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Abstract. In this paper the effect of prestressing force on the first flexural natural frequency of beams
is studied. Finite element technique is used to model the beam-tendon system, and the prestressing force
is applied in the form of initial tension in the tendon. It is shown that the effect of prestressing force on
the first natural frequency depends on bonded and unbonded nature of the tendon, and also on the
eccentricity of tendon. For the beams with bonded tendon, the prestressing force does not have any
appreciable effect on the first flexural natural frequency. However, for the beams with unbonded tendon,
the first natural frequency significantly changes with the prestressing force and eccentricity of the tendon.
If the eccentricity of tendon is small, then the first natural frequency decreases with the prestressing force
and if the eccentricity is large, then the first flexural natural frequency increases with the prestressing
force. Results of the present study clearly indicate that the first natural frequency can not be used as an
easy indicator for detecting the loss of prestressing force, as has been attempted in some of the past
studies.

Keywords: prestressed beam; flexural natural frequency; bonded and unbonded tendon; prestressing
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1. Introduction

In the dynamic analysis of prestressed beams, which are widely used in bridges, knowledge of the

flexural natural frequencies is of vital importance. In this context, one important question is: Does

the prestressing force affect the flexural natural frequencies of beams? Many researchers have

studied the influence of prestressing force on the flexural natural frequencies of beams, and there

are differences in their conclusions. 

Saiidi et al. (1994) have studied the effect of prestressing on the flexural natural frequencies of

concrete beams. They started with the argument that prestressing will induce axial force in the beam

and hence, with the increase in the prestressing force, the flexural rigidity of beam will reduce,

which in turn, will cause decrease in the natural frequencies. However, in the field and laboratory

experiments, Saiidi et al. (1994) found that the natural frequencies increase with the prestressing

force. For this disparity between the experimental results and their argument, they opined that the

presence of prestressing force causes closure of micro-cracks in the concrete, which increases the
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flexural rigidity and natural frequencies. The paper of Saiidi et al. (1994) has been discussed by

three different groups of research workers. In the first discussion, Asta and Dezi (1996) pointed out

that Saiidi’s approach to consider the prestressing force as external axial force is not correct.

Further, for a simply supported prestressed beam with bonded tendon passing through the center of

beam, Asta and Dezi (1996) have derived the following expression for the flexural natural

frequencies 

(1)

where, Ib, Ab, L, Eb, and m respectively denote moment of inertia, cross sectional area, span length,

elastic modulus, and mass per unit length of the beam; Ic, Ac and Ec denote moment of inertia, cross

sectional area and elastic modulus of the tendon and N is prestressing force.

From this expression it is evident that, for the realistic values of various parameters of beams and

tendons, the prestressing force will not have any significant effect on the natural frequencies of the

beams. It may be reiterated here that the above formula is derived for simply supported prestressed

beams with concentric, bonded tendon. In the second discussion on Saiidi’s paper, Deak (1996)

pointed out that if the tendon is unbonded and attached to the beam only at the ends, then only, the

prestressing force could be treated as external axial force. In the third discussion, Jain and Goel

(1996) opined that since the tendon becomes an integral part of the system, tension in the tendon

cannot be treated as an external force, and hence, the prestressing force will not affect the flexural

natural frequencies of beams. 

Another interesting study on the effect of prestressing force on the flexural natural frequencies of

beams is by Miyamoto et al. (2000). In this study, a formula for the flexural natural frequencies is

derived for the prestressed concrete beams with unbonded external tendon of trapezoidal profile.

Moreover, some experiments are also performed and it is noted that for less eccentric tendon

profiles, the flexural natural frequencies decrease with the increase in the prestressing force.

However, for the tendons with higher eccentricity, the prestressing force has only marginal effect on

the flexural natural frequencies.

In the experiments conducted by Saiidi et al. (1994) and Miyamoto et al. (2000) concrete beams

were used, wherein, due to prestressing, micro-cracks in the concrete get closed, which increases the

flexural rigidity. Thus, the effect of prestressing gets intermixed with that of the increase in flexural

rigidity. Notwithstanding this intermixing, it is interesting to note that in the field and laboratory

experiments, Saiidi et al. (1994) have observed an increase in the flexural natural frequencies with

the prestressing force. Whereas, Miyamoto et al. (2000) who used unbonded tendons, have found a

slight decrease in the natural frequencies. From this observation, and from the comments made by

Asta and Dezi (1996) and Deak (1996), it appears that the nature of the tendon, i.e., whether the

tendon is bonded or unbonded, and its eccentricity will influence the effect of prestressing on the

flexural natural frequencies of beams. However, so far in the literature, there is no detailed study on

the influence of bonded and unbonded nature of the tendon on the flexural natural frequencies of

prestressed beams. In this context, it may however be noted that, there are studies on the effect of

bonded and unbonded nature of tendon on the static behavior of prestressed beams (Mattock et al.

1971, Ramos and Aparcio 1996, Ariyawardena and Ghali 2002). In these studies, the effect of

bonded and unbonded nature of tendon on the ultimate load carrying capacity of prestressed beams

is highlighted. The bonded tendons are generally used in prestressing of concrete beams. Unbonded

tendons are used in concrete beams and also in the strengthening and rehabilitation of old bridges.
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Moreover, in steel bridges, prestressing is done using unbonded tendons (Belena 1977, Triostky

1990, Ronghe and Gupta 2002). Schematic representation of a concrete beam with unbonded and

bonded tendon is shown in Fig. 1(a). In unbonded case, the tendon which is in tension, passes

through a hollow duct and is clamped to the beam at the end points only. In this case, prestressing

force gets transmitted to beam through end points only. In bonded case, the tendon in tension is

temporarily held externally and beam is cast, and after concrete has gained enough strength and the

bond between concrete and tendon is fully developed, the tendon is released, thereby transferring

the prestressing force to the beam. In this case, the prestressing force gets transferred uniformly all

along the length of the beam and there are no clamps at the ends.

The aim of present paper is to study the effect of bonded and unbonded nature of the tendon on

the first flexural natural frequency of prestressed beams. In the dynamic analysis of bridges, where

prestressed beams are used, usually the first flexural vibration mode is of prime importance. Hence,

in the present paper, only the first flexural natural frequency is considered. The effect of eccentricity

of the tendon on the first flexural natural frequency is also studied. Finite element approach is used

to model the beam-tendon system and the prestressing force is applied in the form of initial tension

in the tendon. 

Fig. 1(a) Schematic representation of unbonded and bonded tendon in a concrete beam

Fig. 1(b) Details of beam geometry
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2. Details of beam-tendon system and analysis procedure

The beam-tendon system used by Saiidi et al. (1994) in laboratory experiments is considered.

This is a concrete beam with elastic modulus of 21.3 × 106 kN/m2, mass density of 2.4 t/m3 and has

geometry as shown in Fig. 1(b). Steel tendon of 13 mm diameter with elastic modulus of 20.0 × 107

kN/m2 and mass density of 7.85 t/m3 is used. 

The beam-tendon system is modeled using finite element software, NISA (1994), wherein, the

beam is modeled using Kirchoff beam element (NKTP 39 of NISA element library) and the tendon

is modeled using 3-D spar element (NKTP 14 of NISA element library). Beams and tendons are

discritized into 100 finite elements. The Prestressing force is applied by giving initial tension in the

tendon. First, nonlinear static analysis, including the geometric nonlinearity, is performed and the

geometric stiffness matrix of the beam-tendon system is obtained. In the next step, using this

stiffness matrix, the first flexural natural frequency of beam-tendon system is obtained. By varying

the level of prestressing force, its effect on the first flexural natural frequency is studied. It may be

noted that in this type of modeling of the beam-tendon system, the prestressing force becomes an

integral part of the system and is not treated as external axial force. Since the flexural mode of

vibration in the vertical plane is of interest, out-of-plane motion of the beam-tendon system is

constrained. 

Before proceeding further, it will be appropriate to ascertain the correctness of the above

described procedure for finding the first flexural natural frequency of prestressed beams. For this

purpose, this procedure is used to obtain the first flexural natural frequency of a simply supported

beam subjected to an external axial force, and results are compared with the following analytical

solution from Timoshenko et al. (1974)

Fig. 2 Effect of external axial force on first flexural natural frequency of beam
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(2)

This comparison is shown in Fig. 2, wherein, it is seen that the results obtained using the above

procedure compare very well with the analytical solution. This ascertains the validity of the above

described procedure for obtaining the first natural frequency of prestressed beams.

3. Results

3.1 Beams with straight concentric tendon

Simply supported beam with straight, concentric bonded and unbonded tendons is considered. In

the finite element model, the beam as well as the tendon is discritized into 100 finite elements. In

the case of beam with bonded tendon, all the beam and tendon elements have common nodes,

whereas, for the beam with unbonded tendon, the beam and tendon elements have common nodes

only at the end supports. Results on the effect of prestressing force on the first flexural natural

frequency of beam with bonded and unbonded tendon are shown in Fig. 3. It is seen that the effect

of prestressing force on the first flexural natural frequency is drastically different for beam with

bonded and unbonded tendons. For the beam with bonded tendon, there is practically no change in

the first flexural natural frequency with the prestressing force. These results match well with those

obtained using the analytical expression (Eq. (1)) of Asta and Dezi (1994). For the beam with

unbonded tendon, the first flexural natural frequency significantly decreases with the prestressing
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Fig. 3 Effect of prestressing force on first flexural natural frequency of beam with straight concentric tendon
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force. This decrease is qualitatively similar to the one observed due to external axial force.

However, the rate of decrease in the frequency for the case of unbonded concentric tendon is lower

than that for the case of external axial force (Fig. 3). Here, the prestressing force is varied from 5

kN to 280 kN. For the prestressing force less than 5 kN, the first natural frequency of unbonded

tendon becomes less than that of the beam. For prestressing force higher than 280 kN, which is

very close to the buckling load of 281.2 kN, results did not show good convergence in the nonlinear

static analysis. 

3.2 Beams with straight eccentric tendon

Straight eccentric tendons of eccentricity e/D = 0.25 and e/D = 0.75 are considered. Here, e is the

distance of the tendon from the center-line of the beam and D is the depth of the beam. In the finite

element model of the beam with bonded eccentric tendon, all the nodes of tendon elements are

attached to the beam nodes with rigid links (Fig. 4(a)), whereas, for the beam with unbonded

eccentric tendon, only end support nodes of the tendon and beam elements are connected by rigid

links (Fig. 4(b)). The variation of the first flexural natural frequency with the prestressing force is

Fig. 4 Finite element models of prestressed beams with different tendon profiles
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shown in Fig. 5. It is seen that for the beam with bonded tendon, the frequency does not change

with the prestressing force. Moreover, for the beam with bonded tendon of higher eccentricity (e/D =

0.75), the natural frequency is more than that for the beam with tendon of lower eccentricity (e/D =

0.25).

In the case of beam with unbonded tendon of eccentricity, e/D = 0.25, the frequency first

decreases with the prestressing force and then increases (Fig. 5). However, for e/D = 0.75, the

frequency continuously increases with the prestressing force. Due to the eccentricity of the tendon,

beam is subjected to moment, which causes the stiffening effect. Hence, for higher eccentricity of

the tendon, the natural frequency continuously increases with the prestressing force. 

3.3 Beams with triangular and trapezoidal tendon profiles

Unbonded tendons with triangular and trapezoidal profiles (Figs. 4(c), 4(d)) are commonly used in

the external prestressing of bridges. The variation of the first flexural natural frequency with the

prestressing force is shown in Figs. 6 and 7 respectively for triangular and trapezoidal tendon

profiles. These results are given for eccentricities of e/D = 0.25, e/D = 0.75 and e/D = 1.25. It is

seen that the prestressing force does not have significant effect on the first natural frequency, though

the natural frequency shows slight reduction with the prestressing force for tendons with low

eccentricity. It is also seen that the first natural frequency is higher for beams with tendons of larger

eccentricities. 

Fig. 5 Effect of prestressing force on first flexural natural frequency of beam with straight eccentric tendon
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Fig. 6 Effect of prestressing force on first flexural natural frequency of beam with triangular tendon profile

Fig. 7 Effect of prestressing force on first flexural natural frequency of beam with trapezoidal tendon profile
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4. Discussion and conclusions 

Results of the present study reveal that the effect of the prestressing force on the first flexural

natural frequency of prestressed beams depends on three factors: i) whether tendon is bonded or

unbonded; ii) the eccentricity of the tendon; and iii) the longitudinal profile of the tendon. If the

tendon is straight, concentric (i.e., passing through the center-line of beam), and is bonded to the

beam along its length, then the prestressing force does not have any appreciable effect on the first

flexural natural frequency (Fig. 3). However, if the straight, concentric tendon is unbonded (i.e.,

attached to beam only at its ends), then, the prestressing force causes softening effect and the first

flexural natural frequency significantly reduces with the prestressing force (Fig. 3). This reduction is

qualitatively similar to the reduction due to external axial force, but quantitatively, this reduction is

less than the reduction caused by external axial force (Fig. 3). This is due to the fact that, presence

of the tendon, which is in tension, increases the stiffness of the beam-tendon system.

If straight tendon is placed eccentrically, then, for the case of bonded tendon, the prestressing

force does not have any effect on the first natural frequency (Fig. 5). However, if straight, eccentric

tendon is unbonded, then, the prestressing force influences the first flexural natural frequency and

this influence depends on the eccentricity of the tendon. The prestressing force in the eccentrically

placed tendon induces moment in the beam, which causes stiffening effect and there is an interplay

between the softening effect due to the prestressing force and the stiffening effect due to moment. If

the eccentricity is low, then the softening effect is predominant than the stiffening effect, hence, the

first flexural natural frequency reduces with the prestressing force (Fig. 5; e/D = 0.25). However,

for large eccentricity, the stiffening effect is predominant and the frequency increases with the

prestressing force (Fig. 5; e/D = 0.75). 

In the tendons with triangular and trapezoidal profiles, the eccentricity is invariably present, and it

varies along the length. For these tendon profiles also, the effect of prestressing force, depends on

the eccentricity of tendon (Figs. 6 and 7). For low eccentricity, there is a slight reduction in the first

flexural natural frequency, whereas, for the higher eccentricity, there is practically no reduction. It is

interesting to note that for the same eccentricity, there is higher reduction in the natural frequency

for the triangular profile than the trapezoidal profile. This is due to the fact that in the trapezoidal

profile, the extent of bonding is more since it is attached to the beam at two intermediate locations,

whereas, the tendon with triangular profile is attached at only one intermediate location. Thus, if the

extent of bonding between the tendon and the beam is more, then the softening effect of the

prestressing force reduces. 

In some of the past studies (Kato and Simida 1986, Mirza et al. 1990, Singh 1991, Mo and Hwang

1996), efforts have been made to use the natural frequencies and dynamic response characteristics as

indicators for detecting the loss of prestressing force or damages in the beam. However, from the

results of the present study, it is quite clear that, the prestressing force can have entirely different

effect on the first flexural natural frequency of the beam, depending on the bonded and unbonded

nature, eccentricity and tendon profile. Thus, the natural frequency is not an easy indicator for

detecting the loss of prestressing force. Results presented in the present study are for an example

beam-tendon system. For any other beam-tendon system, qualitatively the results will remain same,

though there could be some changes depending on the relative values of the rigidity of the beam and

tendon. Numerical results presented in this study need experimental verification. Such experimental

study shall be performed on the steel beams rather than concrete beams, so as to avoid the increase

in the stiffness of beams due to closure of micro cracks in the presence of prestressing force.
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