(Torsion)
2.194
(0.66)

2.190
(0.46)

2.185
(0.24)

8
2.581

(Longitudinal)
2.568
(0.52)

2.568
(0.51)

2.570
(0.45)

ω i

*

ω̂
i

* ω̂
i

* ω̂
i

* ω̂
i

* ω̂
i

* ω̂
i

* ω̂
i

*

ω i

*

ω̂
i

* ω̂
i

* ω̂
i

*
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Finally the cube is subjected to a suddenly applied uniform tensile traction P = P0H(t) acting on

the top face, where P0 = 100 (Pa) and H(t) is the Heaviside function. The time history of the Uz

displacement at the middle point of the loaded surface is compared with that obtained by

Agnantiaris (Fig. 5b). The time step used in Houbolt’s time integration scheme equals to Δt = 0.01

(s). This corresponds to β = 0.75 with definition of β = CPΔt/L. In this expression, CP and L are the

longitudinal wave velocity of the elastic medium and the length between the nearest surface nodes,

respectively. The results of the RBF adaptive DR/BEM are shown to be in close agreement with

Agnantiaris et al. result. It worth noting that peak value should be two times of static displacement

Table 1(d) Comparison of adaptive BEM results with ordinary BEM for cantilever cube (24El., I.P = 27)

Mode
(Type)

(Ordinary BEM)
(Agnantiaris et al. (1998))

( f = r + 1)

ei (%)

(RBF Adaptive BEM)
( f = r0.8)

ei (%)

1, 2
0.670

(Bending)
0.670
(0.00)

0.670
(0.00)

3
0.909

(Torsion)
0.933
(2.64)

0.907
(0.21)

4
1.599

(Longitudinal)
1.602
(0.18)

1.602
(0.18)

5, 6
1.769

(Bending)
1.773
(0.22)

1.769
(0.00)

7
2.180

(Torsion)
2.156
(1.10)

2.185
(0.24)

8
2.581

(Longitudinal)
2.556
(0.96)

2.570
(0.45)

ω i

*

ω̂
i

*
ω̂

i

*

Fig. 3 Adaptive n selection in radial basis function f = rn for the cantilever cube
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Fig. 4(a)-(f) Eigenfrequencies error of the cantilever cube



Dynamic analysis of 3-D structures with adaptivity in RBF of dual reciprocity BEM 127

about Uz,stat = 2.24e-3 (m) and dip value should be zero because no damping is considered in the

problem. Comparing the results shows that the adaptive procedure has more accuracy in peak and

dip values.

Example. 2- An elastic cantilever beam of length L = 20 (m) with 4 (m) × 4 (m) cross section is

solved by the RBF adaptive DR/BEM. The fixed base of the beam is subjected to a harmonic unit

transversal motion. The material properties are as follows:

Shear modulus μ = 0.8 × 1011 (Pa),

Poisson’s ratio ν = 0.3,

Mass density ρ = 7800 (Kg/m3) 

The beam surface is discretized to totally 56 nine-node-quadratic-quadrilateral-discontinuous

elements with 48 elements for lateral faces and 4 elements for each beam end (Fig. 2b). 

RBFs number is equal to M = 226 based on usage of all geometrical nodes. As shown in

Table 2(a), the results of first six natural frequencies of the beam with other fixed parameters of λ =

0.83, f = r3, I.P. = 0 shows that M = 226 has the minimum errors between other geometrical

Fig. 5(a),(b) Amplitude/Time History of the displacement at the mid-node of the loaded surface of the cube

Table 2(a) Eigenfrequencies of the cantilever beam (λ = 0.83, f = r3, I.P. = 0)

Mode
 (rad/s)

(Type)

(M = 90)

ei (%)

(M = 226)

ei (%)

1, 2
51.48

(Bending)
54.0

(4.89)
54.0

(4.89)

3
233.04

(Torsion)
280.0

(20.15)
278.3

(19.42)

4,5
277.86

(Bending)
297.8
(7.18)

298.9
(7.59)

6
408.25

(Longitudinal)
404.1
(1.02)

404.3
(0.97)

ω i

*

ω̂
i

* ω̂
i

*
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Table 2(b) Eigenfrequencies of the cantilever beam (M = 226, f = r1.4, I.P. = 0)

Mode
 (rad/s)

(Type)

(λ = 0.60)

ei (%)

(λ = 0.67)

ei (%)

(λ = 0.75)

ei (%)

(λ = 0.83)

ei (%)

1, 2
51.48

(Bending)
49.1

(4.62)
53.0

(2.95)
49.3

(4.14)
-

(100.00)

3
233.04

(Torsion)
219.7
(5.72)

288.0
(23.58)

258.3
(10.84)

303.8
(30.36)

4,5
277.86

(Bending)
269.2
(3.12)

275.1
(0.99)

270.1
(2.81)

278.0
(0.05)

6
408.25

(Longitudinal)
406.6
(0.40)

406.4
(0.45)

406.8
(0.35)

406.6
(0.40)

ω i

*

ω̂
i

* ω̂
i

* ω̂
i

* ω̂
i

*

Fig. 6 Adaptive n selection in radial basis function f = rn for the cantilever beam

Table 2(c) Eigenfrequencies of the cantilever beam (M = 226, f = r2.7, λ = 0.60)

Mode
 (rad/s)

(Type)

(I.P. = 0)

ei (%)

(I.P. = 9)

ei (%)

1, 2
51.48

(Bending)
49.1

(4.62)
49.0

(4.92)

3
233.04

(Torsion)
220.0
(5.60)

219.7
(5.72)

4,5
277.86

(Bending)
270.7
(2.56)

-
(100)

6
408.25

(Longitudinal)
405.6
(0.65)

-
(100)

ω i

*

ω̂
i

* ω̂
i

*
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boundary point numbers.

In second step, λ = 0.60, 0.67, 0.75, 0.83, are tested and the results are shown in Table 2(b). In

this table, the results of first six natural frequencies of the beam with other fixed parameters of M =

226, f = r1.4, Int. point = 0 shows that λ = 0.60, 0.67, 0.75 are acceptable but λ = 0.60 is the best

selection.

With λ = 0.60 and M = 226 the specification of the RBF f = rn for 0 < n < 4.0 are as follows:

The result of RBF adaptivity (Fig. 6) shows that the interval of 2.5 < n < 3.1 produce agreeable

results and nopt. is equal to 2.7. Checking the adaptivity results, the errors of first six natural

frequencies are derived (Figs. 7a-d) based on FEM results. It shows that each mode has own nopt

but n = 2.7 have acceptable errors in all first six modes.

For internal points, two cases of I.P. = 0, 9 are considered and the results are presented in each

mode (Table 2(c)). In this example, internal points can not help the results and I.P. = 0 is selected.

After completion of RBF adaptive procedure, dynamic analysis is performed for a harmonic unit

transversal motion of beam’s base. The amplitude of the harmonic displacement Uy at the center of

Fig. 7(a)-(d) Eigenfrequencies error of the cantilever beam
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beam’s free end (Fig. 8) shows good agreement of adaptive procedure with result of Dominguez

(1992).

Example. 3- An elastic sphere of radius r = 6 (m) is solved by the RBF adaptive DR/BEM. The

material properties are as follows:

Shear modulus μ = 106 (Pa),

Poisson’s ratio ν = 0.25,

Mass density ρ = 100 (Kg/m3) 

The sphere is discretized to 24 nine-node-quadratic elements (Fig. 2d). The eigenfrequencies of

Fig. 8 Amplitude of the displacement at the center of beam’s free end

Fig. 9 Adaptive n selection in radial basis function f = rn for the sphere



Dynamic analysis of 3-D structures with adaptivity in RBF of dual reciprocity BEM 131

Fig. 10(a)-(f) Eigenfrequencies error of the sphere



132 S.H. Razaee and A. Noorzad

the sphere are normalized with the expression .

For models consisting of only continuous elements, the geometric and collocation nodes are the

same and M can be easily selected equal to all geometric boundary nodes. 

With M = 98, the specification of the RBF f = rn for 0 < n < 4.0 are as follows:

The result of RBF adaptivity in this example (Fig. 9) shows that the interval of 2.5 < n < 3.1 have

agreeable results and nopt. is equal to 0.7. Checking the adaptivity results, the errors of first 28

natural frequencies are derived (Figs. 10a-f) based on analytic results calculated by Leissa and

Zhang (1983). They show that each mode has own nopt. but n = 0.7 has acceptable errors in all first

28 modes.

ω* ωr ρ/μ=

Fig. 11 Time History of the radial displacement on the surface of the sphere

Table 3(a) Normalized eigenfrequencies of the sphere (24El., f = r0.7, M = 98)

Mode
(Type)

(I.P. = 0)

ei (%)

(I.P. = 13)

ei (%)

(I.P. = 31) 

ei (%)

1-5
2.501

(Torsional)
2.492
(0.35)

2.493
(0.34)

2.493
(0.33)

6-10
2.640

(Spheroidal)
2.908

(10.34)
2.881
(9.13)

2.854
(8.12)

11-13
3.424

(Spheroidal)
3.396
(0.81)

3.343
(2.36)

3.264
(4.66)

14-20
3.865

(Torsional)
4.090
(5.81)

4.086
(5.73)

4.081
(5.59)

21-27
3.916

(Spheroidal)
4.413

(12.68)
4.399

(12.32)
4.379

(11.83)

28
4.440

(Spheroidal)
4.894

(10.32)
4.894

(10.23)
4.816
(8.48)

ω i

*

ω̂
i

* ω̂
i

* ω̂
i

*
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For internal points, four cases of internal point = 0, 7, 13, 31 are considered and the results are

presented in each mode (Table 3(a)). Comparing the differences between four cases results, I.P. = 31

can be selected. As shown in Table 3(a) using 31 internal points improves the accuracy of sphere’s

eigenfrequencies in modes 1-10 & 14-28.

After completion of RBF adaptive procedure, the sphere is subjected to a suddenly applied

uniform radial pressure P = P0H(t) where P0 = 100 (Pa) and H(t) is the Heaviside function. The

time history of the radial displacement Ur is compared with that obtained by Agnantiaris et al.

result with f = 1 + r. The time step used in Houbolt’s time integration scheme is Δt = 0.006 (s)

which is corresponding to β = 0.51. The results of the RBF adaptive DR/BEM are shown to be in

close agreement with Agnantiaris et al. results. The reduction of required elements from 40 to 24

demonstrates the efficiency of the presented method.

5. Conclusions

A new adaptive dual reciprocity boundary element method for dynamic analysis of 3-D structures

is presented. The adaptive method is based on finding the best approximation function of a radial

basis function (RBF) group f = rn + c. It helps us to reduce the error of expanding the displacement

field which is necessary for dual reciprocity method. As the effect of augmentation parameter ‘c’ is

negligible, the function can be reduced to f = rn.

The following steps should be considered for implementation of RBF adaptivity:

1- Assignment of suitable RBFs number (M)

The RBFs number which equals to selected geometrical boundary points (M) directly is used in

expansion of displacement field. The results show that the best selection of geometrical boundary

points of models which is discretized with discontinuous elements, is using all geometrical element

nodes of the model that usually is less than boundary nodes number. For a model which is

discretized with continuous elements, maximum of M equal to N + L is the best selection.

2- Assignment of parametric position of collocation nodes (λ) in discontinuous elements 

3- Minimization of ε in sequence of ‘n’ and derivation of nopt.

In this paper, searching for nopt. is limited to the interval 0.0 < n < 4.0 that seems to be enough.

The numerical examples show that each mode of natural frequencies has own nopt. but the optimum

‘n’ derived from RBF adaptivity has acceptable errors in all several first modes. Also, nopt. in all

cases are located in one of two intervals 0.5 < n < 1.8 and 2.3 < n < 3.7

4- Assignment of internal points (I.P.)

Using some internal points can help results in case of coarse mesh but in a model with fine mesh,

this may increase the error of natural frequencies. The internal points should be distributed in the

structure as uniformly as possible.

After completion of RBF adaptive procedure, dynamic analysis with DR/BEM can more

accurately be done. A harmonic forced vibration in frequency and a transient Heaviside loading in

time domain are implemented to the examples and the results show the improvement of accuracy

with respect to ordinary DR/BEM.
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