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Abstract. The reports regarding the free vibration analysis of uniform beams carrying single or multiple
spring-mass systems are plenty, however, among which, those with inertia effect of the helical spring(s)
considered are limited. In this paper, by taking the mass of the helical spring into consideration, the
stiffness and mass matrices of a spring-mass system and an equivalent mass that may be used to replace
the effect of a spring-mass system are derived. By means of the last element stiffness and mass matrices,
the natural frequencies and mode shapes for a uniform cantilever beam carrying any number of spring-
mass systems (or loaded beam) are determined using the conventional finite element method (FEM).
Similarly, by means of the last equivalent mass, the natural frequencies and mode shapes of the same
loaded beam are also determined using the presented equivalent mass method (EMM), where the
cantilever beam elastically mounted by a number of lumped masses is replaced by the same beam rigidly
attached by the same number of equivalent masses. Good agreement between the numerical results of
FEM and those of EMM and/or those of the existing literature confirms the reliability of the presented
approaches.

Keywords: mass of spring; cantilever beam; spring-mass system; equivalent mass; natural frequency;
mode shape.

1. Introduction

In the field of aeronautics, naval architecture and civil engineering, the vibration characteristics of

structures carrying various equipments, such as radar, oscillator, engine, absorbers, etc., are

important information for structural engineers. Hence, the vibration problems, such as beams

carrying elastically mounted concentrated masses, have been studied by many researchers. For

example, Ercoli and Laura (1987), Larrondo et al. (1992), Rossit and Laura (2001), Gürgöze (1996,

1998, 1999), Wu and Chou (1998), Wu and Chen (2001) and Wang et al. (2007) have investigated

the dynamic characteristics of beams carrying single or multiple one-degree-of-freedom (one-dof)

spring-mass systems. Manikanahally and Crocker (1991), Dowell (1979), Nicholson and Bergman

(1986) have researched the effects of single and multiple one-dof spring-mass absorbers. Wu et al.

(1999) and Wu and Chen (2000) have studied the vibration characteristics of a uniform cantilever
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beam carrying multiple one-dof spring-damper-mass systems using the analytical-and-numerical-

combined method. Chang and Chang (1998) have studied the free and forced vibrations of beams

carrying a two-dof spring-mass system by means of Laplace transform with respect to the spatial

variable. Wu and Whittaker (1999) and Wu (2002, 2003) have performed the free vibration analyses

of beams carrying multiple two-dof spring-mass systems. Wu (2005) has studied the free vibration

characteristics of a rectangular plate carrying multiple three-degree-of-freedom spring-mass systems.

Chen and Liu (2006) have investigated the free and forced vibrations of a tapered beam carrying

multiple point mass. Recently, Gürgöze (2005) has studied the fundamental natural frequency of a

cantilever beam carrying a tip spring-mass system with mass of the spring considered. He took the

mass of the helical spring into account by modeling the helical spring as an axially vibrating rod.

From the review of the preceding literature, it can be found that the inertia effect of the helical

spring(s) is neglected in most of the existing vibration analyses except Gürgöze (2005). Because the

total number of spring-mass systems attached to the beam is single in Gürgöze (2005), this paper

aims at investigating the influence of mass of each helical spring on the dynamic characteristics of a

cantilever beam carrying multiple spring-mass systems.

For convenience, a beam carries nothing is called the bare beam, while that carries any number of

spring-mass systems is called the loaded beam in this paper. First, the equation of motion of the

spring-mass system with mass of the helical spring considered is derived by means of Lagrange’s

equations. From the last equation of motion, the stiffness and mass matrices of the spring-mass

system are obtained and the conventional finite element method (FEM) is used to determine the

natural frequencies and mode shapes of the loaded beam. Next, from the force equilibrium equation,

an equivalent mass with its dynamic effect to be the same as that of the spring-mass system is

introduced so that the free vibration characteristics of a beam carrying any number of spring-mass

systems can be obtained from those of the same beam carrying the same number of rigidly attached

equivalent masses. The key point of the presented equivalent mass method (EMM) is to derive the

characteristic equation of the loaded beam analytically using the above-mentioned rigidly attached

equivalent masses together with the natural frequencies and mode shapes of the bare beam and then

to solve the last characteristic equation numerically for the natural frequencies and mode shapes of

the loaded beam. Since the equivalent mass of the spring-mass system is a function of the natural

frequencies of the loaded beam, the cut and trial procedure is used in EMM. For validation, all

numerical results obtained from EMM are compared with those obtained from FEM and good

agreement was achieved. Because the order of the overall property matrices for the equations of

motion of the loaded beam derived from EMM is much less than that derived from FEM, the

computer storage memory required by EMM is much less than that required by FEM. This

advantage of EMM will be more predominant if the total number of spring-mass systems attached

to the beam is large. Besides, the presented EMM also provides an effective technique for

evaluating the overall inertia effect of a spring-mass system attached to a beam.

2. Equation of motion of a spring-mass system

Fig. 1(a) shows an arbitrary spring-mass system attached to point i of the uniform beam. In

which,  and  are, respectively, the spring constant, mass per unit length and total length

of the helical spring, while Fi and  are, respectively, the interaction force at attaching point i

and the external force on lumped mass . Besides, ui,  and  are respectively the
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displacement, velocity and acceleration of attaching point i, while  and  are those of

lumped mass . In the above symbols, the superscript v represents the numbering of the spring-

mass system attached to the beam.

If the displacement for any infinitesimal element (dy) of the helical spring varies linearly from ui

to , then the kinetic energy (T) and strain energy (V) of the spring-mass system are, respectively,

given by 

(1)

(2)

where the over dot (·) represents the differentiation with respect to time t and �(v) denotes the total

length of the helical spring in static equilibrium position of the loaded beam.

Introducing Eqs. (1) and (2) into the following Lagrange’s equations (Clough and Penzien 1975)
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Fig. 1 (a) A uniform beam carrying an arbitrary spring-mass system can be replaced by (b) the same beam
carrying a rigidly attached equivalent lumped mass meq
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one obtains

(4a)

(4b)

Writing Eqs. (4a) and (4b) in matrix form yields

(5)

where

(6a)

(6b)

(6c)

(6d)

(6e)

with

(6f)

In the preceding expressions,  and  are respectively the mass and stiffness matrices of

the v-th spring-mass system,  and  are respectively the acceleration and displacement

vectors, while  is the external loading vector.

If the displacement and acceleration of attaching point i is zero, i.e.,  and , then

from Eqs. (5) and (6) one obtains

(7)

which is the equation of motion for free vibration of the v-th spring-mass system with respect to the

static beam. From Eq. (7) one obtains the natural frequency of the v-th spring-mass system to be
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where

(8b)

In Eqs. (8a) and (8b),  denotes the local natural frequency of the v-th spring-mass system

with mass of helical spring considered (i.e., ), while  denotes that with mass of helical

spring neglected (i.e., ). From Eq. (8a) one sees that the influence of mass ratio ( ) on

the local natural frequency  is dependent on the value of . If the numerical value of  is

large, then a small change of  will lead to larger variation of , otherwise, the effect of 

will be negligible.

3. Equivalent mass of the spring-mass system

The equation of motion for the lumped mass  of the v-th spring-mass system shown in

Fig. 1(a) is given by Eq. (4b) and the interaction force Fi at attaching point i is given by Eq. (4a).

For a free vibrating loaded beam, one has

 (9)

and 

 (10a)

 (10b)

In the last equations,  and , respectively, represent the amplitude of ui and , 

represents the natural frequency of the loaded beam, t is time and . 

From Eqs. (10a) and (10b), one obtains
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where

(14a)

or

(14b)

Eq. (13) reveals that the dynamic effects of the spring-mass system attached to the beam can be

replaced by a rigidly attached equivalent mass (see Fig. 1(b)) with magnitude  given by Eqs.

(14a,b). From Eq. (14a), one sees that the equivalent mass  is dependent on the following

parameters of the spring-mass system: magnitude of lumped mass , spring constant , mass

per unit spring length  and total length  of the helical spring. Among the above-mentioned

parameters of a spring-mass system, the parameter  denotes the inertial effect of the mass of the

helical spring neglected by most of the existing literature. 

4. Natural frequencies and mode shapes of the loaded beam

By neglecting the effects of shear deformation and rotatory inertia of the beam, the equation of

motion for a uniform beam carrying p one-dof spring-mass systems takes the form (Wu and Chou

1998)

(15)

where Eb and Ib are respectively the Young’s modulus and area moment of inertia of the beam, 

is the mass per unit length of the beam,  is the transverse deflection of the beam at position x

and time t, Fi is the interaction force at the attaching point of the vth spring-mass system, ,

and δ (·) is the Dirac delta function.
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(16c)

Based on the expansion theorem (Meirovitch 1967) or the mode superposition methodology

(Clough and Penzien 1975), the transverse deflection of the beam is given by

(17)

where  represents the sth mode shape of the bare beam,  is a generalized co-ordinate, and

n' is the number of total modes considered.

Introducing Eq. (17) into Eq. (16a), multiplying the resulting expression by  and integrating

the entire equation over the total beam length �b, one has 

(18)

If the mode shapes  (s = 1 to n') are normalized with respect to , then application of

orthogonality of normal mode shapes to Eq. (18) leads to

, r = 1 to n' (19)

where Ωr represents the rth natural frequency of the bare beam.

If the loaded beam performs free harmonic vibration, the generalized co-ordinate  takes the

form 

(20)

where  is the amplitude of  and  is the natural frequency of the loaded beam, as stated

previously.

Substituting Eq. (20) into Eq. (19) yields

, r = 1 to n' (21)

Writing the last equation in matrix form, one obtains 

(22)

where

(23a)

(23b)

u··i
∂

2
y xi

v( )
t,( )

∂ t
2

-------------------------=

y x t,( ) Ys x( )qs t( )
s 1=

n′

∑=

Ys x( ) qs t( )

Yr x( )

Yr x( )EbIbYs″″ x( )qs t( ) xd
s 1=

n′

∑
0

�
b

∫ Yr x( )mbYs x( )q··s t( ) xd
s 1=

n′

∑
0

�
b

∫+

 Yr x( )meq

v( )
Ys x( )q··s t( )δ x xi

v( )
–( ) xd

s 1=

n′

∑
v 1=

p

∑
0

�
b

∫–=

Ys x( ) mb

q··r t( ) Ωr

2
qr t( )+ meq

v( )
Yr xi

v( )( )Ys xi

v( )( )q··s t( )
s 1=

n′

∑
v 1=

p

∑–=

qs t( )

qs t( ) qse
jω t

=

qs qs t( ) ω

Ωr

2
qr meq

v( )
ω

2
Yr xi

v( )( )Ys xi

v( )( )qs

s 1=

n′

∑
v 1=

p

∑– ω
2
qr=

A[ ] ω
2

B[ ]–( ) q{ } 0{ }=

A[ ]n′ n′× Ω2[ ]n′ n′×=

B[ ]n′ n′× I[ ]n′ n′× B′[ ]n′ n′×+=



666 Jia-Jang Wu

(23c)

(23d)

(23e)

(23f)

(23g)

Eq. (21) or (22) is the characteristic equation of the loaded beam. In the last expressions, the

symbols, { } and [ ] represent the column matrix and square matrix, respectively.

 From Eq. (17) one may infer that the mode shape of the loaded beam corresponding to the

natural frequency  obtained from Eq. (22) is given by

(24)

5. Solution of the problem

In this paper, the natural frequencies and the corresponding mode shapes of the beam carrying any

number of spring-mass systems are firstly determined by means of the presented equivalent mass

method (EMM), where each spring-mass system is replaced by a rigidly attached equivalent lumped

mass  defined by Eqs. (14a,b). Then, the last results are compared with those obtained by using

the conventional finite element method (FEM), where each spring-mass system is considered as a

finite element with its mass and stiffness matrices defined by Eqs. (6a) and (6b). The solution

procedures of EMM and FEM are briefly described below.
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5.1 By using the equivalent mass method (EMM)

Eq. (22) is the characteristic equation of the loaded beam. Non-trivial solution of Eq. (22) requires

that

(25)

Since the equivalent mass  for each spring-mass system is a function of natural frequency 

of the loaded beam, as one may see from Eqs. (14a,b), so are the matrices  and  defined by

Eqs. (23b,c, d). The half-interval method (Carnahan et al. 1997) is used to solve the eigenvalue 

from Eq. (25). Then, the corresponding eigenvector  is obtained by substituting the values of

 into Eq. (22). Finally, the corresponding mode shape of the loaded beam is determined by

Eq. (24). It is to be noted that, each time, one may obtain only one natural frequency and one

corresponding mode shape of the loaded beam from Eqs. (22)-(25). Thus, the same task must be

repeated n times for the determination of n natural frequencies and n corresponding mode shapes of

the loaded beam.

5.2 By using the finite element method (FEM)

For free vibration of an undamped uniform beam carrying any number of spring-mass systems, its

equations of motion take the form

(26)

where  and  are the overall displacement and acceleration vectors, respectively; while 

and  are the overall mass and stiffness matrices of the loaded beam, respectively. The matrices,

 and , can be obtained by adding the element property matrices of each spring-mass

system, given by Eqs. (6a) and (6b), to the overall ones of the beam itself by using the standard

finite element assembly technique (Bathe 1982) and imposing the prescribed boundary conditions.

For free vibration, one has . The substitution of the last relation into Eq. (26) leads to

(27)

Eq. (27) is a typical eigenvalue problem, thus many techniques may be used to determine the

eigenvalues ( ) and the corresponding eigenvectors , r = 1, 2, etc. In this paper, Eq. (27) was

solved with the Lanczos algorithm (Golub 1972).

From the preceding descriptions, one sees that, in the conventional FEM, the order of the overall

property matrices, [M] and [K], is equal to the total degree of freedom of the entire vibrating system

and increases one when one more spring-mass system is attached to the bare beam. However, in the

presented EMM, the order of the effective matrices, [A] and [B], is equal to the number of total

modes (n') considered and does not increase with increasing the total number of the spring-mass

systems attached to the beam. Since the order of the overall effective matrices, [A] and [B], derived

from EMM is much lower than that of the overall property matrices, [M] and [K], derived from the

conventional FEM, the computer storage memory required by EMM is much less than that required

by FEM. This advantage will be more predominant if the total number of the spring-mass systems

attached to the beam is large.
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6. Numerical results and discussions

In this section, the natural frequencies and mode shapes of an undamped uniform cantilever beam

carrying a spring-mass system and those carrying multiple ones are investigated. The beam length is

�b = 1.0 m and its cross-sectional area is  = 1.9635 × 10−3 m2, it is made of steel with

mass density ρ = 7.8367 × 103 kg/m3 and Young’s modulus Eb = 2.069 × 1011 N/m2. The beam is

composed of 20 identical beam elements and 21 nodes (for FEM), and the total number of modes

used for the mode superposition method is n' = 8 (in EMM).

6.1 Validation

Fig. 2 shows a cantilever beam carrying a spring-mass system at free end. The spring constant

and lumped mass of the spring-mass system are  = 6.34761 × 106 N/m and  =

7.69375 kg. According to Eq. (6f), the mass ratio for the current spring-mass system is given by

. 

Ab πd
2
/4=

k
v( )

k
1( )

= m
v( )

m
1( )

=

α
v( )

α
1( )

m
1( )
�

1( )
/m

1( )
= =

Table 1 Influence of mass ratio ( ) on the first five natural frequencies,  (i = 1 to 5), of
a cantilever beam carrying a spring-mass system at free end, with spring constant k(1) = 6.34761 × 106

N/m and lumped mass m(1) = 7.69375 kg (see Fig. 2) 

Mass ratios
Methods

Natural frequencies of the loaded beam (rad/s) Local
frequency 

0.0
EMM 128.6216 972.2608 2132.9760 4210.7803 7879.6440

908.3142
FEM 127.7321 971.8482 2131.3710 4210.0970 7879.7680

0.025
EMM 127.5566 971.5363 2117.7605 4167.9802 7809.5162

904.5530
FEM 126.5945 971.1980 2116.3230 4167.6300 7809.9880

0.05
EMM 126.5174 970.8274 2102.7833 4127.9276 7746.2056

900.8382
FEM 124.9216 970.4556 2101.4120 4127.9500 7747.0760

0.075
EMM 125.5031 970.1132 2088.0486 4090.4379 7688.9390

897.1688
FEM 123.5210 969.4702 2087.0270 4090.9410 7690.1840

0.1
EMM 124.5128 969.4532 2073.5592 4055.3322 7637.0086

893.5438
FEM 122.7895 969.0273 2072.8820 4056.4710 7638.6250

0.0 (Wu 2002) 128.6211 971.9848 2131.5152 4210.2821 7879.7358 908.3142
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Fig. 2 A cantilever beam carrying a spring-mass system at free end 
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To confirm the reliability of the presented theory and the developed computer programs, the

values of mass ratios  are taken to be 0.0, 0.025, 0.05, 0.075 and 0.1. Clearly,  = 0.0

indicates that the mass of the spring is neglected in the analysis. In other words, the natural

frequencies of the loaded beam with mass of the helical spring considered will approach those with

mass of the helical spring neglected if one sets the value of mass ratio  to approach zero (i.e.,

).

Table 1 shows the first five natural frequencies,  (i = 1 to 5), of the cantilever beam carrying a

spring-mass system at free end, as shown in Fig. 2. From the table, it can be seen that the natural

frequencies obtained from the presented EMM are very close to the corresponding ones obtained

from the conventional FEM. Besides, the natural frequencies of the loaded beam approach those

with  and the latter are very close to the corresponding ones obtained from (Wu 2002),

listed in the final row of Table 1. The last result is to be expected because the mass of the helical

spring is neglected in (Wu 2002). 

Because all the first five mode shapes of the loaded beam with mass ratio  = 0.0, 0.025, 0.05,

0.075 or 0.1 look similar, only those with  = 0.1 are shown in Fig. 3. In which, the solid curves

with circles, crosses, triangles, rectangles and stars 

respectively represent the 1st, 2nd, 3rd, 4th and 5th mode shapes obtained from EMM, while the

dashed ones  respectively represent those obtained from

conventional FEM. From the Fig., one finds that the mode shapes obtained from the presented

EMM are in good agreement with those obtained from FEM. Based on all the preceding facts, it is

believed that the presented EMM is viable for the title problem. 

In Table 1, the influence of the mass ratios  on the local natural frequency of the spring-

α
1( )

α
1( )

α
1( )

α
1( )

0→
ω i

α
1( )

0.0=

α
1( )

α
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α
1( )

Fig. 3 The first five mode shapes, Y
r
(x) (r = 1 to 5), of a cantilever beam carrying a spring-mass system with

mass ratio α(1) = 0.1, obtained from EMM (——) and FEM (-----) 
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mass system with respect to the static cantilever, , is also listed in

the final column. It is evident that the local natural frequency  decreases with increasing the

mass ratio . From Table 1, one also sees that the influence of mass ratio  on the natural

frequencies of the loaded beam is dependent on its influence on the local natural frequency of the

spring-mass system, . If consideration of the spring mass will lead to significant change of

ω
1( )

α
1( )

/ m
1( )

1 1/3α
1( )

+( )[ ]=

ω
1( )

α
1( )

α
1( )

ω
1( )

Fig. 4 Influence of mass ratios, α(1), on the (a) 1st, (b) 2nd, (c) 3rd, (d) 4th and (e) 5th mode shapes of the
cantilever beam carrying a spring-mass system at free end with spring constant k(1) = 6.34761 × 106 N/
m and lumped mass m(1)  = 7.69375 kg
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the value of , then the effect of spring mass may be significant, otherwise, the effect will be

negligible. The last phenomenon well agrees with the numerical results presented in (Gürgöze

2005).

Figs. 4(a)-4(e) show the first five mode shapes of the loaded beam, respectively. In these figures, the

solid curves with circles, crosses, triangles, rectangles and stars 

are, respectively, for the cases with mass ratios  = 0.0, 0.025, 0.05, 0.075 and 0.1. From the

figures, one finds that the influence of mass ratio  on the 1st, 2nd and 3rd mode shapes of the

loaded beam is negligible. However, this is not true for higher modes of the loaded beam. For the

4th and 5th mode shapes of the loaded beam, the larger the mass ratio , the larger the vibration

amplitude of the loaded beam, as one may see from Figs. 4(d) and 4(e).

6.2 Influence of local natural frequency of the spring-mass system, 

All the physical parameters of the current cantilever beam are exactly the same as those of the last

subsection, and the mass and mass ratio of the spring-mass system are taken to be  =

7.69375 kg and  = 0.1. If the spring constants are  = 6.34761 × 105, 6.34761 ×

106 and 6.34761 × 107 N/m, then the corresponding local natural frequencies of the spring-mass

system are given by = 287.234, 908.314 and 2872.342 rad/s, respectively.

Table 2 shows the first five natural frequencies of the loaded beam,  (i = 1 to 5). In which, the

ones shown in the 3rd, 5th and 7th rows are obtained from EMM, while those in the 4th, 6th and 8th

rows are obtained from FEM. From the table, it is seen that the natural frequencies obtained from

the former are also in good agreement with those obtained from the latter. In addition, the first five

natural frequencies of the loaded beam increase with increasing the magnitude of . 

Figs. 5(a)-(5e) show the first five mode shapes of the loaded beam, respectively. Where the solid

curves with circles, crosses and triangles  are, respectively, for the cases

with  = 287.234, 908.314 and 2872.342 r/s. From the figures, one sees that the influence of

local natural frequency  of the spring-mass system on the first five mode shapes of the loaded

beam is significant except the first mode. 
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Table 2 Influence of local natural frequency ( ) on the first five natural frequencies,  (i = 1
to 5), of a cantilever beam carrying a spring-mass system at free end, with lumped mass m(1) =
7.69375 kg, mass ratio α(1) = 0.1 and spring constants k(1) = 6.34761 × 105, 6.34761 × 106 and
6.34761 × 107 N/m. (see Fig. 2)

Local frequency

(rad/s)

Methods

Natural frequencies of the loaded beam (rad/s)

287.234
EMM 117.3535 502.3222 1429.8305 3866.0634 7561.1117

FEM 115.9275 501.4681 1430.0860 3866.7790 7561.8920

908.314
EMM 124.5128 969.4532 2073.5592 4055.3322 7637.0086

FEM 122.7895 969.0273 2072.8820 4056.4710 7638.6250

2872.342
EMM 125.2592 1068.8252 3179.8941 6012.4805 8949.7939

FEM 124.5058 1068.2870 3175.8000 5992.6290 8930.0630

ω 0

1( )
k 1( )/m 1( )

= ω i

ω 0

1( )
k 1( )/m 1( )

=

ω 1 ω 2 ω 3 ω 4 ω 5
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6.3 A cantilever beam carrying three identical spring-mass systems

To show the applicability of the presented EMM, a cantilever beam carrying three identical

Fig. 5 Influence of local natural frequency  of the spring-mass system on the (a) 1st, (b) 2nd,
(c) 3rd, (d) 4th and (e) 5th mode shapes of the cantilever beam carrying a spring-mass system at free end
with lumped mass m(1)  = 7.69375 kg and mass ratio = 0.1

ω 0

1( )
k 1( )/m 1( )

=

α
1( )

m 1( )
�
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spring-mass systems, as shown in Fig. 6, is investigated in this subsection. The physical parameters

of the beam are exactly the same as those of the last example, while those of the spring-mass

systems are k(1) = k(2) = k(3) = 6.34761 × 106/3 N/m = 2.11587 × 106 N/m, m(1) = m(2) = m(3) =

7.69375/3 kg = 2.56458 kg and α(1) = α(2) = α(3) = 0.0, 0.025, 0.05, 0.075 and 0.1. The locations for

the attaching points of the three spring-mass systems are shown in Fig. 6. It is noted that the spring

constant and lumped mass for each of the three identical spring-mass systems are equal to 1/3 of the

corresponding ones for the single spring-mass system studied in section 6.1.

The first five natural frequencies of the loaded beam are listed in Table 3 and the corresponding

mode shapes obtained from EMM are shown in Fig. 7. In the last figure, the solid curves with

circles, crosses, triangles, rectangles and stars  are,

respectively, for the cases with mass ratios α(1) = α(2) = α(3) = 0.0, 0.025, 0.05, 0.075 and 0.1. From

Table 3, one sees that the natural frequencies obtained from the presented EMM are very close to

those obtained from FEM, and the mass ratio α(1) (= α(2) = α(3)) influences the first five natural

frequencies of the loaded beam to some degree. However, from Fig. 7, it is found that the influence

 

Fig. 6 A cantilever beam carrying three spring-mass systems 

Table 3 Influence of mass ratio (α(1) = α(2) = α(3)) on the first five natural frequencies,  (i  = 1 to 5), of a
cantilever beam carrying three spring-mass systems, with spring constants k(1) = k(2) = k(3) =
2.11587 × 106 N/m and lumped masses m(1) = m(2) = m(3) = 2.56458 kg (see Fig. 6)

Mass ratios

α
(1) = α(2) = α(3) Methods

Natural frequencies of the loaded beam (rad/s)

0.0
EMM 161.8889 758.6370 885.0965 1191.7112 1764.7888

FEM 161.0875 746.8648 885.3082 1204.2160 1780.5730

0.025
EMM 160.9267 754.8351 881.2515 1189.6656 1759.6329

FEM 160.7290 742.9200 881.4614 1201.9980 1775.2110

0.05
EMM 159.9814 751.0923 877.4562 1187.6214 1754.5113

FEM 160.1158 739.2520 877.6671 1200.1320 1769.8210

0.075
EMM 159.0526 747.4072 873.7095 1185.5790 1749.4241

FEM 157.2619 735.4629 873.9199 1197.8470 1764.3080

0.1
EMM 158.1398 743.7782 870.0105 1183.5386 1744.3714

FEM 159.0308 731.9166 870.2184 1196.0170 1759.6920

ω i

ω 1 ω 2 ω 3 ω 4 ω 5
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of mass ratio α(1) (= α(2) = α(3)) on the first five mode shapes of the loaded beam is negligible. This

phenomenon is different from that for the same cantilever beam carrying a spring-mass system at

free end studied in the preceding sections. For a cantilever beam, its dynamic responses due to a tip

load are usually much larger than the corresponding ones due to the distributed loads along the

beam length, if the summation of magnitudes of the distributed loads is equal to the magnitude of

the tip load. It is believed that the similar reason may be used to explain why the first five mode

shapes of a cantilever beam carrying three identical spring-mass systems are different from those

carrying a spring-mass system. 

Fig. 7 Influence of mass ratios, α(1) = α(2) = α(3), on the (a) 1st, (b) 2nd, (c) 3rd, (d) 4th and (e) 5th mode shapes
of the cantilever beam carrying three spring-mass systems with spring constant k(1) = k(2) = k(3) =
2.11587 × 106 N/m and lumped mass  m(1) = m(2) = m(3) = 2.56458 kg 
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From the foregoing discussions, one may conclude that both the mass ratio α(v) and the

distribution of the spring-mass systems along the beam length are important factors affecting the

dynamic characteristics of the loaded beam.

7. Conclusions

1. This paper presents the theory of equivalent mass method (EMM) such that the free vibration

characteristics of a beam carrying any number of spring-mass systems, with inertia effect of

helical springs considered, may be obtained from those of the same beam carrying the same

number of rigidly attached equivalent masses. Because the magnitude for equivalent mass of a

spring-mass system is dependent on the lumped mass, spring constant, mass per unit spring

length and total length of the helical spring, the presented EMM also provides a technique for

evaluating the overall inertia effect of a spring-mass system.

2. If ω(v) and  are the local natural frequencies of the v-th spring-mass system (with respect to

the static beam) with mass of its helical spring considered and neglected, respectively, and α(v)

is the mass ratio of the total mass of the helical spring ( ) to the lumped mass (m(v)), then

the influence of mass ratio α(v) on the free vibration characteristics of a loaded beam is

dependent on the magnitude of . For a spring-mass system with lager value of , a small

change of α(v) will lead to larger variation of ω(v), and in turn, larger influence on the vibration

characteristics of the loaded beam.

3. For a cantilever beam carrying a spring-mass system at its free end, the influence of mass ratio

α(1) on the 1st, 2nd and 3rd mode shapes of the loaded beam is negligible. However, this is not

true for the 4th and 5th ones with larger vibration amplitudes due to larger mass ratio α(1).

4. If the magnitudes for the physical parameters of a tip spring-mass system (such as lumped

mass, spring constant, …) are equal to the summation magnitudes for the corresponding ones of

multiple uniformly distributed spring-mass systems, then the influence on the dynamic

characteristics of a uniform cantilever beam due to single tip spring-mass system will be much

larger than that due to multiple uniformly distributed ones.
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