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Abstract. Free axisymmetric vibrations of layered cylindrical shells of variable thickness are studied
using spline function approximation techniques. Three different types of thickness variations are
considered namely linear, exponential and sinusoidal. The equations of axisymmetric motion of layered
cylindrical shells, on the longitudinal and transverse displacement components are obtained using Love’s
first approximation theory. A system of coupled differential equations on displacement functions are
obtained by assuming the displacements in a separable form. Then the displacements are approximated
using Bickley-spline approximation. The vibrations of two-layered cylindrical shells, made up of several
types of layered materials and different boundary conditions are considered. Parametric studies have been
made on the variation of frequency parameter with respect to the relative layer thickness, length ratio and
type of thickness variation parameter. 
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1. Introduction

Layered circular cylindrical shells are widely used in the fields of shipbuilding, aerospace and

other industries. Composite structures having high specific stiffness, better damping and shock

absorbing characteristics, give good performance in industry. Liessa (1973) reported on vibration

behavior of composite cylindrical shell structure of variable thickness with homogeneous wall.

Dong (1968) and Greenberg (1980) studied the vibration of orthotropic composite cylindrical shells

using Donnel’s (1933) shallow shell theory. Reddy (1981) presented the finite element model on

layered anisotropic plates and shells. Sakiyama et al. (2002) and Tsuiji and Sueoka (1989) analysed

the vibration of cylindrical panel using Rayleigh-Ritz method. Later Toorani and Lakis (2006)

studied the non-uniform composite cylindrical shells using hybrid finite element analysis, in which

shear deformation theory and rotatory inertia are included and the thickness variation is considered
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in the circumferential direction. Hinton et al. (1995) used Mindlin-Reissner shell theory to analyze

the variable thickness of folded plates and curved shells by applying the finite strip method. 

Mizusawa and Kito (1995) used the spline strip method to study the vibration of cross-ply

laminated cylindrical panels. Sivadas and Ganesan (1991, 1993) analyzed the free vibration of

cylindrical shells of variable thickness in terms of linear and quadratic variations and discussed

axisymmetric vibration of thick cylindrical shell for linear variation using FEM. Suzuki et al. (1993)

used the power series solution to analyze the vibration of rotating circular cylindrical shells of

variable thickness. Viswanathan and Navaneethakrishnan (2005) presented a paper using spline

function approach, in which the conical shells of variable thickness are analyzed. The present work

is to analyze the cylindrical shell of variable thickness using the spline method.

In the present study the free vibration of laminated circular cylindrical shells of variable thickness

are analyzed using spline function techniques. The equations of motion are derived using Love’s

first approximation theory for homogeneous shells. The layers are considered to be thin, elastic,

specially orthotropic or isotropic and assumed to be perfectly bonded together and to move without

interface slip. The governing differential equations are obtained in terms of the reference surface

displacements which are coupled in the longitudinal, circumferential and transverse displacement

components. Assuming the displacement functions in a separable form, they reduce to a system of

ordinary differential equations on a set of displacement functions which are functions of meridional

co-ordinate only. Two types of layered materials are considered and two sets of boundary conditions

are imposed in all. The equations have no closed form solution in general, so that the numerical

solution techniques have to be resorted to. 

In preference to a number of numerical methods available for such problems, like those of FEM

(Konuralp Girgin 2006, Wang et al. 2006), Fourier series approach (2001) or Generalized

differential quadrature (1996) a spline function technique is used. Bickley (1968) successfully tested

the spline collocation method over a two point boundary value problem with cubic spline.

Viswanathan and Navaneethakrishnan (2002, 2003, 2005) have also demonstrated this, along with

its attractive features of elegance in handling and convergence. Recently Viswanathan and Lee

(2007) studied the vibration of cross-ply plates including shear deformation theory using spline

method. The advantage of this method is that a chain of lower order approximations, used here than

the global higher order approximation. 

In this work only the axisymmetric vibration is analyzed. Hence, the differential equations are

reduced to the longitudinal and transverse displacement functions. Then the spline functions are

approximated for the displacement functions with suitable order which are cubic and quintic.

Collocation with these splines yield a set of field equations which, along with the equations of

boundary conditions, reduce to a system of homogeneous simultaneous algebric equations on the

assumed spline coefficients which results a generalized eigenvalue problem. The eigenvalue

problem is solved for a frequency parameter using eigensolution technique to obtain as many

frequencies as required, starting from the least. From the eigenvectors, the spline coefficients are

calculated from which the mode shapes are constructed. 

2. Formulation of the problem

The system of differential equations are derived for a thin shell of revolution which characterize

the vibration comprising of isotropic and specially orthotropic layers based on Love’s first
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approximation theory. The rotatory inertia and shear deformation are neglected. Also the general

line of procedure of Ambartsumyan (1964) for the classical theory of thin shell is adopted. The

assumption made in this case is that, each individual layer behaves macroscopically as a

homogeneous orthotropic and linearly elastic material. Its material axes of symmetry parallel to the

principal coordinates of the surface of the shell. Within the frame work of thin shell assumption, the

layers may be of arbitrary thickness. They may be of arbitrary material properties and arranged with

or without symmetry about the middle surface. The consecutive layer is assumed to be perfectly

bonded together at their interface resulting in motion without slip. Since the layer can now be of

variable thickness, the following assumption is made:

All the layers of the cylindrical shell vary in thickness either linearly, exponentially, sinusoidally,

or in a combined way according to the same law of variation, the variation being gradual. 

According to this, the material lines of orthotropy can still assumed to be parallel to the principal

coordinate lines of the reference surface of the shell. Smaller the number of layers assumed, more

realizable is this assumption. Only two layers are considered here for detailed study, for the reason

explained earlier, it turns out that this assumption is well realizable. The coordinate system and the

geometric parameters of the laminated cylindrical shells of constant thickness and the arrangement

of its layers are shown in Fig. 1. 

The thickness of the k-th layer is assumed in the form 

 (1)

Where h0k is a constant and  is assumed for suitable function of x with respect to the

different thickness variation. The thickness of the layers is not completely independent. Their

dependence is given by 

(2)

where ρk is the density of the k-th layer and zk is the distance of the outer boundary of the k-th layer

hk h0kg x( )=

g x( )

zk

2
zk 1–

2
–( )ρk

k

∑ 0=

Fig. 1 Layered circular cylindrical shell of constant thickness: Geometry
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from the reference surface. The elastic coefficients corresponding to layers of uniform thickness

with superscript ‘c’, one easily finds 

 (3)

where Aij, Bij and Dij are extensional rigidity, coupling between bending and stretching and flexural

rigidity respectively. 

In this study, the thickness variation of each layer is assumed in the form

 (4)

Where  (5)

Here � is the length of the cylinder. 

The stress resultants and moment resultants are expressed in terms of the longitudinal, and

transverse displacements u and w of the reference surface. The displacement v is neglected since,

only the axisymmetric vibrations are studied in this work. The displacements are assumed in the

separable form given by

 

 (6)

where x is the longitudinal coordinate, t is the time and ω is the angular frequency of vibration.

Using Eq. (6) in the constitutive equations and the resulting expressions for the stress resultants and

the moment resultants in the equilibrium equations, the governing differential equations of motion

are obtained in the form 

 (7)
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where 

 (9)

is a frequency parameter (10)

is the inertial coefficient. (11)

3. Method of solution

3.1 Modification of displacement equations

The differential equations on the displacement functions of Eq. (7) contain derivatives of third

order in U and fourth order in W. Therefore the present form is not suitable to the solution

procedure we propose to adopt. Hence, the equations are combined within themselves and a

modified set of equations are derived. The modified equations are now become as 2nd order in U

and 4th order in W and is given by 

 (12)

The new operators  and  are 

(13)

3.2 Transformation
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, ratio of thickness to radius

, a radius parameter

 , a distance coordinate

Here � is the length of the cylinder, r is the radius, hk is the thickness of the kth layer, h is the

total thickness of the shell and h0 is the constant thickness. Also define δ = δ1 and δ2 = 1 − δ1, since

we consider only two layers. 

3.3 Thickness variation

The thickness  of the kth layer at the distance X from the origin o can be expressed as 

(15)

Where (16)

The range of X lies between 0 and 1. i.e., .

If , the thickness variation becomes linear, In this case it can be easily shown that

, where η is the taper ratio . If , then  and the thickness

becomes constant. If , the excess thickness over uniform thickness varies exponentially

and if , the excess thickness varies sinusoidally. The thickness of the layer at  is

h0k for the first and third cases, but the thickness is  for the second case.

3.4 Spline collocation procedure

The displacement functions  and  are approximated using spline collocation procedure

to solve the problem assuming in the same way as in Viswanathan and Navaneethakrishnan (2003). 

(17)
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The boundary conditions are used as follows: (i) both the edges clamped (C-C), (ii) both the

edges hinged (H-H). Each of the boundary conditions gives six more equations thus giving a total

of  equations, in the same number of unknowns. The resulting field and boundary

conditions gives raise to the generalized eigenvalue problem of the form

 (18)

where [M] and [P] are matrices of order , {q} is a matrix of order .

This is treated as a generalized eigenvalue problem in the eigenparameter λ and the eigenvector

whose elements are the spline coefficients. 

4. Results and discussion

4.1 Convergence and comparative study

A convergence study has been studied for the frequency parameter value to choose the number of

subintervals N of the range of X. The material properties are taken from Elishakoff and Stavsky

(1976). The program was run for several cases of parametric values, material combinations,

thickness variations, for value of N = 4 onwards. There was some improvement in λ with increasing

the value of N, but the improvement came down steadily. It can be seen that the choice of N = 14 is

adequate since for the next value of N the percent change in values of λ, are very low, the

maximum being 0.35%. The results are not furnished here since for want of space. 

Table 1 shows the comparison of the frequency parameter λ for various length parameter obtained

by present method with those results obtained by Sivadas and Ganesan (1993) for thin shells. The

fundamental frequency λ converted in to the suitable parameter . The following

parametric values are used: radius a = 0.1 m, Young’s modulus E = 2 × 1011 N/m2, Poisson ratio ν =

0.3, mass density ρ = 7800 kg/m3 from Sivadas and Ganesan (1993). The maximum percentage

changes between present value and available result is 6.66%. So, the agreement of the current

results is quite good, providing the credibility to the method of analysis and results. 
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Table 1 Comparative study of axisymmetric vibration of cylindrical shell of linear variation in thickness
under C-C boundary condition with Sivadas and Ganesan (1993)
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4.2 Discussion

Figs. 2-5 depicts the nature of the values of the frequency parameter λ with respect to the increase

of the relative thickness ratio δ for the layered cylindrical shells, whose thickness varies linearly

, exponentially  and sinusoidally  for

different values of thickness variation parameter, with two fixed values L = 1.5 (length parameter)

and H = 0.02 (thickness parameter). The first three meridional modes  are considered

here and in all the studies that follow. 

Fig. 2 shows the nature of the frequency under the clamped-clamped (C-C) boundary conditions

for two kinds of two layered materials made up of HSG-SGE and HSG-PRD materials. Thus, when

C� 0≠ Ce Cs 0= =,( ) Ce 0≠ C� Cs 0= =,( ) Cs 0≠ C� Ce 0= =,( )

m 1 2 3, ,=( )

Fig. 2 Variation of frequency parameter with relative layer thickness: Cylindrical shells of linear variation in
thickness of layers under clamped-clamped boundary conditions 
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δ = 0 the inner layer disappears then the shell is in homogeneous. When δ = 1 the outer layer

disappears, again the shell is in homogeneous. Figs. 2(a) and (b) corresponds to a shell whose inner

and outer layers are made up of HSG-SGE materials. In this case when δ = 0, the shell becomes

homogeneous made up of SGE material and when δ = 1, the shell is again homogeneous made up

of HGE material. The values of taper ratio is fixed as η = 0.75 and η = 1.5 in Figs. 2(a) and (b)

respectively. From this figure it can be seen that the value of λm  decreases as δ

increases for all the three modes. Figs. 2(c) and (d) corresponds to a shell whose inner and outer

layers are made up of HSG-PRD materials. Here the value of λm  increases as δ

increases. The shell is homogeneous for the extreme values of δ, equal to 0 or 1. The value of

λm  is highest for the homogeneous SGE shells (at δ = 0 in Figs. 1(a) or (b)) and the

m 1 2 3, ,=( )

m 1 2 3, ,=( )

m 1 2 3, ,=( )

Fig. 3 Variation of frequency parameter with relative layer thickness: Cylindrical shells of linear variation in
thickness of layers under hinged - hinged boundary conditions



758 K.K. Viswanathan, Kyung Su Kim, Jang Hyun Lee, Chang Hyun Lee and Jae Beom Lee

least for homogeneous PRD shells (at δ = 0 in Figs. 2(c) or (d)) and assumes a value in between

them for homogeneous HSG shells (at δ = 1 in Figs. 2(a), (b), (c) or (d)). It is clearly shows that it

is possible to attain a desired frequency, between these two extreme values by suitably choosing the

value of δ. 

Figs. 3(a) and (b) shows the effect of the thickness ratio δ on the frequency parameters

λm  with fixed values of η for the shells made of HSG-SGE materials. Both the ends

are hinged (H-H). Figs. 3(c) and (d) is drawn on frequency parameters λm  for the

layered materials HSG-PRD. The behavior of the frequency parameters is similar as in Fig. 2. But

the frequencies are higher for C-C conditions comparing with corresponding study of H-H

m 1 2 3, ,=( )
m 1 2 3, ,=( )

Fig. 4 Variation of frequency parameter with relative layer thickness: Cylindrical shells of exponential
variation in thickness of layers. Layer materials: HSG-SGE 
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conditions. This reveals that the designer can choose the required structure by choosing the value of

δ and combination of layered materials along with necessary boundary conditions. 

Fig. 4 corresponds to exponential variation in thickness of layers . The cases

Ce = 0.2 and −0.2 are studied. Accordingly the thickness of the layers at any point is higher or

lower than the thickness at x = 0. The frequencies as seen in the corresponding figures are

correspondingly higher and lower. Similar remarks apply to Fig. 5, which pertain to sinusoidal

variation in thickness. The meridional section of the layers is convex or concave according as Cs =

± 0.25. The range of thickness parameter chosen carefully so that the thickness does not vanish or

become negative anywhere and the thin shell assumption are valid. 

Ce 0≠ C� Cs 0= =,( )

Fig. 5 Variation of frequency parameter with relative layer thickness: Cylindrical shells of sinusoidal variation
in thickness of layers . Layer materials: HSG-SGE 
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In Figs. 6 and 7 the influence of the nature of the variation of thickness of the layers of the shell

on its vibrational behavior is studied. An HSG-SGE shell held under two types of boundary

Fig. 7 (a) Effect of taper parameter on frequency parameter, (b) Effect of coefficient of exponential variation
on frequency parameter, (c) Effect of coefficient of sinusoidal variation on frequency parameter. H-H
boundary conditions

Fig. 6 (a) Effect of taper parameter on frequency parameter, (b) Effect of coefficient of exponential variation
on frequency parameter, (c) Effect of coefficient of sinusoidal variation on frequency parameter. C-C
boundary conditions.
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conditions with three types of variation in thickness of layers is considered, with L = 1.5, H = 0.02

and δ = 0.4. Fig. 6(a) relates to linear variation in thickness of layers under C-C boundary

conditions. The thickness is constant when the taper ratio η = 1. Variation of λm  with

respect to η for  is studied. It is seen that λm is almost constant for all the values of η.

The percent changes induced in λ1, λ2, λ3 over the range of values of η considered under C-C

boundary condition is 0.0376%, 0.201%, 0.247%. The effect of exponential variation in thickness of

layers is analyzed in Fig. 6(b). When Ce = 0, thickness is uniform. The thickness at the end x = � of

the cylinder is higher or lower than the thickness at the other end x = 0 according as Ce
 <

> 0. The

percent changes induced in λ1, λ2, λ3 over the range of values of Ce under C-C boundary condition

is 0.487%, 0.419%, 0.466%. The effect of sinusoidal variation in thickness of layers on frequency

parameters is studied in Fig. 6(c). These effects are almost similar to those due to the exponential

variation just discussed. Here the coefficient of thickness variation is considered over the range

[−0.5, 0.5]. 

In Fig. 7 the influence of the taper ratio η, the coefficient of exponential variation of thickness Ce

and the coefficient of sinusoidal variation Cs on λm are depicted, along with the effect of the H-H

boundary conditions. The effect of λm is almost same for all the cases of linear and exponential

variation as described in Fig. 6. But the variation of λm  decrease slowly between −0.5 ≤ Cs

≤ −0.2 and steady between −0.1 ≤ Cs ≤ 0.1 and then increase afterwards. In this variation the C-C

boundary conditions contribute slightly higher values to the influence of the coefficients of thickness

variation on frequencies than the H-H conditions contributing values to the influence of the

coefficients of thickness variation on frequencies. 

The frequency parameter λ is explicitly a function of the length � of the cylinder. Hence, when

studying the influence of the length of the cylinder on its vibrational behavior, the actual frequency

ω and not λ is considered. Fig. 8 describes how the length parameter L affects ω (in 103 Hz) for

HSG-SGE layered cylindrical shells under C-C conditions, with H = 0.02 and δ = 0.4. Linear,

m 1 2 3, ,=( )
0.5 η 2.1≤ ≤

m 3=( )

Fig. 8 Variation of frequency parameter with length parameter under C-C boundary conditions . Layer
materials: HSG-SGE. (a) Linear variation, (b) Exponential variation, (c) Sinusoidal variation in
thickness of layers 
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Fig. 9 Variation of frequency parameter with length parameter under H-H boundary conditions. Layer
materials: HSG-SGE. (a) Linear variation, (b) Exponential variation, (c) Sinusoidal variation in
thickness of layers 

Fig. 10 Mode shapes of axisymmetric vibration of cylindrical shells of different types of variation  in
thickness of layers. (a), (d) C-C boundary conditions, (b), (e) H-H boundary conditions 
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exponential and sinusoidal thickness variations are analyzed. It can be seen that ω decreases as L

increases. The decrease is fast for very short shells, the rate of decrease increasing with higher

modes. There is no rapid change in the rate of decrease of ω in the interval 0.65 < L < 0.95 after

which the decrease is very low. The fundamental frequencies are almost constant for L > 0.95. The

similar situations arise in the Fig. 9 which is analyzed for H-H boundary conditions considering the

materials made up of HSG-SGE. 

Certain mode shapes of HSG-SGE shell are presented in Fig. 10. All the two types of boundary

conditions and all the three types of variation in thickness of layers are considered as indicated. The

transverse displacements predominate in all of them. Both the transverse and radial displacements

are normalized with respect to the maximum transverse displacements. Up to the third modes of

vibration are presented. The displacement curves of any particular mode for all the three types of

thickness variation are seen close to each other. The shells considered are of L = 1.5, H = 0.02 and

δ = 0.4 with thickness coefficients η = 0.75, Ce = 0.2 and Cs = 0.25. 

5. Conclusions

The vibrational behavior of layered cylindrical shell of variable thickness is studied. Linear,

exponential and sinusoidal variations are discussed assuming two types of layered materials for two

layered shells. Frequencies may vary with the relative thickness of layers, the nature of variation of

their thickness, the length ratio of the cylindrical shell and the boundary conditions. The frequency

parameter values tend to decrease, in general, with increase of length of the shell. This provides

scope for one to choose suitable thickness proportions among the given materials to achieve the

desired vibrational behaviour.

The study also shows the elegance and usefulness of the spline function collocation method for

boundary value problems.
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Notation

Aij : Elastic coefficients representing the extensional rigidity
Bij : Elastic coefficients representing the coupling between bending and stretching
Ce : Coefficient of exponential variation 
C� : Coefficient of linear variation
Cs : Coefficient of sinusoidal variation
Cij : Elastic coefficients representing the flexural rigidity
Lij : Differential operator occurring in the equations of motion
Lij
* : Differential operator occurring in the equations of motion

N : Number of intervals of spline interpolation
R0 : Inertial coefficient of a leyered shell
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U : Extensional displacement function
W : Normal displacement function
X : Non-dimensional meridional distance co-ordinate
hk(x) : Thickness of the k-th layer of the shell at any x
h0 : Constant thickness
� : Length of the cylindrical shell
m : Meridional mode number
r : Radius of the cylinder
t : Time coordinate
u : Meridional displacement of the deformed reference surface
v : Circumferential displacement of the deformed reference surface
w : Normal displacement of the deformed reference surface
x : Meridional coordinate of any point on the shell
z : Normal coordinate of any point on the shell
zk : Distance of the top of the k-th layer from the reference surface
δ, δ1 : Relative layer thickness h1/h
λ : Nondimensional frequency parameter
ρ : Mass density of the material of the shell
θ : Circumferential coordinate
ω : Circular frequency of motion
η : Taper ratio in the case of linear variation of thickness

Abbreviations

C-C : Both the ends fully clamped
H-H : Both the ends hinged
HSG : High strength graphite epoxy
PRD : PRD-49-111 Epoxy
SGE : S-glass epoxy




