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Abstract. The shear lag has been studied for many years. Nevertheless, existing research gives a
variety of stress concentration factors. Unlike the elementary beam theory, the application of load is not
unique in reality. For example, concentrated load can be applied as point load or distributed load along
the height of the web. This non-uniqueness may be a reason for the discrepancy of the stress
concentration factors in the existing studies. The finite element method has been often employed for
studying the effect of the shear lag. However, not many researches have taken into account the influence
of the finite element mesh on the shear lag phenomenon, although stress concentration can be quite
sensitive to the mesh employed in the finite element analysis. This may be another source for the
discrepancy of the stress concentration factors. It also needs to be noted that much less studies seem to
have been conducted for the shear lag effect on deflection while some design codes have formulas. The
present study investigates the shear lag effect in a simply supported box girder by the three-dimensional
finite element method using shell elements. The whole girder is modeled by shell elements, and extensive
parametric study with respect to the geometry of a box girder is carried out. Not only stress concentration
but also deflection is computed. The effect of the way load is applied and the dependency of finite
element mesh on the shear lag are carefully treated. Based on the numerical results thus obtained,
empirical formulas are proposed to compute stress concentration and deflection that includes the shear lag
effect.
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1. Introduction

In the elementary beam theory, the normal stress in the longitudinal direction produced by

bending deformation is assumed to be proportional to the distance from the neutral axis and

therefore uniform across the flange width. However, as a flange gets wider, this assumption

becomes invalid: the normal stress distribution is not uniform in the wide flange, but the stress takes

the maximum value at the flange-web intersection in general, decreasing toward the middle of the

flange. This phenomenon is called the shear lag.

The shear lag has been studied for many years. Timoshenko and Goodier (1970) have documented

one of the earliest researches due to von Karman. The best-known achievement in the past is

probably the one due to Reissner (1941, 1946). While these early researches are analytical, a

numerical means, the finite element method in particular, is often utilized in the recent studies. A

concise but excellent literature review of research on the shear lag is available in Tenchev (1996).

Although much research has been done for the problem and several design codes have already

provided formulas to account for the shear lag effect (British Standards Institution 1982, Japan Road

Association 2002, Eurocode 3 2003), discrepancies in numerical results are observed in the

literature. This seems to be attributable to the factors that have considerable influence on numerical

results but have been overlooked. For example, concentrated load is not necessarily point load: it

can be applied as distributed load along the height of the web as is done by Tenchev (1996). Such

non-uniqueness in loading can be a reason for the discrepancy of the stress concentration factors in

the existing studies. It is also noteworthy that shear lag effect on deflection has not been studied

much while some design codes have formulas for it (British Standards Institution 1982, Japan Road

Association 2002).

The three-dimensional finite element analysis of a simply supported box girder by shell elements

is carried out to study the shear lag effect in the present study. Two loading conditions of

concentrated load at the mid-span and uniformly distributed load along the beam length are

employed. Multiple ways to apply those loads are considered. Much attention is paid to finite

element mesh as well, so as to minimize discretization error. Note that not many researchers have

explicitly addressed how the discretization error is controlled in their shear lag study by the finite

element method. To the best of the authors’ knowledge, the work of Lee and Wu (2000) is one of

the very few numerical studies where the discretization error in the finite element analysis is

carefully treated.

The normal stress in the longitudinal direction in the flange is of interest for investigating the

shear lag effect on stress. The stress in the mid-span cross section is focused on in particular, since

the largest stress is expected. The vertical displacement at the mid-span is also computed to see the

shear lag effect on deflection. An extensive parametric study is conducted, based on which

empirical formulas are proposed. In all the analyses, a finite element program, MARC (1994), is

used.

2. Analysis model 

Simply supported box girders under concentrated load at mid-span or uniformly distributed load

are analyzed. The symbols employed in the present study for describing the structural geometry are

illustrated in Fig. 1. For those box girders, the stress concentration factors at the mid-span can be
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evaluated by the formula given in the design codes (British Standards Institution 1982, Japan Road

Association 2002, Eurocode 3 2003). The factors can be obtained also by the results in the literature

(Tenchev 1996, Lee and Wu 2000, Song and Scordelis 1990, Sedlacek and Bild 1993, Tahan et al.

1997). For a box girder with H/L = 0.1, B/H = 1.0 and Tf /Tw = 1.0, those values are summarized in

Table 1 where Kc stands for the stress concentration factor defined by the ratio of the maximum

normal stress in the flange to that of the elementary beam theory. Significant discrepancy is

recognized, especially under concentrated load. As Table 1 may prove, it is not an easy task to

evaluate a rigorous stress distribution having the shear lag phenomenon. Generally, the largest

normal stress in a flange occurs at the edge and sharp decrease is observed toward the middle of the

flange. Because of the large stress gradient, Kc can be very sensitive to a mathematical model set up

for the analysis. 

The existing studies may be classified into two groups based on the type of analysis: analytical

approach (Timoshenko and Goodier 1970, Reissner 1941, Reissner 1946, Song and Scordelis 1990,

Sedlacek and Bild 1993, Tahan et al. 1997, Hwang et al. 2004) and finite element approach

(Tenchev 1996, Lee and Wu 2000, Moffatt and Dowling 1975). The former often needs to introduce

assumptions so as to simplify a problem and yield a solution. On the other hand, the finite element

method requires few assumptions in principle. However, due to the limitation of computer capacity,

the shear lag is investigated in the two dimensional framework of a plane stess problem in some

finite element analysis (Tenchev 1996, Lee and Wu 2000) while the behavior in accordance with the

elementary theory of bending is assumed in some other finite element analysis (Moffatt and

Dowling 1975).

Fig. 1 Structural geometry of box girder

Table 1 Kc in literature 

Literature
Kc

Concentrated load Distributed load

Tenchev (1996) 1.31 1.07

British (1982) 1.39 1.05

Japan (2002) 1.23 1.09

Eurocode 3 (2003) - 1.05

Lee et al. (2000) 1.56 1.05

Song et al. (1990) 1.34 1.04

Sedlacek et al. (1993) 1.35 1.05

Tahan et al. (1997) 1.58 1.05
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In general, the less the assumptions imposed on the analysis are, the closer to the reality the

mathematical model becomes. To this end, in the present study, an entire box girder is modeled as it

is, using 4-node shell elements: the shear lag problem is not reduced to a plane-stress problem and

no beam assumptions are implemented.

In the three-dimensional finite element model, unique load in the beam theory can be applied in

various ways. Herein the load applications that may cause local effects on the stress distribution in

the flange are avoided. As for concentrated load, therefore, two loading models shown in Fig. 2 are

adopted: Load C-1 is concentrated load at the middle of the web and Load C-2 is uniformly

distributed load along the height of the web. Two loading models shown in Fig. 3 are considered for

distributed load: Load D-1 is uniformly distributed load along the centerline of the web and Load

D-2 is uniformly distributed load not only along the beam axis but also along the web height of

every cross section. To be noteworthy, although the stress concentration may be influenced by the

way the load is applied, researchers other than Tenchev (1996) have not described their loading

condition explicitly, to the best knowledge of the authors.

3. Numerical evaluation

3.1 Stress concentration

The structural model described in the previous chapter is analyzed by the finite element method,

using shell elements. Although the finite element method is very versatile and powerful, the results

may depend largely on finite element mesh employed in the analysis, which is especially so when

stress concentration is dealt with. Because of this, we first study the influence of finite element

Fig. 2 Concentrated load: (a) Load C-1, (b) Load C-2

Fig. 3 Distributed load
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mesh on the stress concentration. Fig. 4 shows the normal stress distributions in an upper flange at

the mid-span. In this figure, σ is the normal stress obtained by the present finite element analysis

while σbeam is the normal stress due to the beam theory. Needless to say, σbeam is constant across the

flange width. This is the result for a box girder (H/L = 0.2, B/H = 1.0, Tf /Tw = 1.0) under Load C-2

by four finite element meshes, Meshes A to D. All the elements in each mesh are rectangular and

from Meshes A to D, the size of an element is made finer in a consistent way. It is noted that

although due to symmetry only a quarter of the box girder is analyzed, the numbers of elements

used for the quarter model amount to 800, 3,200, 12,800 and 51,200 for Meshes A to D,

respectively. Fig. 4 illustrates not only the shear lag phenomenon but also the dependence of the

stress distribution on the finite element mesh: as expected, the dependence is stronger at the edge of

the flange where the largest stress concentration takes place. At the same time, the tendency of

stress convergence is observed, as the size of the finite element becomes smaller.

Fig. 5 gives the variation of the normal stress in the flange with respect to a representative

element size Δ: the four symbols of the same kind represent the stresses obtained by the four finite

element meshes, Meshes A to D. Importantly, the four lines in Fig. 5 become almost straight as Δ

gets small, which is in accordance with the description of Cook et al. (1989): the strain error is

proportional to element size. In a linear analysis, “strain” in this statement can be replaced by

“stress”. The linear extrapolation can then be used to estimate the converged stress when the

element size vanishes, as indicated by the dotted lines in Fig. 5. This extrapolation method is called

“multimesh extrapolation” by Cook et al. (1989). The converged stress ratio σ/σbeam at the edge of

the flange, i.e., the point indicated by an arrow in Fig. 5, gives the value of Kc that we seek in the

present finite element analysis.

3.2 Deflection

Using the same finite element meshes as above, similar study is made for deflection. Fig. 6 shows

the variation of the deflection ratio w/wbeam at the mid-span, i.e., the ratio of the deflection due to

the finite element analysis w to the deflection due to the beam theory wbeam at the mid-span, with

respect to the square of a representative element size Δ. To be noteworthy, the line in Fig. 6

becomes almost straight as Δ2 becomes small, which is in accordance with the description of Cook

et al. (1989): the deflection error is proportional to the square of element size. Just like in the

evaluation of Kc, the linear extrapolation can then be used to estimate the converged value of

Fig. 4 Normal stress distribution in upper flange Fig. 5 Variation of normal stress with respect to
representative element size
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w/wbeam when the element size vanishes, as indicated by the dotted line in Fig. 6. The converged

value of w/wbeam, i.e., the point indicated by the arrow in Fig. 6, gives the deflection magnification

factor Dm that is sought in the present finite element analysis.

4. Parametric study

Based on the modeling and the numerical evaluations described above, three-dimensional finite

element analysis is conducted so as to reveal the influence of the parameters that characterize the

geometry of a box girder. In particular, the following values are considered: H/L = 0.025, 0.05,

0.10, 0.15, 0.20; B/H = 0.5, 1.0, 1.5, 2.0; Tf /Tw = 0.5, 1.0, 1.5, 2.0. The combination of all these

values results in 80 box girders different from each other in geometry. In this paramaetric study, as

explained earlier, multiple loadings are applied to each girder and multiple finite element meshes are

used to eliminate discretization error by the multimesh extrapolation method for every girder under

a specific loading condition.

4.1 Stress concentration factor Kc

As a typical example of the present numerical results, Fig. 7 shows the variation of Kc with

respect to H/L for the cross sections with Tf /Tw = 1.0 under concentrated load (Loads C-1 and C-2)

and uniformly distributed load (Loads D-1 and D-2). Load C-2 induces larger Kc than Load C-1

consistently and the difference is considerable. Load D-1 yields larger Kc than Load D-2, but the

Fig. 6 Variation of deflection with respect to representative element size

Fig. 7 Variation of Kc with respect to H/L (Tf /Tw = 1.0)
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difference appears insignificant. Thus, it is decided that while both Loads C-1 and C-2 are applied

in the case of concentrated load, only Load D-1 needs to be considered for distributed load in the

present finite element analyses. To show the influences of B/H and Tf /Tw on Kc, Figs. 8 and 9 are

presented.

Fig. 8 Variation of Kc with respect to B/H (Tf /Tw = 1.0)

Fig. 9 Variation of Kc 

with respect to Tf /Tw (B/H = 1.0)
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The general trends regarding the effect of the geometrical parameters on Kc observed in Figs. 7 to

9 can be summarized as follows:

1. Kc tends to grow with the increase of H/L. 

2. The influence of H/L on Kc is very small for B/H equal to 0.5 under Loads C-2 and D-1.

3. Kc tends to grow with the increase of B/H.

4. The influence of B/H on Kc is very small for H/L equal to 0.025 in the case of concentrated

load and equal to or smaller than 0.05 in the case of distributed load.

5. Kc tends to grow with the increase of Tf /Tw.

6. The influence of Tf /Tw on Kc is very small for H/L equal to or smaller than 0.05 in the case of

concentrated load. Under distributed load, the influence of Tf /Tw on Kc is very small for the

entire range of Tf /Tw considered herein.

Fig. 10 shows the present numerical results of Kc together with those in Table 1. In concentrated

load, Kc due to Tenchev (1996) is the closest to the present result with Load C-1, while Lee et al.

(2000) and Tahan et al. (1997) give the results very close to the present result with Load C-2. In the

distributed load, discrepancy is smaller with Kc due to Japan (2002) being the most different from

the present result.

4.2 Deflection magnification factor Dm

Fig. 11 shows a typical variation of Dm with respect to H/L under concentrated load (Loads C-1

and C-2) and uniformly distributed load (Loads D-1 and D-2). Although Load C-2 yields larger Dm

than Load C-1, the values due to the two loadings are close to each other. Load D-2 gives larger Dm

than Load D-1, but the difference is very small. Thus, the way of applying load is insignificant for

Dm for both concentrated and distributed loads. In the following numerical analyses, therefore, only

Loads C-2 and D-2 are considered. For the influence of B/H and Tf /Tw on Dm, Figs. 12 and 13 are

presented.

The general trends observed in Figs. 11 to 13 can be summarized as follows:

1. Dm tends to grow with the increase of H/L.

2. Dm tends to grow with the increase of B/H. 

Fig. 10 Comparison of Kc 

(H/L = 0.1, Tf /Tw = 0.5)
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3. The influence of B/H is very small for H/L equal to or smaller than 0.05.

4. Dm tends to grow with the increase of Tf /Tw. 

5. The influence of Tf /Tw is very small for H/L equal to or smaller than 0.05.

Some design codes (British Standards Institution 1982, Japan Road Association 2002) provide

formulas for the shear lag effect on deflection. Fig. 14 presents Dm calculated through those

formulas together with the present numerical results. While Dm due to the design formulas exhibits

the similar tendencies to that obtained by the present finite element analysis, discrepancy is evident:

Dm due to the design formulas considerably underestimates Dm by the finite element analysis. The

difference between the Dm values due to the formulas in the two design codes is also obvious: Dm

due to Japan (2002) is consistently larger than that due to British (1982).

Fig. 12 Variation of Dm with respect to B/H (Tf /Tw = 1.0)

Fig. 13 Variation of Dm with respect to Tf /Tw (B/H = 1.0)

Fig. 11 Variation of Dm with respect to H/L (Tf /Tw = 1.0)
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5. Empirical formulas

5.1 Stress concentration factor Kc

A regression analysis based on the present numerical results gives the following formulas for Kc:

Concentrated load (Load C-1):

(1)

where

(2)

(3)

(4)

Concentrated load (Load C-2):

(5)

where

(6)

(7)

(8)

Kc a1 H/L( ) 1+=

a1 b1 B/H( )
c
1

=

b1 0.832ln Tf /Tw( ) 2.77+=

c1 0.034ln Tf /Tw( )– 1.744+=

Kc a2 H/L( ) 1+=

a2 b2 B/H( )
c
2

=

b2 1.756ln Tf /Tw( ) 6.101+=

c2 0.053ln Tf /Tw( ) 1.202+=

Fig. 14 Comparison of Dm (H/L = 0.2, Tf /Tw = 0.5)
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Distributed load (Load D-1):

(9)

where

(10)

(11)

(12)

Fig. 15 illustrates some comparisons between Kc due to the empirical formula and the present

finite element analysis (FEA). Good agreement is observed in the figure. The overall accuracy of

the proposed formula for each loading condition is calculated as the mean square error by the

following equation (Tenchev 1996)

(13)

where

(14)

where N is the number of the present finite element results for a loading condition, and Kc Emp and

Kc FEA are the Kc values obtained from the proposed empirical formulas and the present finite

element analysis, respectively. Since in the present study, the combination of the geometrical

parameters has required 80 box girders to be analyzed for each loading, N in Eq. (13) is equal to

80. Using Eq. (13), the mean square error is found to be 1.83%, 2.99% and 2.33% for Loads C-1,

C-2 and D-1, respectively.

 

Kc a3 H/L( )
2

1+=

a3 b3 B/H( )
c
3

=

b3 1.225ln Tf /Tw( ) 0.494 Tf /Tw( ) 6.001+–=

c3 0.041– ln Tf /Tw( ) 0.006 Tf /Tw( ) 2.371+–=

ε
1

N
---- ε i

2

i 1=

N

∑=

εi

KcEmp KcFEA–

KcFEA

------------------------------- 100 %( )×=

Fig. 15 Kc due to proposed formulas and finite element analysis (H/L = 0.15)
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5.2 Deflection magnification factor Dm

A regression analysis based on the present numerical results gives the following formulas for Dm:

Concentrated load (Load C-2):

(15)

where

(16)

(17)

(18)

(19)

Distributed load (Load D-2):

(20)

where

(21)

(22)

(23)

(24)

Dm a1 B/H( )
2.3

a2 Tf /Tw( ) a3 B/H( ) Tf /Tw( ) a4+ + +=

a1 4.12 H/L( )
1.77

=

a2 83.53 H/L( )
4.5

–=

a3 41.43 H/L( )
2.33

=

a4 76.53 H/L( )
3

18.09 H/L( )
2

– 1.54 H/L( ) 0.97+ +=

Dm a1 B/H( )
1.6

a2 Tf /Tw( ) a3 B/H( ) Tf /Tw( ) a4+ + +=

a1 7.78 H/L( )
1.8

=

a2 579.02 H/L( )
4

– 204.73 H/L( )
3

21.89 H/L( )
2

– 0.97 H/L( ) 0.01–+ +=

a3 50.46 H/L( )
2.48

=

a4 39.6 H/L( )
3

8.77 H/L( )
2

– 0.25 H/L( ) 1+ +=

Fig. 16 Dm 

due to proposed formulas and finite element analysis (H/L = 0.15)
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Fig. 16 illustrates some comparisons between Dm due to the empirical formula and the present

finite element analysis (FEA). Good agreement is observed in the figure. 

The overall accuracy of the proposed formula for each loading condition is calculated as the mean

square error in the same way as in the case of Kc by Eq. (13) where εi is now the error computed by

the following equation

(25)

where Dm Emp and Dm FEA are the Dm values obtained from the proposed empirical formula and the

present finite element analysis, respectively. The mean square error thus obtained turns out to be

1.06% and 1.58% for concentrated and distributed loads, respectively.

6. Conclusions

Extensive parametric study with respect to the geometry of a box girder has been carried out by

the three-dimensional finite element analysis so as to reveal the shear lag effect in a simply

supported box girder on both stress concentration and deflection. Shell elements have been used to

model the entire box girder. The effect of the way of applying load and the dependency of the stress

concentration on the finite element mesh have been carefully treated, while many existing research

works seem to have paid little attention to these aspects of analysis modeling. 

Based on the present numerical results thus obtained, empirical formulas have been proposed to

compute the stress concentration factor Kc and the deflection magnification factor Dm. It has been

confirmed that the proposed formulas can yield those two factors in good agreement with the

present finite element results.

The present study indicates that the real stress and deflection can be much larger than those due to

the beam theory. It is also shown that the existing studies including design codes may yield the

stress and deflection quite different from each other and the present result as well. It is therefore

hoped that the proposed formulas would be of some help to improve the current situation.
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