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Cubic normal distribution and its significance in 
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Abstract. Information on the distribution of the basic random variable is essential for the accurate
analysis of structural reliability. The usual method for determining the distributions is to fit a candidate
distribution to the histogram of available statistical data of the variable and perform approximate
goodness-of-fit tests. Generally, such candidate distribution would have parameters that may be evaluated
from the statistical moments of the statistical data. In the present paper, a cubic normal distribution,
whose parameters are determined using the first four moments of available sample data, is investigated. A
parameter table based on the first four moments, which simplifies parameter estimation, is given. The
simplicity, generality, flexibility and advantages of this distribution in statistical data analysis and its
significance in structural reliability evaluation are discussed. Numerical examples are presented to
demonstrate these advantages.

Keywords: structural reliability; probability distributions; statistical moments; data fitting, fourth-
moment reliability index.

1. Introduction

In structural reliability evaluation, basic random variables representing uncertain quantities, such

as loads, environmental factors, material properties, structural dimensions, and variables introduced

to account for modeling and prediction errors, are assumed to have known cumulative distribution

functions (CDFs) or probability density functions (PDFs). Determination of the probability

distributions of these basic random variables is essential for accurate evaluation of the reliability of

a structure. 

Usually, the method for determining the required distribution is to fit the histogram of the

statistical data of a variable with a candidate distribution (Ang and Tang 1975), and apply statistical

goodness-of-fit tests. More recently, the idea of determining a distribution as a weighted sum of

common “basis” distribution was introduced (Lind and Chen 1986, Lind and Nowak 1987).

Generally, a sum of weighted functions or positive kernels subject to some constraints can be used

to approximate a distribution. A method of estimating complex distributions using the B-spline

functions has been proposed, and the method is useful to identify an appropriate PDF for a
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continuous random variable directly from a sample without using any prior knowledge of the

distribution form (Zong and Lam 1998, Zong and Lam 2000, Zong and Lam 2001). The Bayesian

parameter estimation method, which provides a framework for processing of information and

analysis uncertainties, is proposed by Der Kiureghian (2001) to derive the posterior distribution of

model parameters reflecting epistemic uncertainties. Other approaches can be found in recent reports

(Xie et al. 2002, Nadarajah and Kotz 2006, Schueller 2007).

It has been reported (Zhao and Ang 2002) that the two-parameter (2P) distributions such as the

normal, lognormal, Gumbel, and Weibull distributions may not be appropriate when the skewness of

the statistical data is important and must be reflected in the distribution. Three-parameter (3P)

distributions such as 3P lognormal (Tichy 1993) and 3P Gamma distribution (Zhao and Ang 2002)

have been suggested as the candidate distribution. The 3P distributions, which can effectively reflect

the information of skewness as well as the mean value and standard deviation of statistical data,

have more flexibility for fitting statistical data of basic random variables, and can more effectively

fit the histograms of available data than 2P distributions.

If the 3P distributions are selected as the candidate distribution and the three parameters are

determined, the distribution form and higher-order moments, such as kurtosis, generally can be

evaluated. However, because the kurtosis of the 3P distributions is dependent on the skewness, it

may not be consistent with those of the available data. This is illustrated with the following: The

two histograms shown in Fig. 1 represent the observed variability in the properties of H-shape

structure steel (Ono et al. 1986). Fig. 1(a) shows the histogram of the thickness, in which the

number of the data is 885 and the first four moments of the data are obtained as the mean value μ =

0.986, the standard deviation σ = 0.0457, the skewness α3 = 0.883 and the kurtosis α4 = 5.991.

Fig. 1(b) shows the histogram of the ultimate stress, in which the number of the data is 1932 and

the first four moments of the data are μ = 4.549, σ = 0.317, α3 = 0.153, and α4 = 6.037. The

kurtosis of the 3P Gamma distribution that has the same mean value, standard deviation, and

skewness of the data in Fig. 1(a) and Fig. 1(b) can be obtained as 4.17 and 3.035, respectively.

Apparently, the kurtosis of the 3P distributions is too small to match those of the data for the two

illustrated cases.

This is to say, the 3P distributions are not flexible enough to reflect the kurtosis of statistical data

of a random variable, and distributions that can be determined by effectively using the information

Fig. 1 Two histogram examples and data fitting results of practical data
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of kurtosis as well as the mean value, standard deviation, and skewness of the statistical data are

required.

For the above purpose, four-parameter (4P) distributions are required, such as Lambda distribution

(Ramberg and Schmeiser 1974), the Pearson, Johnson, and the Burr systems (Stuart and Ord 1987).

However, the Pearson and Johnson systems incorporate a number of functional forms, the Burr

system does not include symmetric distributions, and the Lambda distribution does not include the

normal distribution.

In the present paper, the cubic normal distribution is investigated, in which the parameters can be

determined in terms of the mean value, standard deviation, the skewness, and the kurtosis of the

sample data. A table based on the first four moments, which simplifies parameter estimation, is

given. From the investigation of this distribution, one can see that this distribution, having

characteristics of simplicity, generality and flexibility, can be applied as a candidate distribution in

fitting statistical data of basic random variables and can be used to represent or approximate the most

commonly used two- and three-parameter distributions. A fourth-moment reliability index based on

this distribution is derived and its application in structural reliability assessment is discussed.

2. The cubic normal distribution

2.1 Definition of the distribution 

The distribution is defined on the base of the following polynomial normal transformation

(Fleishman 1978, Hong and Lind 1996, Zhao et al. 2002, Chen and Tung 2003)

(1a)

The CDF and PDF corresponding to Eq. (1a) are expressed as 

(1b)

(1c)

in which F, f, μ, and σ are the CDF, PDF, mean value, and standard deviation of X, respectively; Φ

and φ are the CDF and PDF of a standard normal random variable U; and a1, a2, a3, and a4 are

deterministic coefficients. Since the distribution is defined by the third order polynomial of standard

normal random variables, hereafter, we call it cubic normal distribution.

Apparently, μ, σ, a1, a2, a3, and a4 are the parameters of the distribution, and the method for

estimating the parameters will be discussed in the next section. 

2.2 Parameter estimation and table construction

In the present paper, the approach for estimating the parameters is based on matching the first

four product moments of the data. This will be illustrated in detail as follows.

For a random variable, if the first four moments (mean value μ, standard deviation σ, skewness
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α3, and kurtosis α4) are known, the parameters a1, a2, a3, and a4 are obtained by making the first

four central moment of SU(U) equal to those of Xs = (X − μ)/σ with the aid of Eq. (1a), i.e. 

(2a)

 (2b)

(2c)

(2d)

Simplifying Eq. (2), the following equations of parameters a2 and a4 can be obtained

(3a)

 (3b)

where

(4a)

 (4b)

 (4c)

(4d)

Since the values α3 and α4 are known, the parameters a2 and a4 can be obtained form Eq. (3),

which can be solved by a proper nonlinear equations solver, such as the “FindRoot” function in

“Mathematica” software (Wolfram 1999). After the parameters a2 and a4 have been determined, the

parameters a1 and a3 can be readily given as

 (5)

From the above description, one can clearly see that the four parameters a1, a2, a3, and a4 are

functions of α3 and α4, but do not dependent upon μ and σ. For convenience, a table used to

approximate the four parameters of a1, a2, a3, and a4 is given (see Table A). The values of a1, a2, a3,

and a4 are given in Table A for selected values of α3 and α4. If the values of α3 and α4 are known,

the four parameters a1, a2, a3, and a4 can be determined from Table A using the α3 and α4 as entry

points values. One simply picks the values of a1, a2, a3, and a4 for which the α3 and α4 are closest

to the desired values. If α3 is negative, one uses its absolute value, and after finding the values of

a1, a2, a3, and a4, changes the sign of a1 and a3 (The density with a skewness of −α3 is the mirror

image of the density with a skewness of α3). For relatively small values of α3 and α4, empirical

equations for each polynomial coefficient have been developed (Zhao and Lu 2007). In particular, if

α3 = 0 and α4 = 3, then the parameters are obtained as a1 = a3 = a4 = 0, a2 = 1, and Eq. (1a) reduces

to (X − μ)/σ = U, and the corresponding distribution is the normal distribution. 
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Table A The four parameters of a1, a2, a3 and a4 for given values of skewness (α3) and kurtosis (α4)

α3=0.00 α3=0.10 α3=0.20 α3=0.30

α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4

2.0 0.0 1.2210 −0.0802 2.0 −0.0280 1.2268 −0.0828 2.0 −0.0590 1.2459 −0.0917 2.2 −0.0766 1.1836 −0.0678

2.2 0.0 1.1478 −0.0520 2.2 −0.0233 1.1514 −0.0535 2.2 −0.0481 1.1627 −0.0585 2.4 −0.0660 1.1225 −0.0443

2.4 0.0 1.0972 −0.0335 2.4 −0.0206 1.0998 −0.0346 2.4 −0.0422 1.1079 −0.0380 2.6 −0.0595 1.0778 −0.0279

2.6 0.0 1.0585 −0.0199 2.6 −0.0189 1.0605 −0.0207 2.6 −0.0385 1.0668 −0.0233 2.8 −0.0550 1.0425 −0.0154

2.8 0.0 1.0269 −0.0090 2.8 −0.0177 1.0285 −0.0097 2.8 −0.0358 1.0336 −0.0118 3.0 −0.0517 1.0131 −0.0053

3.0 0.0 1.0000 0.0000 3.0 −0.0167 1.0014 −0.0006 3.0 −0.0338 1.0057 −0.0023 3.2 −0.0491 0.9878 0.0033

3.2 0.0 0.9765 0.0078 3.2 −0.0160 0.9777 0.0073 3.2 −0.0322 0.9814 0.0058 3.4 −0.0470 0.9654 0.0107

3.4 0.0 0.9555 0.0146 3.4 −0.0153 0.9566 0.0142 3.4 −0.0309 0.9599 0.0129 3.6 −0.0452 0.9454 0.0172

3.6 0.0 0.9365 0.0207 3.6 −0.0148 0.9375 0.0203 3.6 −0.0298 0.9404 0.0192 3.8 −0.0437 0.9271 0.0231

3.8 0.0 0.9191 0.0263 3.8 −0.0143 0.9200 0.0259 3.8 −0.0288 0.9226 0.0249 4.0 −0.0424 0.9102 0.0285

4.0 0.0 0.9030 0.0314 4.0 −0.0139 0.9038 0.0310 4.0 −0.0280 0.9062 0.0301 4.2 −0.0413 0.8946 0.0335

4.2 0.0 0.8879 0.0361 4.2 −0.0136 0.8886 0.0358 4.2 −0.0273 0.8908 0.0349 4.4 −0.0402 0.8799 0.0380

4.4 0.0 0.8738 0.0404 4.4 −0.0132 0.8744 0.0402 4.4 −0.0266 0.8765 0.0394 4.6 −0.0393 0.8661 0.0423

4.6 0.0 0.8604 0.0445 4.6 −0.0129 0.8610 0.0443 4.6 −0.0260 0.8629 0.0436 4.8 −0.0384 0.8531 0.0463

4.8 0.0 0.8477 0.0484 4.8 −0.0127 0.8483 0.0482 4.8 −0.0255 0.8501 0.0475 5.0 −0.0377 0.8407 0.0501

5.0 0.0 0.8357 0.0521 5.0 −0.0124 0.8362 0.0518 5.0 −0.0250 0.8379 0.0512 5.2 −0.0370 0.8289 0.0537

5.2 0.0 0.8241 0.0555 5.2 −0.0122 0.8247 0.0553 5.2 −0.0245 0.8262 0.0547 5.4 −0.0363 0.8176 0.0571

5.4 0.0 0.8131 0.0588 5.4 −0.0120 0.8136 0.0586 5.4 −0.0241 0.8151 0.0581 5.6 −0.0357 0.8067 0.0603

5.6 0.0 0.8025 0.0620 5.6 −0.0118 0.8029 0.0618 5.6 −0.0237 0.8043 0.0613 5.8 −0.0351 0.7963 0.0634

5.8 0.0 0.7922 0.0650 5.8 −0.0116 0.7927 0.0648 5.8 −0.0233 0.7940 0.0643 6.0 −0.0346 0.7862 0.0664

6.0 0.0 0.7824 0.0679 6.0 −0.0114 0.7828 0.0677 6.0 −0.0230 0.7841 0.0672 6.2 −0.0341 0.7765 0.0693

6.2 0.0 0.7728 0.0707 6.2 −0.0113 0.7732 0.0705 6.2 −0.0226 0.7744 0.0701 6.4 −0.0336 0.7671 0.0720

6.4 0.0 0.7636 0.0734 6.4 −0.0111 0.7639 0.0732 6.4 −0.0223 0.7651 0.0728 6.6 −0.0332 0.7580 0.0747

6.6 0.0 0.7546 0.0760 6.6 −0.0110 0.7550 0.0758 6.6 −0.0220 0.7561 0.0754 6.8 −0.0328 0.7491 0.0772

6.8 0.0 0.7459 0.0785 6.8 −0.0109 0.7462 0.0784 6.8 −0.0218 0.7473 0.0779 7.0 −0.0324 0.7405 0.0797

7.0 0.0 0.7374 0.0809 7.0 −0.0107 0.7377 0.0808 7.0 −0.0215 0.7388 0.0804 7.2 −0.0320 0.7322 0.0821

7.2 0.0 0.7291 0.0833 7.2 −0.0106 0.7295 0.0832 7.2 −0.0213 0.7305 0.0828 7.4 −0.0316 0.7240 0.0844

7.4 0.0 0.7211 0.0856 7.4 −0.0105 0.7214 0.0854 7.4 −0.0210 0.7224 0.0851 7.6 −0.0313 0.7160 0.0867

7.6 0.0 0.7132 0.0878 7.6 −0.0104 0.7135 0.0877 7.6 −0.0208 0.7145 0.0873 7.8 −0.0310 0.7083 0.0889

7.8 0.0 0.7055 0.0900 7.8 −0.0103 0.7058 0.0899 7.8 −0.0206 0.7067 0.0895 8.0 −0.0307 0.7007 0.0911

8.0 0.0 0.6980 0.0921 8.0 −0.0102 0.6983 0.0920 8.0 −0.0204 0.6992 0.0916 8.2 −0.0304 0.6932 0.0931

8.2 0.0 0.6907 0.0941 8.2 −0.0101 0.6909 0.0940 8.2 −0.0202 0.6918 0.0937 8.4 −0.0301 0.6860 0.0952

8.4 0.0 0.6835 0.0961 8.4 −0.0100 0.6837 0.0960 8.4 −0.0200 0.6846 0.0957 8.6 −0.0298 0.6788 0.0972

8.6 0.0 0.6764 0.0981 8.6 −0.0099 0.6767 0.0980 8.6 −0.0198 0.6775 0.0977 8.8 −0.0295 0.6719 0.0991

8.8 0.0 0.6695 0.1000 8.8 −0.0098 0.6697 0.0999 8.8 −0.0196 0.6705 0.0996 9.0 −0.0293 0.6650 0.1010

9.0 0.0 0.6627 0.1019 9.0 −0.0097 0.6629 0.1018 9.0 −0.0195 0.6637 0.1015 9.2 −0.0290 0.6583 0.1029

α3=0.40 α3=0.50 α3=0.60 α3=0.70

α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4

2.2 −0.1136 1.2192 −0.0848 2.4 −0.1311 1.1811 −0.0714 2.6 −0.1512 1.1576 −0.0645 2.6 −0.2462 1.2756 −0.1300

2.4 −0.0941 1.1455 −0.0545 2.6 −0.1120 1.1202 −0.0465 2.8 −0.1310 1.1032 −0.0420 2.8 −0.1744 1.1436 −0.0622

2.6 −0.0832 1.0949 −0.0352 2.8 −0.1005 1.0755 −0.0294 3.0 −0.1183 1.0619 −0.0260 3.0 −0.1517 1.0926 −0.0403

2.8 −0.0761 1.0560 −0.0210 3.0 −0.0926 1.0400 −0.0165 3.2 −0.1095 1.0284 −0.0137 3.2 −0.1372 1.0530 −0.0246

3.0 −0.0710 1.0242 −0.0099 3.2 −0.0868 1.0104 −0.0060 3.4 −0.1029 1.0002 −0.0036 3.4 −0.1271 1.0206 −0.0125

3.2 −0.0671 0.9972 −0.0006 3.4 −0.0824 0.9850 0.0027 3.6 −0.0978 0.9757 0.0049 3.6 −0.1196 0.9931 −0.0025

3.4 −0.0640 0.9736 0.0074 3.6 −0.0787 0.9625 0.0103 3.8 −0.0936 0.9540 0.0122 3.8 −0.1136 0.9692 0.0059

3.6 −0.0614 0.9526 0.0143 3.8 −0.0757 0.9424 0.0170 4.0 −0.0901 0.9345 0.0188 4.0 −0.1088 0.9479 0.0132

3.8 −0.0592 0.9336 0.0205 4.0 −0.0731 0.9241 0.0230 4.2 −0.0871 0.9166 0.0246 4.2 −0.1047 0.9286 0.0197

4.0 −0.0574 0.9161 0.0262 4.2 −0.0709 0.9072 0.0284 4.4 −0.0844 0.9002 0.0300 4.4 −0.1012 0.9110 0.0256

4.2 −0.0557 0.9000 0.0313 4.4 −0.0689 0.8916 0.0334 4.6 −0.0821 0.8848 0.0349 4.6 −0.0982 0.8948 0.0309

4.4 −0.0543 0.8849 0.0361 4.6 −0.0672 0.8769 0.0381 4.8 −0.0801 0.8705 0.0395 4.8 −0.0955 0.8796 0.0358

4.6 −0.0530 0.8708 0.0405 4.8 −0.0656 0.8631 0.0424 5.0 −0.0782 0.8569 0.0437 5.0 −0.0932 0.8654 0.0403

4.8 −0.0518 0.8574 0.0446 5.0 −0.0642 0.8501 0.0464 5.2 −0.0766 0.8441 0.0477 5.2 −0.0910 0.8521 0.0445

5.0 −0.0507 0.8447 0.0485 5.2 −0.0629 0.8377 0.0502 5.4 −0.0750 0.8319 0.0515 5.4 −0.0891 0.8394 0.0485
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Table A Continued

α3=0.40 α3=0.50 α3=0.60 α3=0.70

α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4

5.2 −0.0497 0.8327 0.0522 5.4 −0.0617 0.8259 0.0538 5.6 −0.0736 0.8203 0.0550 5.6 −0.0873 0.8273 0.0523

5.4 −0.0488 0.8212 0.0557 5.6 −0.0606 0.8146 0.0573 5.8 −0.0723 0.8092 0.0584 5.8 −0.0857 0.8158 0.0558

5.6 −0.0480 0.8101 0.0590 5.8 −0.0595 0.8038 0.0605 6.0 −0.0711 0.7985 0.0616 6.0 −0.0842 0.8048 0.0592

5.8 −0.0472 0.7995 0.0622 6.0 −0.0586 0.7934 0.0636 6.2 −0.0700 0.7882 0.0647 6.2 −0.0828 0.7942 0.0624

6.0 −0.0465 0.7893 0.0652 6.2 −0.0577 0.7833 0.0666 6.4 −0.0690 0.7783 0.0677 6.4 −0.0815 0.7840 0.0655

6.2 −0.0458 0.7795 0.0681 6.4 −0.0569 0.7736 0.0695 6.6 −0.0680 0.7687 0.0705 6.6 −0.0803 0.7741 0.0684

6.4 −0.0451 0.7699 0.0709 6.6 −0.0561 0.7643 0.0723 6.8 −0.0670 0.7594 0.0733 6.8 −0.0791 0.7646 0.0712

6.6 −0.0445 0.7607 0.0736 6.8 −0.0553 0.7552 0.0749 7.0 −0.0662 0.7504 0.0759 7.0 −0.0780 0.7554 0.0740

6.8 −0.0439 0.7517 0.0762 7.0 −0.0546 0.7463 0.0775 7.2 −0.0653 0.7417 0.0784 7.2 −0.0770 0.7465 0.0766

7.0 −0.0434 0.7430 0.0788 7.2 −0.0540 0.7377 0.0800 7.4 −0.0645 0.7332 0.0809 7.4 −0.0760 0.7378 0.0791

7.2 −0.0429 0.7346 0.0812 7.4 −0.0533 0.7294 0.0824 7.6 −0.0638 0.7249 0.0833 7.6 −0.0751 0.7293 0.0816

7.4 −0.0424 0.7263 0.0836 7.6 −0.0527 0.7212 0.0847 7.8 −0.0631 0.7168 0.0856 7.8 −0.0743 0.7211 0.0840

7.6 −0.0419 0.7183 0.0858 7.8 −0.0522 0.7133 0.0870 8.0 −0.0624 0.7090 0.0879 8.0 −0.0734 0.7131 0.0863

7.8 −0.0415 0.7104 0.0881 8.0 −0.0516 0.7055 0.0892 8.2 −0.0617 0.7013 0.0901 8.2 −0.0726 0.7053 0.0885

8.0 −0.0411 0.7028 0.0902 8.2 −0.0511 0.6980 0.0913 8.4 −0.0611 0.6937 0.0922 8.4 −0.0719 0.6976 0.0907

8.2 −0.0406 0.6953 0.0924 8.4 −0.0506 0.6905 0.0934 8.6 −0.0605 0.6864 0.0943 8.6 −0.0712 0.6902 0.0928

8.4 −0.0403 0.6880 0.0944 8.6 −0.0501 0.6833 0.0955 8.8 −0.0599 0.6792 0.0963 8.8 −0.0705 0.6828 0.0949

8.6 −0.0399 0.6808 0.0964 8.8 −0.0496 0.6762 0.0975 9.0 −0.0594 0.6721 0.0983 9.0 −0.0698 0.6757 0.0969

8.8 −0.0395 0.6737 0.0984 9.0 −0.0492 0.6692 0.0994 9.2 −0.0589 0.6652 0.1002 9.2 −0.0692 0.6687 0.0989

9.0 −0.0392 0.6668 0.1003 9.2 −0.0488 0.6624 0.1013 9.4 −0.0584 0.6584 0.1021 9.4 −0.0685 0.6618 0.1008

9.2 −0.0388 0.6600 0.1022 9.4 −0.0483 0.6556 0.1032 9.6 −0.0579 0.6518 0.1039 9.6 −0.0680 0.6550 0.1027

α3=0.80 α3=0.9 α3=1.0 α3=1.2

α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4

3.0 −0.2021 1.1369 −0.0638 3.2 −0.2380 1.1372 −0.0705 3.6 −0.2375 1.0904 −0.0524 4.2 −0.2960 1.0670 −0.0565

3.2 −0.1750 1.0872 −0.0412 3.4 −0.2027 1.0866 −0.0450 3.8 −0.2096 1.0507 −0.0330 4.4 −0.2578 1.0322 −0.0350

3.4 −0.1580 1.0483 −0.0252 3.6 −0.1815 1.0476 −0.0278 4.0 −0.1910 1.0175 −0.0186 4.6 −0.2333 1.0016 −0.0196

3.6 −0.1461 1.0162 −0.0128 3.8 −0.1670 1.0152 −0.0147 4.2 −0.1776 0.9891 −0.0071 4.8 −0.2158 0.9746 −0.0075

3.8 −0.1372 0.9889 −0.0026 4.0 −0.1563 0.9875 −0.0041 4.4 −0.1674 0.9643 0.0024 5.0 −0.2027 0.9506 0.0025

4.0 −0.1302 0.9651 0.0059 4.2 −0.1480 0.9634 0.0048 4.6 −0.1594 0.9424 0.0105 5.2 −0.1924 0.9293 0.0109

4.2 −0.1246 0.9439 0.0133 4.4 −0.1413 0.9420 0.0124 4.8 −0.1528 0.9227 0.0176 5.4 −0.1841 0.9100 0.0182

4.4 −0.1198 0.9247 0.0199 4.6 −0.1358 0.9227 0.0192 5.0 −0.1472 0.9048 0.0239 5.6 −0.1771 0.8923 0.0246

4.6 −0.1158 0.9072 0.0258 4.8 −0.1311 0.9051 0.0252 5.2 −0.1424 0.8882 0.0295 5.8 −0.1712 0.8761 0.0304

4.8 −0.1123 0.8910 0.0311 5.0 −0.1270 0.8888 0.0307 5.4 −0.1383 0.8729 0.0347 6.0 −0.1661 0.8610 0.0357

5.0 −0.1093 0.8759 0.0360 5.2 −0.1234 0.8737 0.0357 5.6 −0.1346 0.8585 0.0395 6.2 −0.1616 0.8469 0.0405

5.2 −0.1065 0.8618 0.0406 5.4 −0.1203 0.8595 0.0403 5.8 −0.1313 0.8450 0.0439 6.4 −0.1576 0.8335 0.0450

5.4 −0.1040 0.8484 0.0448 5.6 −0.1174 0.8461 0.0446 6.0 −0.1284 0.8322 0.0480 6.6 −0.1540 0.8210 0.0492

5.6 −0.1018 0.8358 0.0488 5.8 −0.1149 0.8334 0.0487 6.2 −0.1257 0.8201 0.0519 6.8 −0.1507 0.8090 0.0531

5.8 −0.0998 0.8238 0.0526 6.0 −0.1125 0.8214 0.0525 6.4 −0.1233 0.8085 0.0556 7.0 −0.1477 0.7976 0.0568

6.0 −0.0979 0.8123 0.0562 6.2 −0.1104 0.8099 0.0561 6.6 −0.1210 0.7974 0.0590 7.2 −0.1450 0.7867 0.0603

6.2 −0.0962 0.8013 0.0595 6.4 −0.1084 0.7989 0.0595 6.8 −0.1189 0.7868 0.0624 7.4 −0.1424 0.7762 0.0636

6.4 −0.0946 0.7908 0.0628 6.6 −0.1066 0.7883 0.0627 7.0 −0.1170 0.7766 0.0655 7.6 −0.1401 0.7661 0.0668

6.6 −0.0931 0.7806 0.0658 6.8 −0.1049 0.7782 0.0658 7.2 −0.1152 0.7667 0.0685 7.8 −0.1379 0.7564 0.0698

6.8 −0.0917 0.7708 0.0688 7.0 −0.1033 0.7683 0.0688 7.4 −0.1135 0.7572 0.0714 8.0 −0.1359 0.7470 0.0727

7.0 −0.090 0.7613 0.0716 7.2 −0.1018 0.7589 0.0717 7.6 −0.1119 0.7480 0.0742 8.2 −0.1340 0.7379 0.0755

7.2 −0.0891 0.7521 0.0743 7.4 −0.1004 0.7497 0.0744 7.8 −0.1104 0.7391 0.0769 8.4 −0.1322 0.7291 0.0781

7.4 −0.0880 0.7432 0.0770 7.6 −0.0991 0.7408 0.0771 8.0 −0.1090 0.7304 0.0794 8.6 −0.1304 0.7206 0.0807

7.6 −0.0869 0.7346 0.0795 7.8 −0.0978 0.7321 0.0796 8.2 −0.1076 0.7220 0.0819 8.8 −0.1288 0.7122 0.0832

7.8 −0.0858 0.7262 0.0820 8.0 −0.0966 0.7237 0.0821 8.4 −0.1064 0.7138 0.0843 9.0 −0.1273 0.7041 0.0856

8.0 −0.0848 0.7180 0.0844 8.2 −0.0955 0.7155 0.0845 8.6 −0.1051 0.7058 0.0867 9.2 −0.1259 0.6962 0.0880

8.2 −0.0839 0.7100 0.0867 8.4 −0.0944 0.7076 0.0868 8.8 −0.1040 0.6980 0.0890 9.4 −0.1245 0.6885 0.0902

8.4 −0.0830 0.7022 0.0889 8.6 −0.0934 0.6998 0.0891 9.0 −0.1029 0.6903 0.0912 9.6 −0.1231 0.6810 0.0925

8.6 −0.0821 0.6946 0.0911 8.8 −0.0924 0.6922 0.0912 9.2 −0.1018 0.6829 0.0933 9.8 −0.1219 0.6736 0.0946

8.8 −0.0813 0.6871 0.0932 9.0 −0.0915 0.6847 0.0934 9.4 −0.1008 0.6756 0.0954 10.0 −0.1207 0.6664 0.0967

9.0 −0.0805 0.6799 0.0953 9.2 −0.0906 0.6774 0.0955 9.6 −0.0999 0.6685 0.0974 10.2 −0.1195 0.6593 0.0987

9.2 −0.0797 0.6727 0.0973 9.4 −0.0897 0.6703 0.0975 9.8 −0.0989 0.6615 0.0994 10.4 −0.1184 0.6524 0.1007

9.4 −0.0790 0.6657 0.0993 9.6 −0.0889 0.6633 0.0995 10.0 −0.0980 0.6546 0.1014 10.6 −0.1173 0.6456 0.1026

9.6 −0.0783 0.6589 0.1012 9.8 −0.0881 0.6565 0.1014 10.2 −0.0972 0.6479 0.1033 10.8 −0.1163 0.6390 0.1045

9.8 −0.0776 0.6521 0.1031 10.0 −0.0873 0.6497 0.1033 10.4 −0.0964 0.6413 0.1051 11.0 −0.1153 0.6324 0.1064

10.0 −0.0770 0.6455 0.1049 10.2 −0.0866 0.6431 0.1051 10.6 −0.0956 0.6348 0.1069 11.2 −0.1144 0.6260 0.1082
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2.3 Representative PDFs of the distribution

Once the parameters are determined, the probability density curves can be plotted with the aid of

Eq. (1a) and Eq. (1c). 

The representative standard PDFs of this distribution (Each has a mean of zero and standard

deviation of one) include a wide range of curve shapes as illustrated by the density plots in Fig. 2.

The densities are indexed by the values of the skewness α3 and kurtosis α4. In Figs. 2(a)-(c), the

skewness is fixed and three values of kurtosis are illustrated, while in Figs. 2(d)-(f), the kurtosis is

fixed and three values of skewness are illustrated. From Fig. 2, one can see that the distribution

reflects the characteristics of the skewness and kurtosis quite well. And one can also see that the left

tail of PDF is long for negative α3 and the right tail is long for positive α3. This characteristic is

especially important when the distribution is used for defining a fourth-moment reliability index to

be described later. 

Table A Continued

α3=1.4 α3=1.6 α3=1.8 α3=2.0

α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4 α4 a1=−a3 a2 a4

5.0 −0.3386 1.0218 −0.0509 2.6 −0.1793 1.1848 −0.0790 6.0 −0.3603 0.9665 −0.0370 8.4 −0.4001 0.8616 −0.0126

5.2 −0.2959 0.9958 −0.0302 2.8 −0.1503 1.1214 −0.0507 6.2 −0.3202 0.9484 −0.0194 8.6 −0.3609 0.8539 0.0020

5.4 −0.2681 0.9703 −0.0152 3.0 −0.1337 1.0759 −0.0324 6.4 −0.2926 0.9279 −0.0059 8.8 −0.3337 0.8407 0.0134

5.6 −0.2482 0.9464 −0.0034 3.2 −0.1225 1.0397 −0.0186 6.6 −0.2726 0.9077 0.0050 9.0 −0.3137 0.8263 0.0227

5.8 −0.2332 0.9247 0.0064 3.4 −0.1144 1.0096 −0.0077 6.8 −0.2573 0.8888 0.0140 9.2 −0.2985 0.8121 0.0305

6.0 −0.2215 0.9049 0.0147 3.6 −0.1082 0.9838 0.0015 7.0 −0.2452 0.8713 0.0217 9.4 −0.2862 0.7985 0.0371

6.2 −0.2120 0.8869 0.0219 3.8 −0.1033 0.9611 0.0093 7.2 −0.2353 0.8551 0.0284 9.6 −0.2761 0.7855 0.0430

6.4 −0.2041 0.8703 0.0282 4.0 −0.0991 0.9408 0.0162 7.4 −0.2270 0.8400 0.0344 9.8 −0.2675 0.7733 0.0483

6.6 −0.1973 0.8550 0.0339 4.2 −0.0957 0.9223 0.0223 7.6 −0.2199 0.8259 0.0398 10.0 −0.2600 0.7616 0.0531

6.8 −0.1915 0.8406 0.0391 4.4 −0.0927 0.9053 0.0279 7.8 −0.2137 0.8127 0.0447 10.2 −0.2535 0.7505 0.0575

7.0 −0.1864 0.8271 0.0438 4.6 −0.0900 0.8895 0.0330 8.0 −0.2083 0.8002 0.0493 10.4 −0.2477 0.7398 0.0615

7.2 −0.1818 0.8144 0.0482 4.8 −0.0877 0.8748 0.0377 8.2 −0.2034 0.7883 0.0535 10.6 −0.2424 0.7296 0.0653

7.4 −0.1777 0.8023 0.0524 5.0 −0.0856 0.8610 0.0421 8.4 −0.1990 0.7770 0.0574 10.8 −0.2377 0.7199 0.0689

7.6 −0.1740 0.7908 0.0562 5.2 −0.0837 0.8479 0.0462 8.6 −0.1950 0.7662 0.0611 11.0 −0.2334 0.7104 0.0723

7.8 −0.1706 0.7798 0.0598 5.4 −0.0820 0.8355 0.0501 8.8 −0.1913 0.7559 0.0646 11.2 −0.2294 0.7013 0.0755

8.0 −0.1675 0.7693 0.0633 5.6 −0.0804 0.8236 0.0537 9.0 −0.1880 0.7459 0.0679 11.4 −0.2257 0.6925 0.0785

8.2 −0.1646 0.7592 0.0665 5.8 −0.0789 0.8123 0.0572 9.2 −0.1849 0.7363 0.0710 11.6 −0.2223 0.6840 0.0814

8.4 −0.1619 0.7495 0.0696 6.0 −0.0776 0.8015 0.0605 9.4 −0.1820 0.7270 0.0740 11.8 −0.2191 0.6757 0.0841

8.6 −0.1594 0.7400 0.0726 6.2 −0.0763 0.7910 0.0636 9.6 −0.1793 0.7181 0.0769 12.0 −0.2161 0.6677 0.0868

8.8 −0.1571 0.7309 0.0755 6.4 −0.0751 0.7810 0.0666 9.8 −0.1768 0.7094 0.0797 12.2 −0.2133 0.6599 0.0894

9.0 −0.1549 0.7221 0.0782 6.6 −0.0740 0.7713 0.0695 10.0 −0.1744 0.7009 0.0823 12.4 −0.2106 0.6523 0.0918

9.2 −0.1528 0.7135 0.0808 6.8 −0.0730 0.7619 0.0723 10.2 −0.1721 0.6927 0.0849 12.6 −0.2081 0.6448 0.0942

9.4 −0.1509 0.7052 0.0834 7.0 −0.0720 0.7528 0.0750 10.4 −0.1700 0.6847 0.0873 12.8 −0.2057 0.6375 0.0965

9.6 −0.1491 0.6971 0.0858 7.2 −0.0711 0.7440 0.0776 10.6 −0.1680 0.6770 0.0897 13.0 −0.2034 0.6304 0.0987

9.8 −0.1473 0.6892 0.0882 7.4 −0.0702 0.7354 0.0801 10.8 −0.1661 0.6694 0.0920 13.2 −0.2013 0.6235 0.1009

10.0 −0.1457 0.6815 0.0905 7.6 −0.0694 0.7270 0.0825 11.0 −0.1643 0.6619 0.0943 13.4 −0.1992 0.6167 0.1030

10.2 −0.1441 0.6740 0.0928 7.8 −0.0686 0.7189 0.0848 11.2 −0.1626 0.6547 0.0965 13.6 −0.1973 0.6100 0.1051

10.4 −0.1426 0.6666 0.0949 8.0 −0.0679 0.7109 0.0871 11.4 −0.1609 0.6476 0.0986 13.8 −0.1954 0.6035 0.1070

10.6 −0.1411 0.6594 0.0971 8.2 −0.0672 0.7032 0.0893 11.6 −0.1593 0.6407 0.1006 14.0 −0.1936 0.5971 0.1090

10.8 −0.1397 0.6524 0.0991 8.4 −0.0665 0.6956 0.0915 11.8 −0.1578 0.6338 0.1027 14.2 −0.1919 0.5907 0.1109

11.0 −0.1384 0.6455 0.1011 8.6 −0.0658 0.6882 0.0936 12.0 −0.1563 0.6272 0.1046 14.4 −0.1902 0.5845 0.1127

11.2 −0.1372 0.6387 0.1031 8.8 −0.0652 0.6809 0.0956 12.2 −0.1549 0.6206 0.1065 14.6 −0.1886 0.5785 0.1145

11.4 −0.1359 0.6321 0.1050 9.0 −0.0646 0.6738 0.0976 12.4 −0.1536 0.6142 0.1084 14.8 −0.1871 0.5725 0.1163

11.6 −0.1348 0.6256 0.1069 9.2 −0.0640 0.6669 0.0996 12.6 −0.1523 0.6078 0.1102 15.0 −0.1856 0.5666 0.1180

11.8 −0.1336 0.6192 0.1087 9.4 −0.0634 0.6600 0.1015 12.8 −0.1511 0.6016 0.1120 15.2 −0.1842 0.5607 0.1197

12.0 −0.1325 0.6129 0.1105 9.6 −0.0629 0.6533 0.1033 13.0 −0.1499 0.5955 0.1137 15.4 −0.1828 0.5550 0.1214
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2.4 Operable area of the distribution in the α3

2 -α4 plane

As described previously, the values of parameters a2 and a4 are obtained using the “FindRoot”

function in “Mathematica” software. For a specified value of α3, when the values of α4 are below a

limit value, the “FindRoot” function will become inoperable. Using the limit value of α4 for which

Fig. 2 The representative PDFs for specified α3 and α4 



Cubic normal distribution and its significance in structural reliability 271

Eq. (3) is inoperable corresponding to the selected α3, a lower boundary line in the α3
2-α4 plane can

be depicted as shown in Fig. 3, in which the operable area of the distribution are indicated by the

shade region. The lower boundary line for which Eq. (3) is operable is found to be nearly a straight

line that can be approximately by 

(6)

In Fig. 3, the limit for all distributions expressed as α4 = 1 + α3
2
 (Johnson and Kotz 1970) is also

depicted, along with α3
2-α4 relationship for some commonly used distributions. One can see that the

operable area of the cubic normal distribution covers a large area in the α3
2-α4 plane, and the α3

2-α4

relationships for commonly used distributions are in the operable area of this distribution. This

implies that the cubic normal distribution is generally operable for common engineering use.

3. Application in data analysis 

3.1 Statistical data analysis

The cubic normal distribution is often appropriate for fitting statistical data of a random variable.

Consider the measured data of H-shape structural steel described earlier. The fitting results of the

histogram of the ratio between measured values and nominal values of the thickness for some

selected distribution modes are also shown in Fig. 1(a), which reveals the following:

α4 1.88 1.55α3

2
+=

Fig. 3 Operable area of the cubic normal distribution
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(1) The PDFs of the normal distribution and lognormal distribution have the greatest differences

from the histogram of the statistical data among the four distributions. 

(2) Since the first three moments of the 3P Gamma distribution are equal to those of the data, it

fits the histogram much better than the normal and lognormal distributions. 

(3) The first four moments of the cubic normal distribution can be equal to those of the data, and

thus can fit the histogram much better than the normal, lognormal and 3P Gamma distributions.

Similarlily, the fitting results of the histogram of the ultimate stress are also shown in Fig. 1(b).

From the figure, one can see that since the skewness of the data is quite small, the 3P Gamma

distribution cannot show significant improvement upon the normal and lognormal distributions,

whereas the cubic normal can effectively fit the histograms of the available data. 

Results of the Chi-square tests (Ang and Tang 1975) of the four distributions for data of the

ultimate stress are listed in Table 1. From the table one can see that the goodness-of-fit of the cubic

normal distribution is T = 27.81 which is much smaller than those of other distributions. Similar

results are obtained for the data of thickness.

From the examples above, one can clearly see that since the first four moments of the cubic

normal distribution are equal to those of the statistical data, it fits the histogram much better than

the normal, the lognormal and the 3P Gamma distributions. 

3.2 Approximation for two- and three-parameter distributions

The cubic normal distribution, as defined in Eq. (1), can be used to represent or approximate two-

or three-parameter distributions by equating the respective four moments. This is illustrated with the

two parameters distributions including normal, Gumbel, lognormal, Gamma, Weibull and three-

parameter Gamma distributions. Fig. 4 shows the PDFs of the above selected distributions in solid

lines against those by the cubic normal distribution having the same first four moments in thick

dash lines. In these figures, all the selected distributions are shown with the mean values of μ = 25,

30, 35 and 40, and coefficient of variations (COVs) V = 0.1, 0.2, 0.3 and 0.4. Fig. 4 shows that two

lines coincide closely, demonstrating the flexibility of the cubic normal distribution for representing

two- and three-parameter distributions considered. 

Table 1 Results of test for ultimate stress

Intervals Freq.
Predicted frequency Goodness of fit

Nor. Log. 3P. Cub. Nor. Log. 3P. Cub.

<4.0
4.0-4.2
4.2-4.4
4.4-4.6
4.6-4.8
4.8-5.0
5.0-5.2
>5.2

64
108
365
638
424
193
82
58

80.5
181.3
354.9
472.8
428.6
264.4
110.9
38.6

67.5
189.7
377.8
480.4
410.9
247.6
109.4
48.7

71.1
187.7
371.6
477.9
415.3
252.2
110.1
46.1

73.1
130.8
345.4
589.5
459.1
204.8
78.1
51.2

3.38
29.64
0.29
57.72
0.05
19.28
7.53
9.75

0.18
35.19
0.43
51.70
0.42
12.04
6.86
1.78

0.71
33.84
0.12
53.63
0.18
13.90
7.17
3.07

1.13
3.97
1.11
3.99
2.68
0.68
0.19
0.9

Sum 1932 1932 1932 1932 1932 127.64 108.60 112.62 14.67

Note: Freq.=Frequency, Nor.=Normal, Log.=Lognormal, 3P.=3P Gamma, Cub.=Cubic normal
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4. Application in structural reliability assessment as a fourth-moment reliability

index

The cubic normal distribution was first suggested by Fleishman (1978) to generate random

numbers for Monte Carlo Simulation (MCS). Hong and Lind (1996) presented an approximate

Fig. 4 PDF comparisons with some two- and three-parameter distributions
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method to calculate the probability of failure of a structural system with the aid of this distribution.

It has been used as a third-order polynomial normal transformation technique by Chen and Tung

(2003). In this paper, a fourth-moment reliability index based on this distribution is derived and its

application in structural reliability assessment is discussed.

Consider a performance function Z = G(X) of a structural system, where X is the vector of basic

random variables. If the first four moments of G(X) can be obtained, the probability of failure,

P(G ≤ 0), can be readily obtained by assuming G(X) obey the cubic normal distribution. 

For the standardized random variable Zu 

 (7)

since 

(8)

where μG and σG are the mean value and standard deviation of Z = G(X), respectively; β2M = μG/σG

is the 2nd-moment (2M) reliability index; and Pf is the probability of failure. 

According to Eq. (1a), the standardized random variable Zu can be expressed as

 (9)

The fourth-moment (4M) reliability index based on the cubic normal distribution can be given as

(10a)

 (10b)

where β4M is the fourth-moment (4M) reliability index; S −1 is the inverse function of S. 

Zu

Z μG–

σG

---------------=

Pf P Z 0≤[ ] P Zu

μG

σG

------–≤ P Zu β– 2M≤[ ]= = =

Zu SU U( ) a1 a2U a3U
2

a4U
3

+ + += =

β4M SU

1–
β2M–( )–=

Pf Φ β4M–( )=

Fig. 5 4M reliability index to β4M with respect to β2M
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As described earlier, the left tail of PDF is long for negative α3G and the right tail is long for

positive α3G. Since the failure probability is integrated in left tail according to Eq. (8), it is easy to

understand that the fourth moment method is more suitable for negative α3G than positive α3G. 

When Eq. (9) is applied to reliability analysis, an important problem is the monotonicity of the

transformation because Eq. (9) is not a monotonical function as indicated by Cheng and Tung

(2003). Partially because of this, the 4M reliability method should not be applied to a problem with

extremely strong non-normality (Zhao and Ono 2004), a further study is necessary to determine the

range in which Eq. (9) is monotonical and the applicable range of 4M reliability method.

β4M changes with respect to β2M are depicted in Fig. 5. From Fig. 5, one can see that for positive

α3G, generally, β4M is larger than β2M. While for negative α3G, generally, β4M is less than β2M. One

also can see from Fig. 5 that the 4M reliability index is monotonically increased with the increase

of β2M.

5. Numerical examples

In order to investigate the efficiency of the suggested fourth-moment reliability index, several

examples are examined under different conditions.

Example 1. Reliability of a two-story two-bay frame
The first example considers an elasto-plastic frame structure with two stories and two bays as

shown in Fig. 6. The most likely failure model of this structure is also shown in Fig. 6. The

corresponding performance function is

 (11)

where Mi and Si are independent lognormal random variables with means of μM1 = μM2 = μM3 =

70K-ft, μS1 = 5K, and μS2 = 10K; and COVs of VM1 = VM2 = VM3 = 0.15, and VS1 = VS2 = 0.25. 

Because all of the random variables in the above function are assumed to be lognormal, the

reliability index can be readily obtained using the method of FORM. The FORM reliability index is

βFORM = 3.099, which corresponds to a failure probability of Pf = 0.000971.

Since the performance function is a linear sum of dependent random variables, the first four

G X( ) 2M1 2M2 2M3 15S1– 15S2–+ +=

Fig. 6 Most likely failure mode of a two-story two-bay frame
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moments of G(X) are readily obtained as μG = 195, σG = 55.505, α3G = −0.192, and α4G = 3.257

(See Appendix). The 2M reliability index is readily obtained as β2M = 3.513. 

Using the suggested formula in the present paper, the 4M reliability index is readily obtained as

β4M = 3.0916. The corresponding probability of failure is equal to 0.0009953.

Using the method of MCS with 500,000 samples, the probability of failure for this performance

function is obtained as 0.001002 with corresponding reliability index of β = 3.0896. One can see

that the probability of failure obtained using the proposed method is closer to the result of MCS

than that of FORM for this example.

Example 2. Reliability analysis involving variables with unknown probability distribution

In the first- or second- order reliability method, the probability distributions of the basic random

variables are necessary to perform the normal transformations (the X-U transformation and its

inverse the U-X transformation). Usually, in practical applications, the probability distributions of

the random variables are unknown, and the probabilistic information may be defined only in terms

of the respective first few statistical moments. With the cubic normal distribution, first- or second-

order reliability analysis can be conveniently performed using the first four moments μ, σ, α3, and α

in the X-U and U-X transformations with the aid of Eq. (1).

Furthermore, random samples of the variables can easily generated using Eq. (1) for MCS. 

For illustrations, consider the following performance function of a simple structural column

subjected to axial compressive loading

 (12)

where a is the nominal section area; X1 is a random variable representing the uncertainty in a; X2 is

the yield stress; X3 is the compressive; and X1, X2, and X3 are independent random variables. Assume

the column is made of H-shape structural steel with an area a = 72.38 cm2. The CDFs of X1 and X2

are unknown, the only information about them are their first four moments (Ono et al. 1986), i.e.,

μ1 = 0.990, σ1 = 0.051, α31 = 0.709, α41 = 3.692; μ2 = 3.055 t/cm2, σ2 = 0.364, α32 = 0.512, α42 =

3.957. X3 is assumed as a lognormal variable with mean value μ3 = 100t and standard deviation σ3 =

40t. 

The skewnees and kurtosis of X3 can be soon obtained as α33 = 1.264 and α43 = 5.969. Since the

performance function is the linear combination of product random variables, the first four moments

of G(X) can be analytically obtained as μG = 118.910, σG = 49.085, α3G = −0.578, α4G = 4.41 (See

Appendix). The 2M reliability index is readily obtained as β2M = 2.423. Using the presented formula

in the present paper, the 4M reliability index is readily obtained as β4M = 2.085. The corresponding

probability of failure is equal to 0.01854.

Although the CDFs of X1 and X2 are unknown, since the first four moments are known, the X-U

and U-X transformations can be easily realized using Eq. (1) instead of Rosenblatt transformation

and FORM can be readily conducted with results of βFORM = 2.082 and Pf = 0.01867. Furthermore,

using Eq. (1), the random sampling of X1 and X2 can be easily generated without using their CDFs

and MCS can be thus easily conducted. By the MCS with 10,000 samples, the probability of failure

of this performance function is Pf = 0.0188 and the corresponding reliability index is 2.079. One can

see the present 4M method almost provides the same results with those obtained by MCS and

FORM.

G X( ) aX1X2 X3–=
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Example 3. Flexure capacity of concrete beam

Consider a single rectangular reinforced concrete beam with width b = 250 mm, distance from

extreme compression fiber to the centroid of tension reinforcement d = 500 mm, and area of tension

reinforcement as = 1529 mm2. The flexure capacity of the beam, Mf, is (MacGregor 1988)

(13)

where Fy is the yield strength of reinforcement and Fc'  is the compressive strength of concrete.

The limit state function under dead and live loads, G(X), is then given by

 (14)

where Bm is the modeling uncertainty factor for flexure; D is the dead load effect; and L is the

maximum live load effect during 50 years. Assumptions of the uncertain variables are shown in

Table 2 (Hong and Lind 1996). 

Because all of the random variables in the above function have a known PDF (or CDF), the

reliability index can be readily obtained using the method of FORM. The FORM reliability index is

βFORM = 2.886, which corresponds to a failure probability of Pf = 1.95×10−3.

Using the seven-point estimate (Zhao and Ono 2000), the first four moments of G(X) are

approximately μG = 99.221, σG = 34.347, α3G = 9.740×10−3, and α4G = 3.209. Using the proposed

method, the fourth-moment reliability index is obtained as β4M = 2.792 with Pf = 2.62×10−3. Using

MCS with 1,000,000 samples, the probability of failure for this system is 2.76×10−3 with a

corresponding reliability index of β = 2.775 (Hong and Lind 1996). One can see that the results

obtained using the proposed method are closer to the results of MCS than those of FORM for this

example.

Example 4. A performance function with correlative random variables

Consider the following performance function

 (15)

Assume that the basic variables follow the Gumbel’s bivariate distribution

The first four moments of G(X) are obtained as μG = 2.0152, σG = 1.1030, α3G = 1.2429, and α4G =

8.7665 (Grigoriu 1983). The 4M reliability index is obtained as β4M = 2.122 with Pf = 1.69×10−2

Mf asFyd 1( 0.59asFy– / Fc′bd( ) )=

G X( ) BmasFyd 1 0.59asFy– / Fc′bd( )( ) D L––=

G X( ) X1 X2+=

F X1 X2,( ) 1 e
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Table 2 Random Variables in Example 3

Variables Mean Coefficient of variation Distribution

Bm

Fy

Fc'
D
L

1.01
400 MPa
20 MPa

95.87 kNm
67.11 kNm

0.06
0.10
0.18
0.10
0.25

Normal
Lognormal

Normal
Normal
Gumbel
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with the aid of Eq. (10). The exact value of the probability of failure is obtained as Pf = 1.73×10−2

with the corresponding reliability index of β = 2.113 (Grigoriu 1983). Apparently, the results

obtained by the proposed method agree well with the exact ones. 

6. Conclusions

The cubic normal distribution is investigated and a table for determining the parameters is given,

and its applications are emphasized including statistical data analysis and structural reliability

assessment. It is found that

(1) The cubic normal distribution has a single expression and it is generally operable for common

engineering use.

(2) The distribution has more flexibility for fitting statistical data of basic random variables, and

can more effectively fit the histograms of available data than two-parameter or three-parameter

distributions.

(3) The cubic normal distribution can be used to approximate some popular distributions, such as

two-parameter distributions including normal, Gumbel, lognormal, Gamma, Weibull

distributions and three-parameter Gamma distribution.

(4) For some performance functions, if the first four moments can be obtained, the distribution

can be conveniently applied to obtain a fourth-moment reliability index.

(5) The structural reliability assessment can be conducted using the suggested 4M reliability index

even when the CDFs or PDFs of random variables are unknown.
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Appendix. Computation of the first four moments of some simple functions 

(A) When the function is a linear sum of independent random variables 

For this case, the performance function can be expressed as

 (A-1)

where Xi, i = 1, ..., n are mutually independent random variables and ai, i = 1, ..., n are coefficients.
The first four moments of Eq. (A-1) are as follows

(A-2a)

(A-2b)

 (A-2c)
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 (A-2d)

where μi (μG), σi (σG), α3i (α3G), and α4i (α4G) are the mean value, standard deviation, skewness, and kurtosis
of Xi (G(X)), respectively.

(B) When the function is the product of independent random variables

For this case, the performance function can be expressed as

 (B-1)

The first four moments of Eq. (B-1) are given as

(B-2a)

(B-2b)

(B-2c)

(B-2d)

where Vi and VG are the COVs of Xi and G(X) respectively.
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