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Abstract. In the present paper a mechanical model to predict the compressive response of high strength
short concrete columns with square cross-section confined by transverse steel is presented. The model
allows one to estimate the equivalent confinement pressures exercised by transverse steel during the
loading process taking into account of the interaction of the stirrups with the inner core both in the plane
of the stirrups and in the space between two successive stirrups. The lateral pressure distributions at hoop
levels are obtained by using a simple model of elastic beam on elastic medium simulating the interaction
between stirrups and concrete core, including yielding of steel stirrups and damage of concrete core by
means of the variation in the elastic modulus and in the Poisson’s coefficient. Complete stress-strain
curves in compression of confined concrete core are obtained considering the variation of the axial forces
in the leg of the stirrup during the loading process. The model was compared with some others presented
in the literature and it was validated on the basis of the existing experimental data. Finally, it was shown
that the model allows one to include the main parameters governing the confinement problems of high
strength concrete members such as: - the strength of plain concrete and its brittleness; - the diameter, the
pitch and the yielding stress of the stirrups; - the diameter and the yielding stress of longitudinal bars; -
the side of the member, etc.

Keywords: compression; high strength concrete; confinement stress-strain curves. 

1. Introduction 

The use of high strength concrete (HSC) has increased in the last decades especially addresses to

the realization of high-rise buildings, long shear span bridges and off-shore platforms. 

HSC with cylinder strengths in the range of 60 MPa to 100 MPa can now be produced

economically wherever superplasticizer and high quality aggregate are available, and with very high

strength when reactive powder, silica fume, etc. are utilised. Although HSC is characterized by high

performances attributes such as high module, high strength to density ratio and improved durability,

it is also characterized by higher brittleness compared to normal strength concrete (NSC).

It is well known starting from 1970 that if normal strength concrete members are confined by

transverse steel and longitudinal bars, increases in the bearing capacity and in the corresponding

strain are observed (see e.g., Amahd and Shah, 1982, Park et al. 1982, Mander et al. 1988). Studies
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produces in the last decades for HSC members (Cusson and Paultre 1994, Cusson and Paultre 1995,

Foster et al. 1998, Razvi and Saatcioglu 1999, Liu and Foster 2000) focused the attention on the

principal parameters governing the confinement in the concrete core such as: - concrete grade; -

shape of the transverse cross-section of the members to be reinforced in relation to the type and

grade of transverse and longitudinal steel (hoops, spirals, ties, jackets, etc.); - size of the specimens;

- rate of loading; etc. 

From mentioned studies it is evident that for a correct evaluation of the confinement effects in

R.C. members has to be considered properly several factors such as: - concrete strength; - volume

of confining reinforcement; - the actual stresses in ties; -non uniform confining pressures; -section

geometry; -size and grade of steel utilised, etc. In the case of members with square or rectangular

cross-section confined by transverse steel (stirrups and ties) many questions arises on the

confinement effects especially referring to the evaluation of effective stress in transverse steel and

on the confinement pressures distribution developed at maximum compressive strength of confined

concrete necessary to predict accurately the compressive behaviour of confined concrete.

Specifically, despite the many advantages of HSC two important questions have to be addressed

properly: - the smaller confinement efficiency of ties in HSC columns; the second order effects on

slender HSC columns. 

From theoretical point of view many studies were addressed to predict the compressive response

of NSC (see e.g., Mander et al. 1988) and more recently of HSC confined members (Cusson and

Paultre 1995, Razvi and Saatcioglu 1999, Mau et al. 1998). From these studies it emerges that

widely accepted model for rectilinear confined HSC does not exist. 

In the present paper, after a brief presentation of the most common models utilised in the

literature for the study of confinement effects in HSC members with square cross-section, a

mechanical model is proposed able to predict the whole compressive response of confined HSC

members and a comparison with existing models and with available experimental data is made.

2. Case of study and references models 

Several models are available in the literature to analyse the confinement effects produced by

transverse steel reinforcements on compressed high strength concrete (HSC) members with circular,

square or rectangular cross-section reinforced with longitudinal and transverse bars (e.g. Cusson and

Paultre 1995 and Razvi and Saaatcioglu 1999). These models allow one to evaluate the strength and

strain enhancements due to transverse steel and give the stress-strain curves in compression

including also the post-peak response. 

Basic studies on the effect of confinement induced by transverse steel in normal strength concrete

have as their starting point the experimental researches carried out by Richard et al. (1929). These

studies have shown that if a uniform lateral pressure is applied to a cylindrical concrete specimen, a

proportional strength increase is observed and a simple linear relationship can be assumed in the form 

(1)

fcc, fco being, respectively, the compressive strength of the confined and unconfined concrete, f1 the

lateral uniform confinement pressure and k1 an empirical coefficient depending on the concrete type

and assumed to be equal to 4.1.

fcc

fco
----- 1 k1

f1

fco
-----⋅+=
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It has to be remind that Eq. (1) was derived referring to a compressed cylindrical specimen

subjected to an axial load and to a lateral uniform confinement pressure, but it can also be utilised

in the case of passive confinement induced by transverse steel in which non-uniform confinement

pressures develop. In this case, in order to utilise Eq. (1) a preliminary analysis to determine the

effective confinement pressures induced by transverse steel is required and the equivalent uniform

confinement pressure must be estimated. 

For HSC elements, confined by transverse steel, Razvi and Saatcioglu (1999) highlight the fact

that it is still possible to use Eq. (1), but with k1 variable with the Poisson coefficient νc and

assuming higher values when the confinement effect is maximum. 

Razvi and Saatcioglu (1999), based on results of regression analyses of experimental data

available in the literature, showed that the relationship between k1 and fl is not linear and they

assumed

(2)

Similarly, Cusson and Paultre (1995) have shown that non linear relationships between fcc and f1

can be adopted in the form

(3)

Mander et al. (1988) estimate the increase in maximum compressive strength and in ductility due

to the confinement effect induced by transverse steel by introducing the concept of “effective lateral

confinement pressure” f1e replacing f1 (uniform confinement pressures) exercised by the transverse

steel for different shapes of the transverse cross-section.

The starting point to determine f1e is the consideration that the effective confinement pressure

distribution due to the interaction between concrete core and transverse steel effectively develops on

a confined concrete core Ae reduced with respect to the whole transverse cross-section Acc (it is the

cross area purged of the area of the longitudinal bars). Moreover, determining the uniform lateral

confinement pressure f1 by means of simple equilibrium conditions, the effective confinement

pressure is obtained reducing f1 through a confinement coefficient ke, defined as ke = Ae/Acc ≤ 1.

Therefore, the effective confinement pressure is obtained by means of the following expression

(4)

For the members of Fig. 1, Mander et al. (1988) consider in the calculus of ke and f1 that the

effective confinement lateral pressures act along a curved surface, which in the vertical sections is

represented by a second-degree parabola with initial tangent 45o between two successive hoops.

Denoting with s' the net spacing between two successive hoops (it is evaluated purging the whole

distance measured in the hoop axis of the diameter of the hoops), it is possible to obtain

 

(5)

Finally, the lateral confinement pressure f1 is determined by utilizing equilibrium considerations on

k1 6.7 f1
0.17–⋅=

fcc

fco
----- 1 2.1
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-----⎝ ⎠

⎛ ⎞
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half the cross-section considered as a rigid body and by assuming the hoops to have yielded

(6)

fy being the yielding stress of the hoops and ρs the geometrical ratio of stirrups in the pitch s

defined as .

For high strength concrete members (HSC) confined by transverse steel Razvi and Saatcioglu

(1999) observed that f1 is related to the effective working stress in the hoops reached at the

maximum compressive strength of the concrete. Also observed that in several cases and especially

when transverse steel with high yielding stress is utilized, its value is lower than the yielding stress

fy, therefore, the use of Eq. (6) overestimates the confinement pressure. 

For this reason Razvi and Saatcioglu (1999) suggest utilizing Eq. (6), but substituting the yielding

stress fy with the effective fs deduced by regression analyses of experimental data and assumed as 

(7)

Es being the elastic modulus of steel.

In Eq. (7) k2 is a semi-empirical coefficient taking into account the effectiveness of the

arrangement of the longitudinal bars and transverse steel both in the cross-section and along the

height. Razvi and Saatcioglu (1999) suggest to adopt the following expression for k2

(8)

s1 being the distance between two adjacent longitudinal bars (see Fig. 2). The k2 coefficient takes

into account that confinement pressure in the plane of cross-section and in the space among two

successive stirrups is not uniform (see Fig. 2).

Cusson and Paultre (1995) have shown that suppose transverse steel yielded at maximum

compressive strength course wrong previsions of bearing capacity especially in HSC members

lightly confined or when high strength steel bars are utilised. Therefore, they suggest to adopt

Eq. (6) replacing fy with the actual stress fs at maximum compressive strength, the latter determined

by using non linear iterative procedure. Moreover, Cusson and Paultre (1995) to take into account

f1
1

2
--- ρs fy⋅ ⋅=

ρs 2 Ast/L s⋅⋅=

fs Es 0.0025 0.04
k2 ρs⋅

fc0
--------------3⋅+⎝ ⎠

⎛ ⎞ fy≤⋅=

k2 0.15
L

s
---

L

s1

----⋅⋅ 1≤=

Fig. 1 Details of column under investigation
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of not uniform confinement pressures exercised by transverse steel in the plane of the stirrups and

in the space between two successive stirrups adopt the ke coefficient originally proposed by Mander

et al. (1988).

Some other authors consider the not uniform confinement pressures distribution between two

successive stirrups introducing a reduction factor ksv of the average confinement pressured, the

latter, determined at hoop level (see Eq. (6)).

e.g. Sheikh and Uzumeri (1980) suggest for ksv the following expression

(9)

Tim and Yip (1999) suggest analogously adopting

(10)

Braga et al. (2006) based on a simplified analytical model adopt an analytical expression for ksv

able to take into account of L, s and also of the diameter of stirrups φst and of longitudinal bars φl

adopting the following expression

(11)

More recently Teerawong et al. (2004) performing 3-D finite element analyses demonstrate that

the effective confining stress at hoop level σh, eff can be related to the average effective confining

stress σeff assuming

(12)

ksv 1
s
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----------–⎝ ⎠
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----------–=
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Fig. 2 Effective confinement pressure
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Moreover for the evaluation of σh, eff Teerawong et al. (2004) refer to the model of Mau et al.

(1998) which gives a reduction coefficient of average confinement pressures at hoop level with the

expression

(13)

a being .

In the following sections for comparison between analytical model it will be adopted a reduction

factor of average confinement pressure expressed according to Teerawong et al. (2004) by kxf, the

ke coefficient according to Mander et al. (1988) and k2 according to Razvi and Saatcioglu (1999).

To determine the whole response of compressed members in terms of stress-strain (σ−ε) curves

for NSC members a well-known model is that proposed by Mander et al. (1988), based on the use

of the analytical stress-train curve originally given by Popovics (1973) in the form

(14)

with  and εcc, the axial strain of confined concrete corresponding to the maximum

compressive strength fcc, calculated by means of 

(15)

The coefficient r of Eq. (11) is evaluated by means of , with  (MPa)

the tangent initial modulus of elasticity of NSC concrete. 

The model of Mander et al. (1988) is based essentially on knowledge of three fundamental

parameters (fcc, εcc and Ec), but it is not suited to accurately predicting the response of confined

HSC members, because it assumes that the confinement pressure is constant during the loading

process and is equal to the value producing yielding of transverse steel for low strain values too.

Moreover, Eq. (14) is not able to capture the brittle stress-strain response of HSC matrices. Razvi

and Saatcioglu (1999) propose adopt Eq. (14) for the ascending branch of the stress-strain curves in

compression of confined HSC members but with the following modification: - the initial tangent

elasticity modulus Ec is evaluated with the expression (MPa)

 (MPa) (16)

For the evaluation of the compressive strain εcc at peak stress the following expression of

empirical nature is assumed

(17)

with k1 given by Eq.(3) and εc0 given b: 

f 1 0.575
s

a
---⋅–=

Bc′ /2

σ fcc

ε

εcc

------⎝ ⎠
⎛ ⎞ r⋅
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ε
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------⎝ ⎠
⎛ ⎞ r

+

-------------------------------⋅=
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fcc

fco
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⎛ ⎞⋅+⋅=

r
Ec
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fcc

εcc

------–

------------------= Ec 5700 fc′⋅=

Ec 6900 3320 fc′⋅+=
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k1 f1e⋅
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(18)

For the post-peak response of HSC members Razvi and Saatcioglu (1999) suggest to adopt a

linear σ−ε relationship, intercepting the point of coordinates (εcc, fcc), and that having ordinate 0.2 fcc

and abscissa ε085 defined as

(19)

Cusson and Paultre (1995) adopt for HSC confined compressed members two different σ−ε

relationships: the first one from zero stress up to the peak stress expressed through Eq. (8) and the

second one from the peak stress up to 50% of fcc corresponding to a strain εC50C and in which a

linear variation of stresses was supposed. 

Cusson and Paultre (1995) suggest adopting 

 (20)

And εC50C expressed through

 (21)

With εC50U strain value for unconfined concrete assumed 0.004.

Based on the abovementioned considerations, in the following sections a new analytical model

will be presented that is able to predict the whole σ−ε relationship for HSC compressed members

confined by transverse steel and longitudinal bars. 

3. Proposed model

The case examined here is the one related to a short member having a square cross-section

(already shown in Fig. 1) and confined by transverse closed steel stirrups with diameter φs and area

Ast placed at pitch s with a cover δ. Longitudinal bars are placed at the four corners of the cross-

section of sided L. No size effect (important in full scale members) was considered, and negligible

cover was supposed.

The model here proposed essentially is addressed to determine the confinement pressures induced

by transverse steel in the space between two successive stirrups and therefore the equivalent

confinement pressures to utilize for the determination of the maximum compressive strength and

strain capacities by Eqs. (1), (2), (20). 

A simplified analysis is carried out to explain in a simplified way the confinement effects in the

concrete core due to the presence by transverse stirrups, which can be pointed out numerically by a

non linear finite element approach as made in Teerawong et al. (2004) or as made in Braga et al.

(2006) utilising a continuum elastic model.

The model proposed here refers to the geometrical model shown in Fig. 3, representing a three

dimensional prismatic concrete member having square cross-section of side L and confined by

transverse stirrups. If the concrete member is loaded axially, and maintains its prismatic shape, it

εc0 0.0028 0.0008
40
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------⋅–=

εc085 εc0 0.0018+
40
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------⎝ ⎠

⎛ ⎞ 2

⋅=
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⎛ ⎞
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tends to be subjected to an axial strain ε and a lateral strain with corresponding lateral displacement

of concrete core (without confinement pressure) expressed as δ = νc · ε · L/2, νc being the elastic

Poisson coefficient of the concrete core. This displacement δ is partially reduced by the presence of

the transverse stirrups. Because of the adhesion between concrete surface and transverse steel, shear

stress distribution arises at the interfaces with significant values up to complete cover spalling

process occurs, with intensification of axial stresses in the stirrups close to the corners of the cross-

section. Moreover, the interaction between stirrups and concrete core produces in the direction

perpendicular to the stirrups, non uniform distribution of confinement pressures and axial forces

variable in the stirrups. Following only confinement pressures will be considered, while shear

stresses will be neglected for simplicity and increases in maximum strength is mainly due to

confinement pressures. Moreover axial forces will be supposed constant along the perimeter of the

stirrup.

In the next sections the focus will be on the determination of the confinement pressures at hoop

level, therefore it will be on the determination of confinement pressures in the concrete core

between two successive stirrups.

3.1 Confinement pressures at hoop levels

In the case of compressed prismatic concrete member it can be assumed that the section is in a

plane state of deformation, with the normal stresses in the plane of the cross-section and σz parallel

to the vertical axis of the member. It is possible to further simplify the three dimensional model of

Fig. 3 by assuming a plane model (see Fig. 4) and considering, for the symmetry of the system,

only one quarter of the transverse cross-section. Particularly it is considered the plane of the stirrup

in which is enclosed a concrete shell in a plane state of strain.

The model is further simplified considering that, when lateral expansion occurs in the concrete

member, the displacement along the corner of the diagonal direction in the concrete shell can be

assumed the one corresponding to the lateral elongations along the two beams of length L/2

supported by unilateral elastic springs (see Fig. 4). 

Fig. 3 Geometrical model for compressed concrete members
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The stiffness of the springs, analogously to the problem of elastic beam on elastic soil, has

dimension of a stress divided by a length. Its value is obtained as , Ec is the

modulus of elasticity of concrete. This expression was derived (in a simplified way) considering the

axial stiffness of a beam of base dx in x direction and dy in y direction, unit depth and length L/2

further increased by considering the term (1 − vc) to take into account of the plane problem (see

Fig. 4). 

These spring as shown in Fig. 4 act in the direction perpendicular to the beam axis (leg of the

stirrup) and simulate the interaction at hoop level between stirrup and concrete core. 

The effect of axial forces of the stirrups was taken into account by imposing (as it will show in

the following section) that the displacement at the end of the beam (corner of cross-section) is equal

to the elongation of the stirrup’s leg in the perpendicular direction denoted as δs.

The two elastic beams simulating the stirrups have flexural stiffness proportional to the quantity

Es · Js, Js is the moment of inertia of transverse cross-section of stirrups assumed to be Js =

 with φst the diameter of stirrups simulating the contact base of stirrup with the beam on

elastic springs.

The beam is subjected to distortion in the points of contact between the hoops and longitudinal

bars equal to δs corresponding in the confined concrete core (it is the volume enclosed in the plane

of stirrups and between two successive stirrups at pitch s) to a force F (Fx in x direction equal for

the equilibrium to Fy in y direction) producing the w(x) deflection of the beam.

The equilibrium equation of the elastic beam of inertia Js on elastic springs in a deformed

configuration, in term of lateral displacements w, is governed by the following differential equation. 

(22)

By introducing the β parameter defined as

(23)

Eq. (22) can be rearranged in the homogeneous equation in the form

(24)

kv 2 Ec/L 1 νc–( )⋅⋅=

π φst

4
/64⋅

d
4
w

x
4

d
---------

kv

Es Js⋅
-------------- δ w–( )+ 0=

β
kv φst⋅

4 Es Js⋅ ⋅
---------------------4=

d
4
w

x
4

d
--------- 4 β

4
δ w–( )⋅ ⋅+ 0=

Fig. 4 Modelling of column ties as beams on an elastic foundation
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It has to be observed that the β parameter assumes the role of relative confined core-stirrups

stiffness and in can be expressed in explicit form by 

(25)

The solution of the differential equation for the deflection curve is

(26)

After the reference system with the axis of the abscissa coinciding with the axis of the transverse

stirrups bars and originating in the section L/2 is assumed, taking into account the symmetry

conditions, Eq. (26) can be simplified as follows

(27)

For calculation of the constants A and B in the extremity section (x = +−L/2) defined by the

transverse legs of stirrups, the following boundary conditions are imposed: the displacement of the

bar is equal to the displacement of the hoop; the rotation of the bar is zero 

(28)

By imposing the boundary conditions it results 

(29)

Hence, for , it is possible to find in the pattern of the confinement pressure q(x)

due to the presence of the stirrup through the expression

(30)

Adopting the proposed model it is possible to obtain the deformation shape at hoop level of the

cross-section and the confinement pressures distribution acting on the legs of the stirrup as shown in

Fig. 5.

If the confinement pressure is integrated in the plane of the stirrup it is possible to introduce the

equivalent uniform confinement pressure in the plane of the stirrups defined as  

(31)

It has to be observed that A and B depend on δ and δs. the latter depending on the level of the
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axial force F acting on it. Its value will be determined in the next section by imposing the

equilibrium of the confinement pressures in the volume of concrete core enclosed In the pitch s. 

3.2 Equivalent confinement pressures between two stirrups

The equivalent uniform confinement pressures  at hoop level (see Eq. (31)) do not reflect the

discontinuities of confinement pressures between two successive stirrups therefore a reducing

effectiveness coefficient (see e.g. Eqs. (9), (10), (11)) has to be introduced. 

This coefficient reflects the circumstance that the confinement pressures distribution induced by

transverse steel is not uniform, not only in the plane of the stirrup, but also in the space between

two successive stirrups. The analytical determination of the distribution of these pressures is a

difficult problem to solve in prismatic members taking into account of non linear behavior of

constituent materials. In the case of cylindrical members confined by circular hoops it was recently

demonstrate that for elastic behavior of concrete an exact solution of the mechanical problems exists

(Mau et al. 1998), while form prismatic members with square cross-section approximate solution

based on the use of finite element method are generally proposed (see e.g. Mau et al. 1998 or

Teerawong et al. 2004) or finally as shown by Braga et al. (2006) utilizing a continuum model

based on the knowledge of the Airy’ Functions for members in plane state of strain to determine the

confinement pressures and shear stresses distribution at hoop level and confinement pressures

distribution between two successive stirrups. 

In the present paper it was supposed that in a generic point at distance z from the leg of the

stirrup the confinement pressures distribution can be expressed by an analytical equation A(z) giving

at a generic point enclosed between two successive stirrups the confinement pressures expressed by

means of 

 (32)

Fig. 6 shows the qualitative 3-D variation of confinement pressures generated by stirrups

expressed by Eq. (32) with A(z) assumed as exponential function.

By integrating p(x, z) in the space s the resultant of confining pressures acting in the plane of

q

p x z,( ) q x( ) A z( )⋅=

Fig. 5 Deformed shape of transverse stirrup and reference simplified physical model
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sides L and s can be expressed as

(33)

To determine R the knowledge of the expression of A(z) function is not necessary if ksv is assumed

as 

(34)

This choice for ksv is in agreement with the analytical models available in to the literature (see

Eqs. (9), (10), (11)) and also it allows to consider the limit conditions corresponding to the

circumstances that for s = 0 results ksv = 1 (maximum confinement effect) and for  the

value of ksv its negligible (such is obtained utilizing Eqs. (9), (11) and confirmed experimentally in

the literature). Moreover, Eq. (34) is the integral of an exponential function, the latter is a possible

function to reproduce the variation of the confinement pressures distribution in the space between

two successive stirrups as also recently observed by Braga et al. (2006). 

Fig. 7 shows the variation of the ksv coefficient with s/L obtained with Eq. (34) and also the

analogous coefficients given by Eqs. (9), (10), (11). In the comparison of Fig. 7, Eq. (11) was

utilized referring to two longitudinal bars having diameter 20 mm e and stirrups having 8 mm

diameter. The comparison shows a good agreement between the mentioned models above.

To determine the F force on the stirrups it is necessary to consider the equilibrium between the

confinement pressure in the space of sides L and s and the axial forces F in the legs of the stirrup

(see Fig. 8) resulting

(35)
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L/2–

L/2

∫ δr w x( )–[ ] xd A z( ) z L s q ksv⋅ ⋅ ⋅=d⋅
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s

L
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=d⋅
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s 2 L⋅≥

R 2 F⋅ L s q ksv⋅ ⋅ ⋅= =

Fig. 6 3-D variation of confinement pressures generated by stirrups 
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In the elastic range the F force is related to the elongation δs by the relation

(36)

E being the modulus of steel equal to Es in the elastic range or Eh in the hardening phase. 

To determine the F force on the stirrups, for each axial shortening value, it is possible utilizes

Eq. (35) by means of Eq. (36) and Eq. (32) resulting

(37)

δs
F L⋅

2 E Ast⋅ ⋅
----------------------=

F

kv

β
---- A1 A2–( ) C A1 A2+( ) D⋅+⋅[ ] ksv⋅ ⋅

1
1

Es Ast⋅
----------------– A1 A2–( ) C D+( ) ksv⋅ ⋅ ⋅

---------------------------------------------------------------------------------------------- νc ε L⋅ ⋅ ⋅=

Fig. 7 ksv efficiency vertical factor 

Fig. 8 Equilibrium of internal forces at hoop levels
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Adopting the position 

(38)

(39))

(40)

(41)

If during the loading process F reaches the yielding value and if elastic-plastic behavior of

transverse steel is supposed it values remains constant and equal to Fy = fy Ast.

It must be borne in mind that the transverse stirrups are subject to tension and bending moment

(shear forces are neglected) that are proportional to the axial stiffness and to a transversal load that,

in the absence of concrete cover favours its yielding.

During the loading process it has to be observed that with the increasing in the deflection of the

stirrups out of the plane the bending moment and the axial forces increase therefore is has to be

cheeked that the maximum flexural moment in the leg of the stirrups do not exceed the plastic

moment determined e.g. as suggested in Chen and Sohal (1995) in the presence of axial forces F,

procedure mentioned in details in Teerawong et al. (2004).

Fig. 9 shows the variation in the confinement pressure given by Eq. (30) multiplied by Eq. (34)

with the variation in the x position along the leg of the stirrup (x = 0 is in the middle of the stirrup

leg). In the same graph also the analogous distribution of confinement pressures obtained with the
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Fig. 9 Confinement pressures distribution at hoop levels according to the proposed model 
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model proposed by Braga et al. (2006) and uniform equivalent pressure given by Eq. (31) are given.

The uniform confinement pressures were obtained supposing that for the case examined stirrups do

not yield and assuming form equilibrium consideration between uniform confinement pressures and

axial forces in the leg of the stirrups supposed to be in elastic range resulting . 

Data utilised were L = 300 mm, s = 100 mm, vc = 0.5, Ec = 2/3 × 35 GPa and Es = 210 GPa and

φst = 8 mm. It is interesting to observe that non linear variation of confinement pressures is

activated and there is a significant difference between equivalent and uniform confinement

pressures. It has to be observed that differences are obtained among the proposed model and the one

proposed by Braga et al. (2006) model. The proposed model is more conservative because does not

take into account of the shear stress-distribution which were considered in the model of Braga et al.

(2006) to determine the axial force in the leg of the stirrups and therefore in the confinement

pressures distribution. It has to be observed moreover that the proposed model allows one to

consider that when φst increases and s spacing tends to zero value almost uniform confinement

pressures are obtained while adopting the model proposed by Braga et al. (2006) the shape of

confinement pressures does not change.

In the graph of Fig. 10 is shown the comparison of the proposed model with some of the other

mentioned. In it is shown the variation with s/L of the: - reduction factor proposed by Mander et al.

(1988) (ke factor); - f · k factor adopted by Teerawong et al. (2004); - k2 factor proposed by Razvi

and Saatcioglu (1999); - reduction factor deduced with the model proposed by Braga et al. (2006);

and  factor assumed in the present paper. The comparison shows that although all the

models mentioned take into account of the non uniform confinement pressure in the plane of the

stirrups and between two successive stirrups substantial differences are observed. 

3.3 Stress-strain curves of confined concrete and proposed incremental approach

To determine the compressive response of confined concrete in term of stress-strain curves it was

f1
Es π φst

2⋅ ⋅
s L⋅

----------------------- δ⋅=

q /f1 ksv⋅

Fig. 10 Variation of reduction factors with s/L 
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adopted the σ−ε curves proposed by Sargin (1971) in the form rearranged by La Mendola and Papia

(2002).

The relationship assumed is

(42)

In which  and  and D was assumed 1.1 for concrete with fco > 45 MPa.

The variation law of the νc coefficient with the axial strain ε was given in Elwi and Murray,

(1979) expressed by 

(43)

ν0 being the elastic Poisson ratio assumed equal to 0.20, εcu = 2 εc0 the ultimate strain of unconfined

concrete.

The initial modulus of elasticity Ec0 was adopted according to Cusson and Paultre (1995) as 

(44)

In particular to plot the complete stress-strain curves depending on the axial shortening and on the

confinement pressures a numerical procedure was adopted. The starting point is the assumption of

Eq. (42), but referring to a curve intertwining with several curves given by Eq. (42), each pertaining

to a level of confining pressure corresponding to the current axial and lateral strain values. 

In particular the procedure is based on the following steps: - an initial value of axial shortening ε

is assumed; - the lateral displacements  is computed assuming a fixed variation law

of νc with ε (Eq. (43)); - the axial forces in the transverse steel is computed on the basis of the

secant elasticity modulus of the concrete core and of the Poisson coefficient by using Eq. (43); - the

effective confinement pressure is calculated by considering the average confinement pressure; - the

compressive strength of the confined concrete is calculated using Eqs. (1), (2); - εcc, and finally σ

are determined by means of Eqs. (15), (43); - repeating this procedure for all possible values of

axial strain the complete stress-strain curve is plotted. 

The whole stress was finally determined including also the contribution of longitudinal bars

supposed with elastic-plastic behavior.

Fig. 10 shows typical stress-strain curves for short compressed members with square cross-section

of side L = 250 mm cast with high strength concrete (80 MPa) and reinforced with stirrups having

4 mm diameter at pitch 50 mm and for three different grade of steel of 400, 800 and 1200 MPa,

respectively. All curves are dimensionless. The stress and the strain are referred to the maximum

strength and to the corresponding strain of unconfined concrete. The axial force in the stirrups is

dimensionless with respect to the yielding force. From the graph it emerges clearly the influence of

the grade of steel on the confinement effects in high strength concrete for given pitch and diameter

of stirrups, resulting that increasing the yielding stress stirrups do not yield and the increasing in the

confinement effects are not proportional with the increasing in the yielding stress, as widely

confirmed experimentally in the literature. 
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4. Comparison with experimental results 

Although a large number of experimental data are available in the literature for the compressive

behaviour of high strength columns confined by transverse steel (see e.g. Cusson and Paultre 1994),

in this section we refer to the experimental results given by Lima and Giongo (2004) and by Hong

et al. (2006). This choice was related to the fact that both the experimental researches referred to

high strength concrete members with square cross-section confined by single stirrups and in the

presence of longitudinal bars. Mainly the interest is because quite different strength of concrete and

grade of steel are considered and measurement of strain in the legs of the stirrups during the test

were made. Table 1 gives the geometrical and mechanical properties of concrete specimens.

Fig. 11 refers to experimental data given in Lima and Giongo (2006) and referred to maximum

Table 1 Geometrical and mechanical characteristics of confined specimens 

Ref.
L

(mm)
φst

(mm)
s

(mm)
ρs 
(%)

fy
(MPa)

ρs fy
(MPa)

fc
(MPa)

εc0
(%)

  Lima and Giongo (2004)

123.8 6.3 150 0.33 656 2.16 91 0.33

123.8 6.3 50 1.00 656 6.56 91 0.33

123.8 6.3 150 0.33 656 2.16 68 0.28

123.8 6.3 50 1.00 656 6.56 68 0.28

  Hong et al. (2006)

250 6.0 50 0.96 317 3.20 40.8 0.22

250 6.4 25 1.92 1288 24.7 40.8 0.22

250 6.4 25 1.92 1288 24.7 72.0 0.25

250 6.4 25 1.92 1288 24.7 100.0 0.29

Fig. 11 Dimensionless stress-strain curves in compression
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stress and stresses corresponding to 85% and 50% of the peak strength. In the same graph analytical

curves obtained by using the proposed model are given. The comparison between curves shows a

good agreement. From the analytical results it emerges, as already observed experimentally in Hong

et al. (2006) that an increase in the volumetric ratio ρs increases the peak strength and strain values

and the post-peak ductility is enhanced too, while the increase in compressive strength reduces

ductility.

The comparison shows the ability of the model to predict the strength and strain enhancement due

to confinement effect considering the effects of the cross-section shape and the mechanical

properties of the constituent materials. 

Fig. 12 shows the predicted stress in the hoops with the variation in the yielding stress and the

experimental values given in Lima and Giongo (2004). 

Fig. 12 Stress-strain curves: Proposed model and comparison with Hong et al. (2006) data 

Fig. 13 fs /fy variation with fy in lateral ties at the peak strength
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Also in this case good agreement is observed and it emerges clearly that when yield strength

increases maximum allowable stress in stirrups at concrete failure decreases, especially with the

increase in the concrete strength. 

Fig. 13 refers to the experimental data given in Hong et al. (2006) and mentioned in Table 1. All

cases examined in Fig. 14 refer to members with square cross-section of side 123.8 mm with square

cross-section confined with close stirrups having 6.3 mm diameter and 656 MPa yielding stress.

Cases examined are different for concrete strength (68 and 91 MPa) and pitch of stirrups (150 and

50 mm). In the same graphs also prediction with the proposed model and with the other model

mentioned and given in the literature (Mander et al. 1988, Cusson and Paultre 1995, Ravzi et al.

1999) are given. The comparison shown that the model of Cusson and Paultre (1995) is the best to

fit almost all cases examined while, the model of Mander et al. (1988), as expected, gives the worst

prediction for the case of high strength concrete. The model proposed here gives acceptable

prediction of the experimental data and also it has the advantages that are supported by a

mechanical model with clear physical meaning.

Fig. 14(a) Stress-strain curves in compression: s = 150 mm fco = 68 MPa

Fig. 14(b) Stress-strain curves in compression: s = 50 mm fco = 68 MPa
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5. Conclusions

A mechanical model to predict the compressive response of high strength short concrete columns

with square cross-section confined by transverse steel is presented. The model allows one to

estimate the equivalent confinement pressures exercised by transverse steel during the loading

process taking into account of their interaction with the concrete core (both in the plane of the

stirrups and in the space between two successive stirrups) and of the variation of the axial forces in

the leg of the stirrup during the loading process. The model is able to take into account of the main

parameters governing the confinement problems of high strength concrete members such as: - the

strength of plain concrete and its brittleness; - the yielding stress of stirrups and their diameter and

pitch; - the diameter and the yielding stress of longitudinal bars; - the side of the member, etc.

Fig. 14(c) Stress-strain curves in compression: s = 150 mm fco = 91 MPa

Fig. 14(d) Stress-strain curves in compression: s = 50 mm fco = 91 MPa
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Moreover, from the application of the model it emerges that: 

- confinement pressures distribution due to transverse steel are not uniform in the plane of the

cross-section with maximum values across the corners; 

- confinement pressures generated in the plane of the stirrups propagate decreasing intensity along

the eight of the member; 

- interaction between single stirrups is observed influenced by the pitch, and by the diameter of

stirrups and by the concrete characteristics;

- yielding of transverse steel do not occurs at maximum compressive strength if lightly

confinements and high strength steel are utilised; 

- increasing the yield strength of steel do not significantly improve the confinement effect;

- for given diameter, pitch and grade of the steel confinement effects strongly depend on the

concrete strength.

Finally, comparison between analytical results and experimental data given in the literature shows

good agreement.
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