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Abstract. In this paper, linear elastic isotropic structures under the effects of both stochastic operators
and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM)
with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random
excitation and the random operator fields are assumed to be second order stochastic processes. The
formulations are obtained for the system solution of the two dimensional problems of plane strain and
plate bending structures under stochastic loading and relevant rigidity using the previously mentioned
expansions. Two finite element programs were developed to incorporate such formulations. Two
illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity
subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example
is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab
flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two
statistical moments of displacement are evaluated using both expansions. The probability density function
of the structure response of each problem is obtained using Homogeneous Chaos expansion. 

Keywords: stochastic structures; stochastic finite elements method (SFEM); stochastic excitation;
stochastic operators; neumann expansion; Homogeneous Chaos expansion.

1. Introduction

In structural problems, uncertainty arises for many reasons such as the geometric shape

imperfection due to the loss of accuracy during dimensioning and casting, cracking, the uncertainty
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in Young’s modulus and Poisson’s ratio, and material strength due to possible non-homogeneity of

the material. These types of uncertainties are all included in the operator of the structure differential

equation. The excitation itself could be uncertain; as it is well known that some types of loads have

stochastic nature such as wind, earthquake, and traffic loads. Besides, the modeling process to

applied loads could be uncertain. For the sake of realistic modeling of structures, uncertainties of

both the operator and the excitation functions have to be included in the formulation. 

To asses the structural response due to these uncertainties, many numerical methods were

developed such as stochastic mesh less methods (Rahman and Xu 2005), stochastic finite

difference method (Kaminski 2002) and stochastic finite elements method such as Monte-Carlo

simulation (MCS), perturbation and spectral approaches. Among these methods, the spectral

stochastic finite elements method (SSFEM) appears to be a good candidate for solving uncertain

structural systems.

Neumann expansion was first introduced by Neumann and was further investigated by Fredholm

(1903). It witnessed successive developments until Shinozuka and Nomoto (1980) introduced this

expansion to the field of structural mechanics. Later, Ghanem and Spanos (1991) introduced this

expansion for the case of random operator under the effect of deterministic excitation. On the other

hand, the concept of Homogeneous Chaos was first introduced by Wiener (1938). Some refinements

were evaluated to this expansion till Ghanem and Spanos (1990) employed it in the context of the

finite element method to solve random operator problems. Finally, both of Neumann expansion and

Homogeneous Chaos were extended to include the effect of random excitation along with the

random operator by Galal et al. (2005).

Using Neumann expansion, the solution of the stochastic system is evaluated to get an explicit

expression for the solution process. This solution is obtained in a set of uncorrelated random

variables where only the mathematical expressions for the first two statistical moments can be

practically obtained. Homogenous Chaos expansion (H.C.) is proven to have relative advantages in

evaluating the statistical moments of any order in addition to the probability distribution function

(p.d.f.) of the system response. Also, it can handle these systems that have high level of variability

when Neumann expansion fails. By using the H.C. expansion, the p.d.f. of the solution process is

obtained as a multiplication of random functionals with deterministic constants. 

Ghanem and Spanos (1990, 1991) utilized the SSFEM to evaluate the stochastic response of

rectangular and non-rectangular plates under deterministic in-plane loads. The plate rigidity is

considered to be stochastic field with zero mean. Consequently, Galal et al. (2005) solved a

rectangular plate with stochastic operator under the effect of stochastic in-plane excitation as a

validation problem for the derived expression in their work.

Using other techniques, the case of random excitation applied to plates with deterministic material

properties is investigated in some works. Chang (1994) proposed an equivalent stochastic

linearization method to develop a finite element formulation for the dynamic response analysis

associated with hysteretic plates. These plates are assumed to be subjected to stochastic excitation,

and the plate material is assumed to have deterministic and non-linear properties. The proposed

method generates the variance and covariance functions of the nodal displacements and velocity.

Young et al. (2002) studied the dynamic stability of cantilever skew plates subjected simultaneously

to an aerodynamic force in the chord-wise direction and a random in-plane force in the span-wise

direction. The aerodynamic force is modeled by the piston theory, and the random in-plane force is

assumed as a physical noise with zero mean. The perturbation method with second-moment

calculations is employed to determine the stability boundary of the system.
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The case of a plate resting on random foundation was also considered. Przewlocki and Gorski

(2001) introduced a stochastic description for a strip foundation resting on two and three

dimensional soil medium which is modeled under plane stress condition. The three dimensional

problem was reduced to a two dimensional one. It is assumed that the soil medium is statistically

homogeneous and its mechanical behavior is governed by the linear elasticity theory. It is also

assumed that the elastic parameters can be modeled as multi-dimensional random fields. A

stochastic finite elements method based on MCS is used to perform the stochastic response of the

strip foundation. Another work considering random material properties is introduced by Noh (2004)

who proposed a new SFEM formulation for plates with random Poisson’s ratio. This formulation

depends on decomposing the constitutive matrix into sub-matrices based on a binomial expansion

correlation. Using the perturbation method, Benoit (2003) has developed a new technique to handle

material and shape uncertainties for elastodynamical problems. As a case study, a rectangular plate

with random material properties subjected to deterministic dynamic loading was solved. Another

example for plate with random flatness defaults involving the simultaneous occurrence of membrane

and bending behavior is treated under the same loading condition. In the context of the meshless

methods, Rahman and Roa (2001) used the perturbation technique to solve two examples of plates.

The first is a cantilever plate under deterministic tension force and the second is a rectangular plate

with a circular hole at its center. In both of these two examples, the plate material is assumed to be

linear elastic random field subjected to deterministic in plane load. Again, Rahman and Xu (2005)

solved the latter example, with the same assumption, using the element free Galerkin’s method

(EFGM). In this work, K-L expansion was employed to expand the stochastic field of the random

material instead of the perturbation technique. 

A more complicated case was considered by Lin (2000). His work aimed to investigate the

reliability of the random laminated composite plate with the consideration of multiple buckling

failure modes corresponding to different random loads. The uncertainties were considered to be in

the material and in the stacking sequences. Numerical examples were presented to demonstrate the

feasibility and the applications of the proposed procedure and investigate the dependence of the

structural lengths corresponding to different failure modes and the random loads on reliability

analysis. 

The present work focuses on the application of the SSFEM to solve stochastic plane-strain as well

as stochastic plate bending problems. The case of stochastic excitation with deterministic operator

and the case of both stochastic excitation and stochastic operator are considered. 

2. Basic concepts 

2.1 Karhunen - loeve expansion 

It is practical to represent the random parameters as random fields (second order stochastic

process) . Where x represents the spatial coordinates in Rn, n is the physical dimension of

the problem. Also, the argument θ indicated the random nature of the corresponding quantity. This

process is defined by its mean and covariance function, , where  represent two

points in the spatial domain. In this work, random fields are discretized using Karhunen-Loeve (K-

L) expansion which is based on a spectral decomposition of the covariance kernel (Ghanem and

Spanos 1991)

α x θ,( )

Cαα x1 x2,( ) x1 x2,
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(1)

where  is the mean of the process,  is a set of uncorrelated random variables,

 are the eigen values and the eigen functions of the covariance kernels, and they can be

obtained by solving the Fredholm integral equation of the second kind

(2)

where D is the spatial domain over which the process is defined. Hence, the random field is

represented by a set of deterministic functions in the spatial variables  multiplied by

random coefficients  which are independent of them. 

2.2 The solution of fredholm integral equation
 

The applicability of K-L expansion is hinged on the solution of the Fredholm second kind integral

equation which is described by Eq. (2). For one dimensional domain, some analytic solutions for

this equation are reported in Van Tree (1968). In case of multidimensional domains or complicated

covariance kernels, other than the reported ones, a numerical technique must be employed to solve

this equation. Using Galerkin’s finite elements method, the eigen functions fk(x) are expanded in

terms of  , which are piecewise polynomials forming a complete set of functions in the Hilbert

space. These functions are multiplied by some real constants ci, and the summation will be

truncated at the Nth term where N is the number of nodes of the element. Then the eigen-functions

can be expressed as

(3)

The error εN due to this approximation is

(4)

According to Galerkin’s method, this error is required to be orthogonal to the approximating space

and this leads to a system of linear equations in the form

(5)

where

(6)

where each of the previous matrices is of the dimension  and defined over the element

domain. Assembling the elements of these matrices according to their connectivity leads to a system

of equation for the whole structure in the form 

α x θ,( ) α x( ) λn fn x( )ξn θ( )
n 1=

∞

∑+=

α x( ) ξn θ( ){ }n 1=

∞

λn fn x( ),

Cαα x1 x2,( )fn x1( ) x1d
D
∫ λn fn x2( )=

fn x( ){ }n 1=

∞

ξn θ( ){ }n 1=

∞

hi x( )

fk x( ) ci

k( )
hi x( )

i 1=

N

∑=

εN ci

k( )
Cov x1 x2,( )hi x2( ) x2d

D
∫ λkhi x2( )–

i 1=

N

∑=

C
e( )

F
e( )

A
e( )

B
e( )

F
e( )

=

C   ij

e( )
Cov

D
∫ x1 x2,( )hi x2( )hj x1( ) x1d x2, B   i j

e( )
d

D
∫ hi x( )hj x( ) xd

D
∫= =

F    ij

e( )
ci

j( )
= , A   ij

e( )
δi jλi=

N N×
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(7)

Eq. (7) is a generalized eigen value problem for matrices (C, B). Solving this problem leads to the

matrices A and , where A is a diagonal matrix in which each element is one of the eigen values

of the covariance kernel, and  is a square matrix in which each column is the nodal values of

eigen function corresponding to the eigen value on the same column on matrix A. 

2.3 Homogeneous chaos expansion

In this expansion Ghanem and Spanos (1990), the solution process can be expressed as a

summation of nonlinear functionals of the set  multiplied by deterministic constants.

These functionals can be expanded in a set of polynomials of second order Gaussian random

variables referred as polynomial chaos

(8)

In which  is the polynomial chaos of order n in the set of variables

(9)

where π(.) denotes the permutation of its arguments, and the sum is over all such permutations and

< . > is the expectation operator. Truncating at the Pth order, Eq. (8) may be reduced to

(10)

where Ci is a set of deterministic coefficients and  is a set of polynomials in the set of

random variables . Also,  have the following orthogonality properties

 for i = 0 or otherwise equals zero, and

 (11)

3. Problem formulation

Considering a structural system defined on a domain D in Rn and its boundary is Γ. This system

has random properties and subjected to external random excitation where both of them can be

modeled as a second order stochastic process. Also, it is assumed to have deterministic boundary

conditions. It is convenient to divide the random operator and the random excitation into two parts,

CF ABF=

F

F

ξn θ( ){ }n 1=

∞

α θ( ) a0Γ0 ai
1
Γ1 ξi

1
θ( )( )

i
1

1=

∞

∑
i
2

1=

∞
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1
i
2
Γ2 ξi

1
θ( ) ξi

2
θ( ),( ) …+

i
1

1=

∞

∑+ +=

Γn ξi
1
θ( ) … ξ, in
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1
θ( ) … ξ, in
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Γp ξi
1
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>

l r 1+=

n

∏ ,  n  is  even
k 1=

r

∏
π i

1
… ip, ,( )

∑
r n=

r even=

p

∑

1–( )r 1–

ξik
< ξil

l r 1+=

n

∏ >,  n  is  odd
k 1=

r

∏
π i

1
… ip, ,( )

∑
r n=

r even=

p

∑

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

α θ( ) CiΨi ξn{ }[ ]
i 0=

P

∑=

Ψi ξn{ }[ ]
ξi

1
θ( ) … ξ, in

θ( ),( ) Ψi ξn{ }[ ]

<Ψi ξn{ }[ ]> 1=

<Ψi ξn{ }[ ]Ψj ξn{ }[ ]> δij<Ψi

2
ξn{ }[ ]>=



286 O.H. Galal, W. El-Tahan, M.A. El-Tawil and A.A. Mahmoud

the first is deterministic and represents the mean value of the process and the second is a stochastic

part with zero mean. The response vector  should satisfy the equation 

and  (12)

where

: is the deterministic part of the operator

: the stochastic part of the operator with zero mean 

: mean excitation function

: a second order stochastic process with zero mean and a covariance function

: represents the stochastic part of the excitation function

: a random operator applied on the boundary

The stochastic term is considered to be a multiplicative factor, so the operator can be represented as 

 in which 

: a stochastic process with zero mean and a covariance function 

: deterministic operator. 

This system can be represented as 

(13)

in which 

M : The number of terms taken from K-L expansion

(14)

 which λn appear in Eq. (9) are the eigen pairs of the covariance kernels, and they

can be obtained by solving the following two integral equations, respectively 

(15)

(16)

 

4. The system solutions 

4.1 The system solution using neumann expansion 

The solution of the described system in Eq. (8) using Neumann expansion was given in Galal

u x;θ( )

L x( ) Φ α x;θ( ) x,( )+[ ]u x;θ( ) f x( ) β x;θ( )+=

Λ x;θ( )u x;θ( ) 0, x Γ∈=

L x( )
Φ α x;θ( ) x,( )
f x( )
β x;θ( )
Cββ x1 x2,( )
Λ x;θ( )

Φ α x;θ( ) x,( ) α x;θ( )R x( )=

α x;θ( ) Cαα x1 x2,( )
R x( )

Kij ξnK n( )ij
n 1=

M

∑+ u f j ξn f n( )j
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M

∑+=

Kij L x( )gi[ ]gj x,  K n( )ij
d

D
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D
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D
∫=d

D
∫=

an x( ) λn bn x( ), ,

Cαα x1;x2( )an x1( ) x1d
D
∫ λnan x2( )=
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D
∫ γnbn x2( )=
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(2005) as 

 (17)

with a convergence condition as 

where

(18)

in which 

(19)

The mean value of the structure response is given as

 

(20)

in which, 

The covariance matrix can be evaluated using the following

or (21)

where
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The case of a structure having a deterministic operator and exposed to a stochastic excitation

could be viewed as a sub case from the pervious case and hence  

(23)

with a mean value

(24)

and covariance matrix

(25)

4.2 The system solution using Homogeneous Chaos (H.C.) expansion

Using H. C. expansion, the response function is represented as

(26)

where di is a set of deterministic coefficients, and  is a set of polynomials that have M-

dimensions and order p. Substituting Eq. (26) into the described system in Eq. (13), leads to

(27)

where

, which is unity for q = 0 and zero otherwise. Also,

 

The values of  and anp can be determined and tabulated. Solving the system of

equations in Eq. (27), leads to get . Substituting into Eq. (26), One obtains

the density functions of the response vector. The first two statistical moments of the response

function can be obtained by 

(28)
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5. Illustrative examples

Reinforced concrete was chosen as the structure material in the two examples, since concrete

material properties are uncertain and can be randomly spread over the structure (Lawanwisut et al.

2003, Pukl et al. 2003, Vouwenvelder 2004).

5.1 Illustrative Example I: Stochastic Plane – strain Problem

5.1.1 Problem description 

Let us consider a reinforced concrete culvert with 6.0 m base width and 2.6 m in height as shown

in Fig. 1. This culvert is exposed to vertical loads Fv which can be expressed as Fv =

5250(1 + ) kN/m’. Considering a typical 1.0 m of the normal direction of the culvert, it

can be modeled as a plane strain structure. Poisson’s ratio is considered to be 0.20 while the Young’s

modulus (EA) is considered to be random in the form: , with

(kN/m2).m2.  is assumed to be a second-order Gaussian stochastic

process with exponential covariance model given in Ghanem and Spanos (1991). The standard

deviation (S.D.) is assumed to be 0.60 and the correlation lengths are 3.0 m in both directions. 

5.1.2 Results

Since there is no available closed-form solution for Fredholm integral for the present case, the

numerical technique described in section 3 is employed. Dividing one half of the structure into 21

nodes and 12 finite elements, 21 eigen-values are obtained as 

{0.8791, 0.2290, 0.0709, 0.0496, 0.0317, 0.0275, 0.0218, 0.0132, 0.0125, 0.0079,

0.0071, 0.0053, 0.0038, 0.0032, 0.0029, 0.0028, 0.0023, 0.0021, 0.0018, 0.0013, 0.0008}

Each eigen-function will be obtained through its nodal values at the mesh.

α x y;θ,( )

EA x y θ, ,( ) EA x y,( ) 1 α x y;θ,( )+( )=

EA x y,( ) 2.2 10
7×= α x y;θ,( )

 Fig. 1 The concrete culvert
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Fig. 2 The Mean of vertical displacements for points
of side DF in case of stochastic excitation
only

Fig. 3 The standard deviation of vertical displace-
ments for points of side DF in case of
stochastic excitation only

Fig. 4 The Mean of vertical displacements for points
of side DF in case of stochastic operator and
stochastic excitation 

Fig. 5 The standard deviation of vertical displace-
ments for points of side DF in case of
stochastic operator and stochastic excitation 

Fig. 6 The probability distribution function of vertical
displacement at point E in case of stochastic
excitation only

Fig. 7 The probability distribution function of the
vertical displacement at point E in case of
stochastic excitation and stochastic rigidity
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5.1.3 Discussion of the results
The previous plots showed the mean and the S.D. of vertical displacements of different points at

the culvert upper surface. This exhibition focuses on the case of stochastic excitation (force) with

deterministic operator (rigidity) and the case where both operator and excitation are stochastic. In

addition, the p.d.f.s of vertical displacement at point E was plotted using H.C. expansion. The main

objective of the present problem is to show the ability of the solution methods in dealing with

arbitrary shape domains. The most notable comment here is that H.C. expansion has better

convergence than Neumann expansion especially for S.D. evaluation. The difference between the

results of the two methods is relatively large and can not be neglected. This is due to the successive

amount of approximations that made in evaluating the eigen-pairs numerically and the usage of

numerical integrations in the evaluation of the stiffness and excitation matrices. Considering these

approximations, the convergence of H.C. expansion becomes more evident.

5.2 Illustrative Example II : Stochastic plate bending problem

The current case aims to study plate bending problem that have stochastic Young’s modulus and

exposed to stochastic transverse loading. 

5.2.1 Problem description 

Assume a linear elastic isotropic square plate of side length L = 4.0 m, thickness = 0.15 m and

simply supported at each side. This plate is fully loaded transversely by a uniformly distributed

stochastic load which can be expressed as: q = 13.25 (1 + ) kN. Young’s modulus is also

assumed to be random in the form of: , where

 and  are second-order stochastic processes. Poisson’s ratio is assumed to be

deterministic and assumed as 0.2.  is assumed to be a Gaussian process with exponential

covariance function in the form 

(27)

β x y θ, ,( )
E x y θ, ,( ) 2.2 10

7
1 α x y θ, ,( )+( )× Kn/m

2
=

α x y θ, ,( ) β x y θ, ,( )
α x y θ, ,( )

Cα x1 y1;x2 y2, ,( ) σm

2
e

x
1

x
2

–

lx1
-------------------

y
1

y
2

–

ly1
-------------------–

=

Fig. 8 FE mesh and B.C.s of the plate
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The excitation function is also assumed to be Gaussian with triangular covariance function in the

following from 

(28)

The values of  are initially assumed to be 1.0 each and 2.0 for each of the following

parameters lx1, ly1, lx2 and ly2. 

Cβ x1 y1;x2 y2, ,( )

σe

2
1

x1 x2–

lx2

------------------–⎝ ⎠
⎛ ⎞ 1

y1 y2–

ly2

------------------–⎝ ⎠
⎛ ⎞ if x1 x2– lx2≤

and y1 y2– ly2≤

0                                       otherwise           ⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

σm

2
σe

2,

Fig. 9 The mean of vertical deflection of sec. S-S in
case of stochastic excitation only 

Fig. 10 The standard deviation of vertical deflection
of sec. S-S in case of stochastic excitation
only

Fig. 11 The mean of vertical deflection of sec. S-S
in case of stochastic operator and stochastic
excitation 

Fig. 12 The standard deviation of vertical deflection
of sec. S-S  in case of stochastic operator
and stochastic excitation
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5.2.2 Results

With assumptions mentioned above, the mean and the standard deviation of section S-S are

plotted in case of stochastic excitation with deterministic operator and in case of both the operator

and excitation are stochastic. Also, the p.d.f. of the plate deflection at point G (max. deflection) can

be plotted in these two cases using different methods as follows. 

5.2.3 Discussion of the results 

In case of stochastic excitation only, the mean values of the deflection in Fig. 9 are typical using

different solution methods, this is due to the fact that these mean values are the solution under the

deterministic part of the load whatever the used method is. Hence there is no approximation for the

solution. The standard deviations of the deflection in this case are changing slightly using the

different methods as shown in Fig. 9.

 As expected, the best approximation is obtained using four dimensional H.C. with order two.

Also, the probability distribution function is nearly Gaussian due to the Gaussian nature of the

excitation function with the linearity of the system as shown in Fig. 13. In case of both stochastic

excitation and operator, both of the mean value and the standard deviations are changing slightly

according to the method used, see Figs. 11, 12. This is due to the small values of the standard

deviations . It is expected that a notable difference will be obtained using higher values for

both . 

6. Conclusions 

In this research, linear elastic isotropic plane strain and plate structures that have stochasticity in

both the operator and the excitation are studied. This is the most general case of stochasticity can be

considered for structural systems. The analysis utilizes the spectral stochastic finite element

(SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions.

Both of random excitation and random operator fields are considered to be modeled as second order

σm σe,
σm σe,

Fig. 13 The probability distribution function of
vertical deflection at point G in case of
stochastic excitation only

Fig. 14 The probability distribution function of
vertical deflection at point G in case of
stochastic operator and stochastic excitation
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stochastic processes. The formulations are obtained for the system solution of two dimensional

problems of plane strain and plate bending structures under the effect of stochastic loading and

relevant rigidity using Neumann and Homogeneous Chaos expansions. Two finite element programs

were developed to incorporate such formulations. Two illustrative examples are introduced: the first

is a reinforced concrete culvert with stochastic in-plane rigidity and subjected to a stochastic load.

The culvert is modeled as a nonrectangular plane strain problem since it is subjected to in-plane

loading. The second example considers a simply supported square reinforced concrete slab subjected

to uniform transverse loading. The slab modeling incorporates a stochastic flexural rigidity and an

stochastic applied load. In each of the two examples, the first two statistical moments are evaluated

using both of the two mentioned expansions. The probability density function of the structure

response of each problem is obtained using Homogeneous Chaos expansion. 
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