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Impact of uncertain natural vibration period on 
quantile of seismic demand
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Abstract. This study investigates effect of uncertainty in natural vibration period on the seismic
demand. It is shown that since this uncertainty affects the acceleration and displacement responses
differently, two ratios, one relating peak acceleration responses and the other relating the peak
displacement responses, are not equal and both must be employed in evaluating and defining the critical
seismic demand. The evaluation of the ratios is carried out using more than 200 strong ground motion
records. The results suggest that the uncertainty in the natural vibration period impacts significantly the
statistics of the ratios relating the peak responses. By using the statistics of the ratios, a procedure and
sets of empirical equations are developed for estimating the probability consistent seismic demand for
both linear and nonlinear systems.
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1. Introduction

The demand of earthquake excitations on structures is commonly represented by the peak

displacement, velocity and acceleration of a series of single-degree-of-freedom (SDOF) systems.

These peak quantities are related through the natural vibration period. Given the natural vibration

period and the damping ratio, if one of the peak responses is known, the other two peak responses

can be calculated directly. The peak responses can be represented in a tri-partite plot (or four-way

logarithmic plot) (Veletsos and Newmark 1960, Chopra 2000), and in the acceleration-displacement

response spectra (ADRS) format (Freeman et al. 1975) which was developed to aid the

performance-based design and assessment (or capacity spectrum method) (ATC 1996). The

evaluation of the peak linear elastic responses for a given set of ground motion records can be

carried out using one of the well-known time step integration methods (Chopra 2000). These peak

responses together with seismic risk analysis and safety consideration (Cornell 1968, Newmark and

Rosenblueth 1970, McGuire 1974) are used to select the design response spectrum for linear elastic
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SDOF systems. The peak responses obtained from the design response spectrum are divided by the

yield reduction factor to provide the minimum required yield strength for designing inelastic

systems. The yield reduction factor, which depends on the ductility factor, is assessed using peak

linear elastic and peak inelastic responses obtained from strong ground motion records.

The design response spectrum, traditionally, is defined as the product of the standard design

spectrum and return period values of a peak ground motion parameter such as the peak ground

acceleration or peak ground velocity. This approach may lead to the design response spectrum to be

probability-inconsistent for structures of different natural vibration periods. To overcome this

inconsistency, the use of the so-called uniform hazard spectra (UHS), which ensure that the

probabilities of exceedance of peak responses of linear elastic SDOF systems are uniform for all

possible natural vibration periods, has been considered in the literature (McGuire 1974, Frankel

et al. 1996, Adams et al. 1999, Wang and Hong 2005).

The assessment of the yield reduction factor has been presented by many including Veletsos and

Newmark (1960), Krawinkler and Nassar (1992), Vidic et al. (1994), Miranda (2000) and Riddell

et al. (2002). This yield reduction factor is selected based on the statistics of the ratios between the

peak linear elastic responses, and the yield or the peak inelastic responses. These ratios vary from

record to record since the seismic excitation is a stochastic process. Further, it should be noted that

the predicted structural properties such as the natural vibration period Tn and the damping ratio ξ

are uncertain as well (Haviland 1976). Since these uncertainties affect the peak or yield responses,

they should be considered for assessing the ratios, hence, the seismic design responses or seismic

demand. The consideration of these uncertainties for evaluating the displacement-based ratios was

presented by Hong and Jiang (2004) for elastoplastic hysteretic systems. Based on the results

obtained by using more than 200 strong ground motion records, they indicated that the uncertainty

in Tn affects significantly the statistics of the ratios for the displacement responses, while the

influence of the uncertainty in ξ on the estimated ratios is relatively small. They also provided

simple empirical equations for evaluating the mean and the coefficient of variation of the ratios for

peak displacement responses.

In the present study, it is shown that if there is uncertainty in Tn, one must use two sets of ratios,

one developed based on the acceleration responses and the other developed based on the

displacement responses, to assess the seismic demand. This is because that the uncertainty in Tn

affects the displacement and the acceleration responses in different ways. Evaluation and discussion

of the statistics of these ratios are presented by considering more than 200 strong ground motion

records. Using the obtained statistics of the ratios, a procedure and sets of empirical equations for

estimating quantiles of the seismic demand are given. Details for deriving these empirical equations

are presented in the following section.

2. Ratios between the peak linear elastic and inelastic responses

2.1 Relation between peak elastic and inelastic responses

Let  and  denote the peak linear elastic, the peak inelastic and

the required yield displacement for given ductility factor μ and damping ratio ξ. Further, let

, and  denote the peak (pseudo-) acceleration responses corresponding to

, and , respectively. Given a strong ground motion record, by definition the

DE Tn ξ,( )  DI Tn ξ μ, ,( ), Dy Tn ξ μ, ,( )

AE Tn ξ,( ) Ay Tn ξ μ, ,( )
DE Tn ξ,( ) Dy Tn ξ μ, ,( )
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following holds

(1)

and

(2)

Consider that Tn and ξ are uncertain with mean values denoted by mT and mξ, respectively. Define

the ratios  and  based on the peak displacement responses by the following equations

(3)

and

(4)

These ratios are commonly considered in the literature, especially the ratio  that is known

as yield (displacement) reduction factor. Also, define the ratios  and  based on the

peak acceleration responses by

(5)

and

(6)

The ratio  can be thought as yield force reduction factor. Using the above equations, it can

be shown that  and that . This indicates that if

there is no uncertainty in Tn, the ratios defined based on the peak displacement responses are equal

to those that are defined based on the peak acceleration responses. However, if there is uncertainty

in Tn,  is not equal to  and,  is not equal to   and the means of  and

 are not equal to the means of  and . Further,  is not equal to the

product of  and , and  is not equal to the product of 

and , where  denotes the expectation. This is because that  and  are not

independent of Tn. Therefore, one must use two sets of ratios, one for the peak displacement

responses and the other for the peak acceleration responses, to characterize the inelastic peak

responses if there is uncertainty in Tn.

Note that the linear elastic response spectrum derived based on the seismic risk analysis is usually

available by considering Tn as a deterministic quantity. Using this spectrum and the ratios defined in

Eq. (3) to Eq. (6), one can conveniently evaluate the peak linear elastic and nonlinear responses

with or without uncertainty in Tn. Note also that since the displacement ductility factor m equals the

ratio of the peak inelastic displacement to the yield displacement, based on the definition given in

Eqs. (3) and (4) one has . Therefore, one only needs to provide probabilistic

characterization of  or  to evaluate  and . Similarly, one only

DE Tn ξ,( )
Tn

2π
------⎝ ⎠

⎛ ⎞
2

AE Tn ξ,( )=

 Dy Tn ξ μ, ,( )
Tn

2π
------⎝ ⎠

⎛ ⎞
2

Ay Tn ξ μ, ,( )=

Ry μ( ) Rμ μ( )

Ry μ( ) DE mT mξ,( )/ Dy Tn ξ μ, ,( )=

Rμ μ( )  DI Tn ξ μ, ,( )/DE mT mξ,( )=

Ry μ( )
ψy μ( ) ψμ μ( )

ψy μ( ) AE mT mξ,( )/ Ay Tn ξ μ, ,( )=

ψμ μ( ) μ Ay Tn ξ μ, ,( )/AE mT mξ,( )=

ψy μ( )
ψy μ( ) Tn/mT( )2Ry μ( )= ψμ μ( ) mT/Tn( )2Rμ μ( )=

ψy μ( ) Ry μ( ) ψμ μ( ) Rμ μ( ) ψy μ( )
ψμ μ( ) Ry μ( ) Rμ μ( ) E ψy μ( )( )

E Tn/mT( )2( ) E Ry μ( )( ) E ψμ μ( )( ) E mT /Tn( )2( )
E Rμ μ( )( ) E •( ) Ry μ( ) Rμ μ( )

Ry μ( ) μ/Rμ μ( )=

Ry μ( ) Rμ μ( ) DI Tn ξ μ, ,( ) Dy Tn ξ μ, ,( )
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needs to provide probabilistic characterization of  or  to evaluate . The use

of  and  is considered in the present study, and the assessment of  is given in

the following.

Since  equals  if there is uncertainty in ξ only and, the influence of the uncertainty

in ξ on  is less significant than that due to the uncertainty in Tn (Hong and Jiang 2004),

therefore, in the present study the uncertainty in ξ is ignored. Further, for numerical evaluation

through out this study, it is considered that ξ equals 0.05, and that the structure system can be

modeled as a SDOF elastoplastic hysteretic system.

2.2 Statistics of ψμ(μ)

As mentioned previously, the assessment of the yield displacement reduction factor 

considering the uncertainty in Tn and ξ was given in Hong and Jiang (2004). Their recommended

statistical characterization of  is adopted in the present study. In their assessment, a total of

230 (components of) records, that were used by Miranda (2000) and are found in the database

prepared by Silva (2001), were considered. For consistency, the same set of records and procedure

used in Hong and Jiang (2004) for assessing  are used to evaluate . These records are

for the Kern County, Borrego Mountain, San Fernando, Imperial Valley, Morgan Hill, Whittier,

Loma Prieta, Landers, Northridge earthquakes.

For the probabilistic analysis, the assumption, that the ratio of the measured to predicted Tn is a

lognormal variate with coefficient of variation (cov) values ranging from about 0.2 to 0.4, is

adopted. This assumption is based on the studies given by Haviland (1976), and Davenport and

Hill-Carroll (1986). Further, only ξ equal to 0.05 is considered in the present study.

To show the impact of the uncertainty in Tn on , consider that the mean of the actual to the

predicted vibration period equal to unit, and its cov, vT, equal to 0.2. Let  denote the

mean of  obtained by considering that Tn has a mean of mT and a cov of vT. The calculated

values of  for vT = 0.2 are shown in Fig. 1 and compared with those obtained without

considering the uncertainty in Tn, (i.e., for vT = 0.0). For a particular value of the ductility factor and

a mean of Tn (denoted by E(Tn) or mT), the values of  presented in the figure were

obtained based on 50 × 230 simulated sample points (i.e., 50 simulation cycles and 230 records).

The results shown in Fig. 1 suggest that in most cases the mean of  obtained by

considering the uncertainty in Tn, , is higher than that without considering the

ψy μ( ) ψμ μ( ) Ay Tn ξ μ, ,( )
Rμ μ( ) ψμ μ( ) ψμ μ( )

ψμ μ( ) Rμ μ( )
Rμ μ( )

Rμ μ( )

Rμ μ( )

Rμ μ( ) ψμ μ( )

ψμ μ( )
mψ μ mT vT, ,( )

ψμ μ( )
mψ mT vT μ, ,( )

mψ mT vT μ, ,( )

ψμ μ( )
mψ mT vT μ, ,( )

Fig. 1 Mean of the ratio ψμ(μ) for vT = 0.2
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uncertainty. To better appreciate this, the ratio between  and  is

calculated and shown in Fig. 2. The results depicted in the figure suggest that /

 remains almost equal to 1.0 for mT less than 0.2 (sec), increases almost as a linear

function of ln(mT) for mT ranging from about 0.2 to 10 and decreases for mT greater than 10. This

observed trend appears to be independent of the ductility factor.

It must be emphasized that through out this study a wide range of vibration period values is

considered for plotting since such plots could be used to guide the selection of the empirical

relations for the mean and cov of the ratios. However, since the records are band filtered at about

0.1 to 0.5 Hz and about 20 to 40 Hz, the conclusions drawn from the analysis results should be

limited to about 0.05 to 10 s. 

The coefficient of variation of  by considering the uncertainty in Tn is shown in Fig. 3(a)

for vT = 0.2. Comparison of the results shown in this figure and those shown in Fig. 3(b) for vT =

0.0 suggests that the consideration of the uncertainty in Tn reduces the differences between the cov

of  for different ductility levels. In such a case, the cov of  could be approximately

considered to be independent of μ. The highest cov value of  that is approximately equal to 3

times the cov of Tn occurs at about mT equal to 20 (sec). Note that cov of  for vT = 0.2 is

equal to that of for  for vT = 0.0 if Tn is very small.

The above simulation analysis was repeated for vT equal to 0.4. The obtained results are presented

mψ mT 0.2 μ, ,( ) mψ mT 0 μ, ,( )
mψ mT 0.2 μ, ,( )

mψ mT 0 μ, ,( )

ψμ μ( )

ψμ μ( ) ψμ μ( )
ψμ μ( )

ψμ μ( )
ψμ μ( )

Fig. 2 Ratio of the mean of ψμ(μ) with uncertainty in Tn to that with out uncertainty in Tn, mψ mT 0.2 ξ, ,( )/
mψ mT 0 ξ, ,( )

Fig. 3 Coefficient of variation of ψμ(μ); (a) for vT = 0.2, (b) for vT = 0.0
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in Figs. 4 to 6. In all cases, the observations drawn from Figs. 1 to 3 seem to be equally applicable

to the results presented in these figures.

2.3 Empirical equations for ψμ(μ)

For the mean of , , the empirical equation given in Hong and Jiang (2004) wasRμ μ( ) mR mT vT μ, ,( )

Fig. 4 Mean of the ratio ψμ(μ) for vT = 0.4

Fig. 5 Ratio of the mean of ψμ(μ) with uncertainty to that with out uncertainty, mψ mT 0.4 ξ, ,( )/mψ mT 0 ξ, ,( )

Fig. 6 Coefficient of variation of ψμ(μ) for vT = 0.4
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(7)

where c1, c, γ and α are model parameters determined from regression analysis. The set of

parameters (c1, c, γ, α) equals (0, 15.16, 0.833, 1.152), (0.61, 14.04, 0.785, 1.180), and (1.14, 13.93,

0.631, 1.367) for vT = 0, 0.2 and 0.4, respectively. For the cov of , , their

suggested approximations were

(8)

for vT = 0 where , and

(9)

for vT greater than 0.2 but less than 0.4.

Note that  (for vT = 0) because in such a case  equals 

that was discussed in Section 2.1. Recall that it was observed that /  is

almost independent of μ, and appears to be piecewise linear functions of ln(mT). Based on these,

one may use the following simple empirical expression to approximate 

(10)

where  is to be determined based on the results shown in Fig. 2. As a first attempt, a

crude approximation given in the following for vT > 0 can be used

(11)

and  which was obtained by considering the results for vT = 0.2 and 0.4 as well

as those for vT = 0.3. Comparison of the empirical equation given in Eq. (11) and the simulated

results is presented in Figs. 2 and 5 for vT = 0.2 and 0.4, respectively.

Since the cov of  , , varies almost linearly as a function of ln(mT) for mT less

than 20 (sec), we suggest the following very simple approximation

, for (12)

This equation is compared with the simulation results and shown in Figs. 3 and 6, for vT = 0.2

and 0.4, respectively.

3. Seismic demand with consistent probability levels

3.1 Seismic demand

The evaluation of the peak linear elastic responses based on the uniform hazard spectra (UHS)

mR mT vT μ, ,( ) 1/ 1 1/ μ c1vT+( ) 1–( )exp cμ
γ–
mT

α
–( )+( ), mT 0.02≥=

Rμ μ( ) vR μ m, T vT,( )

vR Tn 0 μ, ,( )
v ln Tn/0.01( )/ln 10( ) for 0.05 Tn≤ 0.1<×

              v              for 0.1 Tn≤ 10<⎩
⎨
⎧

=

v μ 1–( )1/3/5=

vR mT vT μ, ,( )
2vT vT+ ln mT/0.01( )/ln 10( ) for 0.05 mn≤ 0.1<×

3vT ln 100/mT( )/ln 1000( )    for 0.1 mn≤ 10<×⎩
⎨
⎧

=

mψ mT 0 μ, ,( ) mR mT 0 μ, ,( )= ψμ μ( ) Rμ μ( )
mψ mT vT μ, ,( ) mψ mT 0 μ, ,( )

mψ mT vT μ, ,( )

mψ mT vT μ, ,( ) h mT vT,( )mR mT 0 μ, ,( )=

h mT vT,( )

h mT vT,( )
           1          for 0.05 mT≤ 0.2<

1 a ln mT/0.2( )/ln 100( ) for 0.2 mT≤ 10<×+⎩
⎨
⎧

=

a 0.04exp 7.8vT( )=

ψμ μ( ) vψ mT vT μ, ,( )

vψ mT vT μ, ,( ) 3vTln mT/0.01( )/ln 1000( )= 0.02 mT≤ 10<
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approach for the US and Canada can be found in many studies including Sobel (1995), WGC

(1995), Frankel (1996) and Adams et al. (1999). These spectra did not incorporate the effect of

uncertainty in Tn. The results of Sobel (1995) and WGS (1995) that are focused on the nuclear

power plant sites in the US and Canada appear to suggest that the peak linear elastic responses at

different frequencies can be modeled as lognormal variates. To further inspect the adequacy of this

assumption, the results of the peak acceleration responses provided by Halchuk (2002) for

Vancouver and Montreal are plotted in the lognormal probability paper and shown in Fig. 7. In the

figure, Φ−1(•) denotes the inverse of the standard normal distribution function, and FA( )

represents the probability distribution function of the annual maximum peak linear elastic

acceleration response . In here, ξ rather than mξ is used because ξ is treated as

deterministic variable in this study. The results shown in Fig. 7 suggest that the assumption that

 is a lognormal variate is adequate (at least in the tail region) since its probability

distribution plotted in the lognormal probability paper follows almost a straight line. A simple

distribution fitting analysis indicates that the cov of  for mT varying from 0.1 to 2 (sec) is

approximately equal to 2.0 to 2.5 for Vancouver and equal to 4 to 12 for Montreal. Note that the

cov of , vD, equals the cov of , vA, since .

Let q denote the annual probability of non-exceedance. Given the probability distribution function

of , one can evaluate the q-quantile of , AEq (i.e., probability of  less

than equal to AEq is equal to q), which can be used to define the UHS with probability of non-

exceedance equal to q. One can also use the q-quantile of , DEq, to define the UHS as

well because AEq can be uniquely determined from DEq for a structure with natural vibration period

equal to mT. Note that for simplicity of notation the dependence of AEq and DEq on mT and ξ is

dropped. 

The peak responses DEq and AEq can be represented in the ADRS format as illustrated in Fig. 8.

The radial line shown in the figure represents the natural vibration period mT.

If one uses the acceleration-based ratio ψμ(μ) (see Eq. (6)), the obtained yield acceleration is

(13)

whereas if one uses the displacement-based ratio Rμ(μ) (see Eq. (4)), the peak displacement

responses are

AE mT ξ,( )

AE mT ξ,( )

AE mT ξ,( )

AE mT ξ,( )

DE mT ξ,( ) AE mT ξ,( ) DE mT ξ,( ) mT/ 2π( )( )2AE mT ξ,( )=

AE mT ξ,( ) AE mT ξ,( ) AE mT ξ,( )

DE mT ξ,( )

Ay Tn ξ μ, ,( ) ψμ μ( )AE mT ξ,( )/μ=

Fig. 7 Probability distribution of peak acceleration response for Montreal and Vancouver shown in lognormal
probability paper



Impact of uncertain natural vibration period on quantile of seismic demand 365

(14a)

and

(14b)

It should be noted that when μ equals one,  and  represent the peak linear

elastic displacement and acceleration responses, respectively. From Eqs. (13) and (14b), we have

(15)

This indicates that  is not equal to  because  is not equal

to  that was shown in Section 2.0. Similarly, one can show that the conditional expectation of

 for given quantile of , 

(16a)

is usually not equal to  where  denotes the conditional

expectation of  given by

(16b)

One can also show that the quantile of , Ayq, is not equal to, , where Dyq

represents the quantile of .

It must be emphasized that  and  refer to the expectation over Tn and

conditioned on that  and  are equal to DEq and AEq, respectively. They do not

represent the means of  and , rather they represent an approximation to the

quantiles of  and , respectively. This will be shown in detail shortly after.

Now, consider that the seismic demand is formed by  and  for a

DI Tn ξ μ, ,( ) Rμ μ( )DE mT ξ,( )=

Dy Tn ξ μ, ,( ) Rμ μ( )DE mT ξ,( )/μ=

Dy Tn ξ μ, ,( ) Ay Tn ξ μ, ,( )

Ay Tn ξ μ, ,( )
ψμ μ( )
Rμ μ( )
--------------

2π

mT

------⎝ ⎠
⎛ ⎞ 2

Dy Tn ξ μ, ,( )=

Ay Tn ξ μ, ,( ) 2π/mT( )2Dy Tn ξ μ, ,( ) ψμ μ( )
Rμ μ( )

Ay Tn ξ μ, ,( ) AE mT ξ,( ) mAy mT ξ μ, ,( )

mAy mT ξ μ, ,( ) mψ mT vT μ, ,( )/μ( )AEq=

2π/mT( )2mDy mT ξ μ, ,( ) mDy mT ξ μ, ,( )
Dy Tn ξ μ, ,( )

mDy mT ξ μ, ,( ) mR mT vT μ, ,( )/μ( )DEq=

Ay Tn ξ μ, ,( ) 2π/mT( )2Dyq

Dy Tn ξ μ, ,( )
mAy mT ξ μ, ,( ) mDy mT ξ μ, ,( )

DE mT ξ,( ) AE mT ξ,( )
Dy Tn ξ μ, ,( ) Ay Tn ξ μ, ,( )

Dy Tn ξ μ, ,( ) Ay Tn ξ μ, ,( )
mAy mT ξ μ, ,( ) mDy mT ξ μ, ,( )

Fig. 8 Illustration of the seismic demand in the acceleration-displacement response format
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structure that has an uncertain (or unknown) natural vibration period with predicted mean equal to

mT, and that one’s task is to design a structure or to check the adequacy of a designed structure. If

the acceleration response capacity of the structure is exactly equal to the demand , it

is equivalent to say that the displacement capacity of the structure is equal to 

. In other words, the verification of the adequacy of the structure by using

 for the acceleration response is equivalent to that by using 

for the displacement response. For μ = 1, this acceleration-response seismic demand criterion

formed by ( , ) is schematically shown in Fig. 8 and

identified as curve A.

If the structure to be designed or checked has displacement response capacity equal to the

displacement seismic demand , it is equivalent to say that the acceleration capacity of

the structure is equal to . That is, the verification of the adequacy of the

structure by using  for the displacement response is equivalent to that by using

 for the acceleration response. For μ = 1, this displacement-response seismic

demand criterion formed by  is again schematically shown

in Fig. 8 but identified as curve D. Note this curve almost coincides with that defined by (DEq, AEq)

except for very small displacements.

The acceleration-response seismic demand criterion and the displacement-response seismic

demand criterion do not always coincide. If  is greater than ,

 must be greater than , and vice versa. A small difference

between  and  could result in a large discrepancy between

 and  for large values of mT. For very small values of mT, a

slight difference between  and  can lead to a significant

difference between  and  .

The above indicates that a structure that just meets the acceleration-response seismic demand

criterion (or displacement-response seismic demand criterion) may not satisfy the displacement-

response seismic demand criterion (or acceleration-response seismic demand criterion). Therefore,

an inadequate structure could be considered to be acceptable depending on the selected checking

criterion. To overcome this problem, one must require the acceleration response capacity of the

structure be greater than or equal to the maximum of  and ,

which is equivalent to say that the displacement response capacity of the structure is greater than or

equal to the maximum of  and . This seismic demand

criterion for designing and checking the structure, , can be expressed as

(17)

Substituting Eq. (16) into Eq. (17) gives

(18a)

where the non-dimensional multiplication factor  is given by

(18b)

mAy mT ξ μ, ,( )
2π/ mT( )( )2

mAy mT ξ μ, ,( )
mAy mT ξ μ, ,( ) mT/ 2π( )( )2 mAy mT ξ μ, ,( )

mT/ 2π( )( )2 mAy mT ξ μ, ,( ) mAy mT ξ μ, ,( )

mDy mT ξ μ, ,( )
2π/mT( )2 mDy mT ξ μ, ,( )

mDy mT ξ μ, ,( )
2π/mT( )2 mDy mT ξ μ, ,( )

mDy mT ξ μ, ,( ) 2π/mT( )2mDy mT ξ μ, ,( ),( )

mAy mT ξ μ, ,( ) 2π/mT( )2 mDy mT ξ μ, ,( )
mT/ 2π( )( )2 mAy mT ξ μ, ,( ) mDy mT ξ μ, ,( )

mAy mT ξ μ, ,( ) 2π/mT( )2 mDy mT ξ μ, ,( )
mT/ 2π( )( )2 mAy mT ξ μ, ,( ) mDy mT ξ μ, ,( )

mDy mT ξ 1, ,( ) mT/ 2π( )( )2 mAy mT ξ μ, ,( )
2π/mT( )2 mDy mT ξ μ, ,( ) mAy mT ξ μ, ,( )

mAy mT ξ μ, ,( ) 2π/mT( )2 mDy mT ξ μ, ,( )

mT/ 2π( )( )2mAy mT ξ μ, ,( ) mDy mT ξ μ, ,( )
Dy Ay,( )mc

Dy Ay,( )mc Dymc Aymc,( )=

max
mT

2π
------⎝ ⎠

⎛ ⎞
2

mAy mT ξ μ, ,( )mDy mT ξ μ, ,( )⎝ ⎠
⎛ ⎞  max mAy mT ξ μ, ,( ) 2π

mT

------⎝ ⎠
⎛ ⎞ 2

mDy mT ξ μ, ,( )⎝ ⎠
⎛ ⎞,⎝ ⎠

⎛ ⎞
=

Dy Ay,( )mc φmc mT ξ μ, ,( )AEq

mT

2π
------⎝ ⎠

⎛ ⎞
2

1,⎝ ⎠
⎛ ⎞

=

φmc mT ξ μ, ,( )

φmc mT vT μ, ,( ) max mψ mT vT μ, ,( ) mR mT vT μ, ,( ),( )/μ=
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and  and  are given in Eqs. (7) and (10), respectively. In deriving this

equation,  is used. Eq. (18) indicates that 

 which is the consequence of the definition of seismic demand criterion given in

Eq. (17).

It should be noted that whether the ADRS or any other plotting format is used the quantities

given in Eq. (17) (or Eq. (18)) should be employed in defining the critical seismic demand and the

use of  or  as critical seismic demand

should be avoided because of the problem discussed previously.

Similar conclusions to the above can be drawn if the uncertainty in ψμ(μ), Rμ(μ) and Tn is

considered, and the quantiles of peak acceleration and displacement responses are employed in

defining the seismic demand. In such a case, the critical seismic demand denoted by  are

given by

(19)

3.2 Evaluation of quantiles

Since  is considered to be lognormally distributed, the q-quantile of , AEq, is

given by

(20)

where mA represents the mean of  ; and .

If ψμ(μ) is considered to be lognormally distributed and statistically independent of , it

can be shown (Benjamin and Cornell 1970) that the quantile of , Ayq is given by

(21)

where 

(22)

and . Eqs. (20) and (21) that are used for evaluating the

quantile of  are equally applicable for evaluating of the quantile of , except

that whenever A and ψ appear in these equations, they are replaced by D and R, respectively. 

Comparison of Eq. (16) and Eq. (20) indicates that Ayq and Dy are not equal to  and

, respectively. Therefore, one should not expect that the inelastic yield response

spectra, that is obtained by using a linear elastic design response spectrum with a return period

T (= 1/(1 − q)) times the mean of ψμ(μ) (or mean of Rμ(μ)), has the return period equal to T.

Substituting Eqs. (21) and (22) into Eq. (19) results in 

mψ mT vT μ, ,( ) mR mT vT μ, ,( )
AEq 2π/mT( )2DEq= Ay Tn ξ μ, ,( )( )mc = 2π/mT( )2

Dy Tn ξ μ, ,( )( )mc

mAy mT ξ μ, ,( ) mT/ 2π( )( )2 1,( ) mDy mT ξ μ, ,( ) 1 2π/mT( )2,( )

Dy Ay,( )qc

Dy Ay,( )qc Dyqc Ayqc,( )=

max
mT

2π
------⎝ ⎠

⎛ ⎞
2

Ay mT ξ μ, ,( ) )q Dy mT ξ μ, ,( ),( )
q⎝ ⎠

⎛ ⎞  max Ay mT ξ μ, ,( ) )q  , 2π

mT

------⎝ ⎠
⎛ ⎞ 2

Dy mT ξ μ, ,( )( )q⎝ ⎠
⎛ ⎞,⎝ ⎠

⎛ ⎞
=

AE mT ξ,( ) AE mT ξ,( )

AEq

mA

1 vA
2

+

-----------------exp βq ln 1 vA
2

+( )( )=

AE mT ξ,( ) βq Φ 1–
q( )=

AE mT ξ,( )
Ay Tn ξ μ, ,( )

Ayq

mAmψ mT vT ξ, ,( )

μ 1 vψA
2

+

--------------------------------------exp βq ln 1 vψA
2

+( )( )
hψ mT vT ξ q, , ,( )

μ
-----------------------------------AEq= =

hψ mT vT ξ q, , ,( )
mψ mT vT ξ, ,( )

1 vψ mT vT ξ, ,( )( )2+

-------------------------------------------------exp βq ln 1 vψA
2

+( ) ln 1 vA
2

+( )–( )( )=

1 vψA
2

+ 1 vψ mT vT ξ, ,( )( )2+( ) 1 vA
2

+( )=

Ay Tn ξ μ, ,( ) Dy Tn ξ μ, ,( )

mAy mT ξ μ, ,( )
mDy mT ξ μ, ,( )
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(23a)

where the non-dimensional multiplication factor  is given by

(23b)

Note that Eq. (23a) gives  which is the consequence of the definition of

seismic demand criterion given in Eq. (19). The above equations are applicable even vT equals zero.

The error by using Eq. (18) to approximate Eq. (23) depends not only on the statistics of the ψμ(μ)

and Rμ(μ) but also on q.

3.3 Numerical results

For the numerical analysis, the values of the cov of peak linear elastic responses vA varying from

2 to 12 will be considered, and the cov of vT equal to 0, 0.2 and 0.4 are employed.

First, the non-dimensional multiplication factor  given in Eq. (18b) is evaluated.

The obtained values of  are shown in Fig. 9. The results shown in Fig. 9(a)

correspond to the case when there is no uncertain in Tn. In such a case, since =

Dyqc Ayqc,( ) φqc mT vT μ q, , ,( )AEq

mT

2π
------⎝ ⎠

⎛ ⎞
2

1,⎝ ⎠
⎛ ⎞

=

φqc mT vT μ q, , ,( )

φqc mT vT μ q, , ,( ) max hψ mT vT μ q, , ,( ) hR mT vT μ q, , ,( ),( )/μ=

Ayqc 2π/mT( )2Dyqc=

φmc mT vT μ, ,( )
φmc mT vT μ, ,( )

mψ mT 0 μ, ,( )

Fig. 9 Multiplication factor  used to evaluate the approximate peak responses; (a) vT = 0,
(b) vT = 0.2, (c) vT = 0.4

φmc mT vT μ, ,( )
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, the use of the acceleration-response seismic demand criterion is equivalent to the use

of the displacement-response seismic demand criterion, and  equals .

The results shown in Figs. 9(b) and 9(c) are for vT = 0.2 and vT = 0.4, respectively.

Comparison of the results shown in these figures indicates that  increases as vT
increases. Further, for flexible and not very ductile systems the increase in  is very

significant if there is uncertainty in the predicted natural vibration period. This increase is governed

by the mean of ψμ(μ), , which is given by Eqs. (10) and (11). Therefore, for flexible

structures with uncertainty in Tn, the adequacy of the structure is controlled by the acceleration-

response seismic demand. However, for rigid structures with a low ductility factor, the value of

 is governed by the mean of Rμ(μ), , which is given by Eq. (7).

Therefore, for stiff structures with uncertainty in Tn one should use the ratio Rμ(μ), that is assessed

based on the displacement responses, to evaluate the seismic demand.

By following the numerical values obtained in each of the calculation steps leading to the results

shown in Fig. 9, it was identified that  equals /μ if mT is greater than

about 0.3 to 0.5, and it equals /μ otherwise. Therefore, as an approximation one may

consider that

(24)

Note that since depending on the value of vT,  and 

 can be significantly larger than unit,  can be much greater

than unit as well. Use of Eq. (24) leads to  up to about 1.2 for vT equal

to 0.2, and up to 1.9 for vT equal to 0.4. Therefore, ignoring the uncertainty in Tn may significantly

underestimate the critical seismic demand.

Consider now that one is interested in defining probability-consistent seismic demand, i.e.,

. Based on Eq. (23a) this demand can be calculated directly using the non-dimensional

multiplication factor  and the quantile of the peak linear elastic acceleration

response, AEq.

For a probability of exceedance of 10% in 50 years, (i.e., 1 − q = 0.021 or T = 475 years, βq =

2.86), the obtained values of  are shown in Fig. 10 for a few sets of values of vA
and vT. Comparison of the results shown in Figs. 9 and 10 indicates that  is greater

than that of , implying that the quantile of the critical seismic demand  is

larger than its approximation . The observations made about the results shown in Fig. 9

are equally true for the results shown in Fig. 10. Again, it was identified that 

equals  if mT is greater than about 0.3 to 0.5, and it equals 

otherwise. Therefore, one may consider the following approximation for evaluating ,

(25)

Note that  is equal to  times the quantile related factor exp(βq

, and that  is equal to 

times the quantile related factor  (see Eq.

(22)). For  or  ranging from 0 to 2, vA (which is equal to vD) varying from

mR mT 0 μ, ,( )
φmc mT 0 μ, ,( ) mR mT 0 μ, ,( )/μ

φmc mT vT μ, ,( )
φmc mT vT μ, ,( )

mψ mT vT μ, ,( )

φmc mT vT μ, ,( ) mR mT vT μ, ,( )

φmc mT vT μ, ,( ) mψ mT vT μ, ,( )
mR mT vT μ, ,( )

φmc mT vT μ, ,( )
mR mT vT μ, ,( )/μ for 0.05 mT 0.3≤ ≤

mψ mT vT μ, ,( )/μ for 0.3 mT 10≤ ≤⎩
⎨
⎧

=

mψ mT vT μ, ,( )/mψ mT 0 μ, ,( ) mR mT vT μ, ,( )/
mR mT 0 μ, ,( ) φmc mT vT μ, ,( )/φmc mT 0 μ, ,( )

φmc mT vT μ, ,( )/φmc mT 0 μ, ,( )

Dy Ay,( )qc
φqc mT vT μ q, , ,( )

φqc mT vT μ q, , ,( )
φqc mT vT μ q, , ,( )

φmc mT vT μ, ,( ) Dy Ay,( )qc
Dy Ay,( )mc

φqc mT vT μ q, , ,( )
hψ mT vT μ q, , ,( )/μ hR mT vT μ q, , ,( )/μ

φqc mT vT μ q, , ,( )

φqc mT vT μ q, , ,( )
hR mT vT μ q, , ,( )/μ for 0.05 mT 0.3≤ ≤

hψ mT vT μ q, , ,( )/μ for 0.3 mT 10≤ ≤⎩
⎨
⎧

=

hψ mT vT μ q, , ,( ) mψ mT vT ξ, ,( )
ln 1 vψA

2
+( ) ln 1 vA

2
+( )–( ))/ 1 vψ mT vT ξ, ,( )( )2+ hR mT vT μ q, , ,( ) mR mT vT ξ, ,( )

exp β( q ln 1 vRD
2

+( ) ln 1 vD
2

+( )–( ) )/ 1 vR mT vT ξ, ,( )( )2+

vψ mT vT ξ, ,( ) vR mT vT ξ, ,( )
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2 to 12, the average value of these quantile related factor is approximately equal to 1.15 for βq =

2.86, and 1.3 for βq = 3.35 which corresponds to a probability of exceedance of 2% in 50 years,

(i.e., 1 − q = 0.0004, T = 2475). Therefore, as a crude guideline, one may consider 

 for βq = 2.86 and  for βq = 3.35. In other

words, the approximate seismic demand  underestimates the quantile of

the seismic demand , on average, by about 15% for 475-year return

period value of seismic demand and by about 30% for 2475-year return period value of seismic

demand.

4. Conclusions

The study showed that the uncertainty in natural vibration period Tn affects the acceleration and

displacement responses differently, and two ratios, one based on peak acceleration responses and the

other based on peak displacement responses, are not equal and both must be employed in defining

and evaluating the critical seismic demand.

Empirical equations for assessing the statistics of the ratios are recommended. These equations are

obtained based on simulation results with more than 200 strong ground motion records. By using

φqc mT vT μ q, , ,( ) =
1.15φmc mT vT μ, ,( ) φqc mT vT μ q, , ,( ) 1.3φmc mT vT μ, ,( )=

Dy Tn ξ μ, ,( ) Ay Tn ξ μ, ,( ),( )mc
Dy Tn ξ μ, ,( ) Ay Tn ξ μ, ,( ),( )qc

Fig. 10 Multiplication factor  used to evaluate the peak responses; (a) vT = 0, vA = 6, (b) vT =
0.2, vA = 6, (c) vT = 0.4 vA = 6, (d) vT = 0.2 vA = 2

φmc mT vT μ q, , ,( )
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the statistics of the ratios, a procedure and sets of simple to use equations are recommended for

estimating the quantile of critical seismic demand conditioned on the ductility factor.

The results indicate that:

1) The critical seismic demand by considering uncertainty in natural vibration period with a

coefficient of variation of 0.2 and 0.4 can be, respectively, up to 20% and 90% higher than that

without considering the uncertainty; and

2) The use of the mean value of the yield reduction factor to scale the design response spectrum

(i.e., using ) is inadequate and can lead to probability-inconsistent seismic

demand. The error, on average, can be about 15% to 30% for return period of about 500 to

2500 years.
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