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Abstract. This paper considers the solution of the stochastic differential equations (SDEs) with random
operator and/or random excitation using the spectral SFEM. The random system parameters (involved in
the operator) and the random excitations are modeled as second order stochastic processes defined only by
their means and covariance functions. All random fields dealt with in this paper are continuous and do
not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite
element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the
Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a
spectral approximation for the stochastic response (solution) of the SDE is obtained based on the
implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an
explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated
random variables that enables us to compute the statistical moments of the solution vector. To check the
validity of this method, two applications are introduced which are, randomly loaded simply supported
reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a
more general application, randomly loaded simply supported reinforced concrete beam with random
bending rigidity, is presented to illustrate the method.
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1. Introduction

Stochastic finite element methods (SFEM) have recently become an active area of research. As

the name suggests, researchers in this field attempt to combine two crucial methodologies developed

to deal with complex problems of modern engineering: the finite element analysis (Reddy 1985,
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Zienkiewicz and Taylor 1989) and the stochastic analysis. In the literature, various denominations

have given to this field: stochastic finite elements (Choi and Noh 1996, Contreras 1980, Ghanem

and Spanos 1991, Noh and Choi 2005, Noh and Kwak 2006, Kleiber and Hien 1992, Spanos and

Ghanem 1989), Probabilistic finite elements (Liu et al. 1985, 1986, 1989), Random field finite

element (Liu et al. 1986) and so on. Elishakoff et al. (1995, 1996) have recently proposed the

terminology finite element method for stochastic problems, noting that the finite element

discretization remains deterministic during the stochastic analysis. The finite element method can be

applied to stochastic analysis by means of generating the discrete version of the stochastic field,

which can be attained from the appropriate random field representation techniques (Choi and Noh

1996, 2000, Ghanem and Spanos 1991, Kleiber and Hien 1992, Spanos and Ghanem 1989,

Vanmarcke and Grigoriu 1983, Yamazaki and Shinozoka 1990). In case of stochastic processes with

known joint probability density functions (p.d.f.) and known explicit forms dependent on the spatial

dimension, a new proposed technique introduced in El-Tawil et al. (2005) may be used to get the

complete solution of the SDE represented by the solution p.d.f. 

This paper considers the solution of the stochastic differential equations (SDEs) with random

operator and/or random excitation using the spectral SFEM. The stochastic processes involved in the

problem are modeled as second order stochastic processes (random fields) defined only by their

means and covariance functions. All random fields dealt with in this paper are continuous and do not

have known explicit forms dependent on the spatial dimension. This fact makes the usage of the

finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function,

the Karhunen-Loeve expansion (Loeve 1977, Spanos and Ghanem 1989, Van Tree 1968) is used to

represent these fields to overcome this difficulty. Then, a spectral approximation for the stochastic

response (solution) of the SDE is obtained based on the implementation of the concept of generalized

inverse defined by the Neumann expansion (Ghanem and Spanos 1991, Yamazaki et al. 1988). This

leads to an explicit expression for the solution process as a multivariate polynomial functional of a

set of uncorrelated random variables that enables us to compute the statistical moments of the

solution vector. To check the validity of this method, two applications are introduced which are

randomly loaded simply supported reinforced concrete beam and cantilever beam with random

bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced

concrete beam with random bending rigidity, is presented to illustrate the method.

2. Spectral representation of the stochastic processes and solution statistics 

2.1 Karhunen-Loeve (K-L) Expansion

The Karhunen-Loeve (K-L) expansion of a random field (stochastic process) is based on the

spectral expansion of its covariance function. It is formally, a continuous representation method for

random fields using a superposition of orthonormal random variables weighted by the

eigenfunctions of the covariance of these fields. 

Let us consider a random process α (x;θ ), function of spatial coordinate x, defined on the domain

D and θ is a random outcome of a triple probability space , where Ω is a sample space, κ

is σ-algebra associated with Ω and P is a probability measure. Let  is the expected value of

α (x;θ ) and  denotes the covariance function, defined on D, which is, by definition,

bounded, symmetric and positive definite. Under these assumptions, it has the following uniform

Ω κ P, ,( )
α x( )

C
α

x y,( )
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convergent spectral representation (Van Tree 1968)

(1)

Here, x and y are used to denote spatial coordinates of two arbitrary observation points belong to

the domain D and  are eigenvalues and eigenfunctions of the covariance function, respectively.

Due to boundedness, symmetry and positive definiteness properties,  constitutes a complete

orthonormal set of deterministic functions and λi are always real and positive (Ghanem and Spanos

1991).  are the solutions of the following integral equation 

(2)

In this work, the solution of the integral Eq. (2) is the key of the present spectral SFEM

formulation. It has some useful properties reported in Van Tree (1968). 

Since α (x;θ ) is generally second order process, we can write

(3)

where  is a zero mean process with the same covariance function of , .

 can be expanded in terms of orthonormal (uncorrelated) random variables weighted by the

orthonormal eigen functions  as

 (4)

Finally the K-L expansion of  then takes the form

(5)

where,  forms a set of orthonormal random variables (  and )

(Ghanem and Spanos 1991). 

The K-L expansion is mean square convergent irrespective of the probabilistic structure of the

random field being expanded, provided that it has a finite variance. The closer the process is to the

white noise process the more terms are required in its expansion, while at the other limit, a random

variable can be represented by a single term. In most applications, only few terms in the K-L

expansion can capture most of the uncertainty in the process. Clearly, the more accuracy is required

from the predictions of a certain model, the more terms should be included in K-L expansion

representing its data (Ghanem 1999).

2.2 K-L expansion in the framework of SFE formulation: (Solution Representation and

Statistics)

The spectral approach is introduced through the implementation of the K-L expansion, of the

underlying processes, in the Galerkin based finite element formulation after recasting it in the

C
α

x y,( ) λiφi x( )φi y( )
i 1=

∞

∑=

λi φi,
φi x( ){ }

λi φi,

C
α

x y,( )φi y( ) yd
D
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α x;θ( ) α x( ) v x;θ( )+=

v x;θ( ) α x;θ( ) C
α
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φi x( )

v x;θ( ) λiξi θ( )φi x( )
i 1=

∞

∑=

α x;θ( )

α x;θ( ) α x( ) λiξi θ( )φi x( )
i 1=

∞

∑+=

ξi θ( ){ } ξi〈 〉 0= ξk θ( )ξl θ( )〈 〉 δkl=
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stochastic form. In case of SDEs with random operator, the need of the Neumann expansion scheme

(Ghanem and Spanos 1991), which gives an explicit form of the response process in a set of

uncorrelated random variables, appears. The method to be discussed is based on the direct

operations on the following equation

(6)

where,  is a linear differential operator with respect to space whose coefficients 

can be modeled as random fields exhibiting random fluctuations in space,  is the solution

process and  is the random excitation function. The spatial domain of Λa is denoted by D, x

refers to a point in this domain, and θ is a random outcome of a triple probability space .

The aim then is to solve for the response process  as a function of both arguments. Since all

processes dealt with are considered of second order type,  can be decomposed into purely

deterministic component and a purely random component in the form

(7)

where  is the mean of the process  and  is a zero-mean process, having the

same covariance function as the process . Separating the random component of  from

its deterministic component, Eq. (6) becomes

(8)

where  indicates a deterministic linear differential operator whose coefficients represent the

average values of the random coefficients, and  denotes a random linear operator whose

coefficients  are zero-mean random fields. In the above, it is assumed that the random

coefficients  appear as multiplicative constants in the explicit expression of the operator

. 

2.2.1 Stochastic finite element formulation of the problem

Let  represent the only random coefficient that appears as a multiplicative

factor in the operator of the SDE, where D is the actual domain occupied by the object being

investigated. Let  and  be modeled as second order random fields that permit the

following representations

(9)

(10)

Also, it is assumed that the governing SDE is subjected to a set of deterministic boundary

condition. In the view of that, Eq. (8) becomes

(11)

Λa x;θ( ) u x;θ( )[ ] f x;θ( ), x D,  θ Ω∈∈=

Λa x;θ( ) ak x;θ( )
u x;θ( )

f x;θ( )
Ω κ P, ,( )

u x;θ( )
ak x;θ( )

ak x;θ( ) ak x( ) αk x;θ( )+=
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ak x;θ( )

Λa ·[ ]

a x;θ( ) x D θ Ω∈,∈,

a x;θ( ) f x;θ( )

a x;θ( ) a α x;θ( )+=

f x;θ( ) f α1 x;θ( )+=

L x( ) α x;θ( )R x( )+[ ]u x;θ( ) f α1 x;θ( ), x D∈+=



Solution of randomly excited stochastic differential equations 133

subjected to

(12)

where,  is the boundary of the domain D,

 is a deterministic differential operator on D,

 is a deterministic operator on .

Following the procedure of the Galerkin formulation (Zienkiewicz and Taylor 1989), we can get

the stochastic version of the element equations as follows:

The method consists of expanding the solution of the differential equation along a basis of a finite

dimensional subspace of an admissible Hilbert space (Oden 1979), whose functions are called

“interpolation or trial functions” (interpolation displacement model), and requiring that the error

resulting from taking a finite number of terms in the expansion be orthogonal to another Hilbert

space, the “test space”, whose functions are called “test functions”. Usually, the test space is chosen

to coincide with the admissible space. In other words, expanding the solution  in Eq. (6) in

terms of the interpolation functions (Hermit cubic interpolation functions)  introduces

an error of the form

 (13)

Requiring this error to be orthogonal to the subspace spanned by the same functions

, yields a set of the following r algebraic equations

(14)

The previous equation is equivalent to

(15)

where r is the total number of degrees of freedom (d.o.f.) per element and  are the random

d.o.f. per element. Using the truncated K-L expansion of the processes involved in Eq. (15) up to

order M, the following equation is obtained

(16)

where,  are the eigenvalues and eigenfunctions covariance kernel of the process involved

in the operator, , and  are the eigenvalues and eigenfunctions of the covariance

kernel of the excitation process, .

Using integration by parts, to get the weak formulation of the problem (Reddy 1985), the
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operators  and  can be split into four lower order operators and Eq. (16) takes the

following form

(17)

where,  and  are appropriate differential operators of lower order than L and R,

respectively.  are the random boundary terms for the element “e”. Eq. (17) can be expressed

in a matrix form as

(18)

where the element matrix  and the element excitation vector  are defined as

 (19)

(20)

where

(21)

(22)

(23)

, (24)

Finally, by assembling the matrices  and the vectors  for all elements, the following

global system of order N (N is the total number of global d.o.f s) is obtained

(25)

where,

U is the vector of unknown random-global d.o.f s (solution vector),

K is the global stiffness matrix of the problem, which is defined as

(26)
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F is the global excitation vector, which is defined as

(27)

and  are obtained by the assembly of the elementary matrices defined in Eq. (21)

through Eq. (24).

At this stage, the boundary conditions specified in Eq. (12) may be imposed on  and each of

 matrices individually. Also, the equilibrium conditions (Reddy 1985) must be applied on  and

each of  vectors individually. Finally a suitable partitioning procedure must be made to get non-

singular matrices and proceed with the subsequent analysis. Now Eq. (25) may be rewritten for

convenience as

(28)

Eq. (28) can be normalized by multiplying both sides by  to obtain

(29)

where,  (30)

 

Now, a straightforward scheme for obtaining the response vector U from Eq. (29) relies on

performing a Neumann Expansion for the inverse operator as follows

(31)

To guarantee the convergence of the series resulting from the expansion in Eq. (31), it is

necessary that the following criterion must be satisfied

(32)

In general, a scaling procedure (Padovan and Guo 1989, Shinozuka and Yamazaki 1988) can be

developed for Qn in order to meet this convergence criterion. The explicit solution of the stochastic

problem is of course impossible in a computational framework without the truncation of the infinite

summation in Eq. (31). Doing that truncation to get expansion of finite order P provides the

expression

(33)

2.2.2 Statistical moments of the solution vector

One of the important methods of characterizing the stochastic solution of a SDE is computing the

first and second order statistical moments of that solution. The SFEM as described in the previous
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section can be used efficiently to produce a good approximation to these statistics. Specifically,

starting with Eq. (33), the mean vector  and covariance matrix COV(U) of the response vector

can be obtained as follows

(34)

(35)

It should be noted that, the assumption that the random fields under consideration are Gaussian

must be stated. In fact, it results from that hypothesis that the random variables of the K-L

expansion are orthonormal Gaussian. Hence, the following relations can be used to find the

statistical moments, of these variables, of an order higher or equal to three that appear in the

expansions (34) and (35) (Imamura et al. 1963). 

• For a Gaussian  of zero mean,

(36)

where, 

• For uncorrelated Gaussian random variables ,

 (37)

3. Numerical applications

 

This section presents three numerical applications dealing with the handling of material (operator)

and/or load (excitation) uncertainties of Euler-Bernolli beams1. The evaluation of the solution

variability is obtained by the SSFEM. Reinforced concrete beams were chosen, since concrete

material properties are uncertain and can be randomly spread over the beam (Lawanwisut et al.

2003, Pukl et al. 2003, Vouwenvelder 2004). 
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1The Euler-Bernolli beam model assumes that shear effects are negligible in the displacement field, which is
verified as soon as the cross-sectional dimensions are much smaller than the beam length.
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3.1 Simply supported reinforced concrete beam under random load represented by a
random field 

3.1.1 Problem description and formulation

Consider the Euler-Bernolli reinforced concrete simply supported beam of length L is subjected to

a distributed random transverse load represented by a random field , positive upward. It is

assumed that  is the realization of a Gaussian random process indexed over the spatial

domain occupied by the beam, . It is also assumed  is represented by its mean

, which is constant, and its covariance function . In this case the

mathematical model is a SDE with random excitation that takes the following form

(38)

with  

 (39)

(40)

Comparing Eq. (38) with the general operator in Eq. (6), the operator Λ is purely deterministic

and we may then drop the random part . 

Discretizing the beam into Nel identical elements of length  and following the Galerkin-

based finite element formulation presented in section 2.2.1, it is found that 

(41)
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and the global finite element system of order  is
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x' in the previous integrals denotes the local spatial coordinate along the element “e”, which is

related to the global coordinate x by  where xe is the global coordinate of the left node

of that element,  is the element length. The integrals in Eq. (46) take the following form for

the exponential covariance (Van Tree 1968) model

(47)

where, a = L/2, and the constants wn and the eigenvalues, , are given in Table 1.

Also, c = 1/lcor,  is the process variance and lcor is the correlation length of the process. 

Imposing the boundary and equilibrium conditions on the system (43) and making a suitable

partitioning, the following nonsingular system is obtained 

(48)

To get an explicit form of the solution vector, both sides of Eq. (48) are multiplied by  to get
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where, and (50)

3.1.2 Statistical moments of the response vector
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Table 1 Numerical values of the first six values wn and the corresponding eigen values 
(Exponential covariance model; lcor = 1.0, a = 0.5)

n wn

1
2
3
4
5
6

1.306542374189476
3.673194406304252
6.584620042564174
9.631684635691391
12.723240784131330
15.834105369332420

7.388108094159773E-001
1.380037753542628E-001
4.508848728978113E-002
2.132893128730332E-002
1.227891385451699E-002
7.945371034246029E-003

μn

α
α

2
------
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(51)

(52)

3.1.3 Results

In the numerical implementation of the preceding analysis the beam is discretized into ten finite

elements , resulting in twenty-two  degrees of freedom. The distributed

random load is modeled by the exponential covariance model with correlation length,

, variance  and mean . Also, it is assumed that the bending

rigidity of the   reinforced concrete beam,  and the beam length L = 1.0 m. 

Table 2 shows the convergence of the spectral SFEM solution along the first half of the beam,

represented by the variance of the beam deflection, to the exact one, found in Elishakoff et al.

(1999), as the order M of the K-L expansion increases. It is evident that an almost exact solution is

obtained for M = 6. Fig. 1 shows the variance of the deflection along the beam length for M = 4

compared with the exact solution.
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Fig. 1 Variance of the deflection along the beam, Exponential Covariance model for the load (lcor = 1.0, a =
0.5, σf = 1.0)

Table 2 Numerical values of the variance of the beam deflection at the nodes compared with the exact values,
(Exponential covariance model for the load) 

x
M = 2 M = 4 M = 6 Exact

0
0.1
0.2
0.3
0.4
0.5

0
1.3073
4.6839
8.7864
12.0586
13.2987

0
1.3176
4.7237
8.8673
12.1758
13.4305

0
1.3178
4.7245
8.8685
12.1772
13.4319

0
1.317871
4.724552
8.868642
12.1774
13.43211

σ  W
SFEM

2
*105 σ  W

SFEM

2
*105 σ  W

SFEM

2
*105 σ  W

2
*105
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3.2 Cantilever reinforced concrete beam with random bending rigidity represented by a
random field

3.2.1 Problem description and formulation

Consider the Euler-Bernoulli reinforced concrete beam, of length L, clamped at one end and

subjected to a distributed uniform static load of intensity f0, positive upward. It is assumed that the

bending rigidity EI of the reinforced concrete beam is the realization of a Gaussian random process

indexed over the spatial domain occupied by the beam, . It is also assumed that the

random bending rigidity  is represented by its mean , which is constant, and its

covariance function . In this case the mathematical model is 

(53)

with

(54)

(55)

Comparing Eq. (53) with the general operator Eq. (6) and following the Galerkin-based finite

element formulation, it is found that

(56)

(57)

where  is decomposed using the K-L expansion as

(58)

and  are the eigenvalues and eigenfunctions of the covariance function .

The global finite element system of order N is

(59)

where the deterministic part,  and the stochastic parts, Kn of the stiffness matrix K and the right

hand side vector F of Eq. (59) are computed by assembling the elementary matrices 

,  (60)

(61)
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, (62)

where Nel is the number of finite elements taken in the FE model. 

In this application the covariance kernel of the random bending rigidity is modeled using three

models, the exponential model, the Triangular model and the covariance kernel of Wiener process.

In view of coordinates transformation introduced in the previous application, the eigenvalues and

eigenfunctions, in the element coordinate form, are:

• For exponential model 

As in the previous application.

  

• For Triangular model

 if i is odd (63)

(64)

a = L, and λi are given in Table 3.

• For the Wiener process, appendix-A,

(65)

(66)

Imposing the boundary and equilibrium conditions on the system (59) and making a suitable

partitioning, the following nonsingular system is obtained
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Table 3 Numerical values of the first six values wn and the corresponding eigenvalues 
(Triangular covariance model; lcor = 2.0, a = 1.0)

i wi

1
2
3
4
5
6

1.094321514520660
3.141592741012573
6.487974969865883
9.424778223037720
12.671496724511800
15.707963705062870

8.350454708026427E-001
1.013211780033004E-001
2.375645685701502E-002
1.125790866703338E-002
6.227936397184331E-003
4.052847120132016E-003

λi

α
α

2
------
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(67)

where  is the modified load vector after the imposing of conditions and partitioning.

Using truncated Neumann expansion of order P, to expand the inverse operator, the following

expression for the solution vector is obtained 

(68)

where, (69)

3.2.2 Statistical moments of the solution vector
From Eq. (68), we can find the first and second order moments of the solution vector U for

several values of the order P of the Neumann expansion. In doing this, the recurrence relations in

Eqs. (36) and (37) are used implicitly to simplify the analysis. Statistical moments for the third

order Neumann expansion (P = 3) are as follows 

(70)

(71)

(72)

where, (73)

3.2.3 Results 

In the numerical implementation of the preceding analysis, the reinforced concrete beam is of

length L = 1.0 m and it is discretized into ten finite elements . The random bending

rigidity is modeled by the exponential covariance model with correlation length, ,

triangular covariance model with , and Wiener model with . Also, it is
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assumed that the bending rigidity, in the three models, has unit mean, = 1.0 N.m2, and the

uniform load intensity is also unity f0 = 1.0 N/m. 

» Results for Exponential covariance model

Figs. 2 and 4 show the deflection standard deviation along the beam for the bending rigidity

standard deviation σEI = 0.3 and σEI = 0.2 respectively. For various values of P and M the results are

plotted. These results agree with those evaluated by Ghanem and Spanos in Ghanem and Spanos

(1991) in behavior sense, but they are different in magnitudes. This difference is due to the fact that

the transformation of the domain of the process, , into the domain of the beam,

, was not taken into account in the results in Ghanem and Spanos (1991), which we

believe that it is not the correct procedure. In the previous analysis, if the above-mentioned

transformation is dropped, the results will be identical to the results in Ghanem and Spanos (1991).

Figs. 3 and 5 show the mean values of the deflection along the beam for σEI = 0.2 and σEI = 0.3

EI

x a– a,[ ] a L/2=,∈
x 0 L,[ ]∈

Fig. 2 Standard deviation of the deflection along the
beam, Exponential covariance model of the
bending rigidity, lcor = 1.0, σEI = 0.3

Fig. 3 Mean deflection along the beam, Exponential
covariance model for the bending rigidity,
(lcor = 1.0, σEI = 0.3)

Fig. 4 Standard deviation of the deflection along the
beam, Exponential covariance model for the
bending rigidity, lcor = 1.0, σEI = 0.2

Fig. 5 Mean deflection along the beam, Exponential
covariance model for the bending rigidity, (lcor

= 1.0, σEI = 0.2)
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respectively. Also the coefficient of variation (C.O.V), the standard deviation over the mean, for the

deflection is plotted in Fig. 6 when σEI = 0.2.

» Results for Triangular covariance model

Figures from 7 to 11 show the corresponding results for the triangularly decaying covariance

model. These results agree with those presented in Ghanem and Spanos (1991).

» Results for Wiener process

The results presented for both triangular and exponential covariance models encouraged us to

apply the previous analysis for another important model, Wiener model, of the underlying random

field. Fig. 12 shows the convergence of the solution, represented by the deflection standard

deviation along the beam, as M and P increase. The mean deflection of the beam and deflection

C.O.V in this case, are presented in Figs. 13 and 14 respectively. 

Fig. 6 Deflection C.O.V along the beam, Exponential covariance model for the bending rigidity, (lcor = 1.0,
σEI = 0.2)

Fig. 7 Standard deviation of the deflection along the
beam, Triangular covariance model for the
bending rigidity, (lcor = 2.0, σEI = 0.3)

Fig. 8 Mean deflection along the beam, Triangular
covariance model for the bending rigidity,
(lcor = 2.0, σEI = 0.3)
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Fig. 11 Deflection C.O.V along the beam, Triangular covariance model for the bending rigidity, (lcor = 2.0,
σEI = 0.2)

Fig. 12 Standard deviation of the deflection along
the beam, Wiener model for the bending
rigidity, τ2 = 1.0

Fig. 13 Mean deflection along the beam, Wiener
model for the bending rigidity, (τ2 = 1.0)

Fig. 9 Standard deviation of the deflection along the
beam, Triangular covariance model for the
bending rigidity, (lcor = 2.0, σEI = 0.2)

Fig. 10 Mean deflection along the beam, Triangular
covariance model for the bending rigidity,
(lcor = 2.0, σEI = 0.2)
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3.3 Random fields (load and bending rigidity) for the simply supported reinforced con-

crete beam

This is the more general case that is formulated in section 2.2.1. In realizing this work, the present

application is introduced.

 

3.3.1 Problem description and formulation

Consider the Euler-Bernoulli reinforced concrete simple beam of length L, with random bending

rigidity  and subjected to a distributed random transverse load . It is assumed that

 and  are the realizations of Gaussian random processes indexed over the spatial

domain occupied by the beam, . It is also assumed that they are represented by their

means  and , which are constants, and their covariance functions  and 

, respectively. In this case the mathematical model is

(74)

with

(75)

(76)

Expanding both processes involved in the problem using K-L expansion as follows

(77)

(78)

and using the general procedures described in section 2.2, the general global system in Eq. (25) is

obtained, which is
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Fig. 14 Deflection C.O.V along the beam, Wiener model for the bending rigidity, (τ2 = 1.0)
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(79)

where the deterministic part,  and the stochastic parts, Kn of the stiffness matrix K are computed

by assembling the elementary matrices defined in Eqs. (60) and (61) respectively. Also, the

deterministic part,  and the stochastic parts, Fn of the right hand vector F are defined in Eqs. (45)

and (46) respectively. After imposing the B.C.s and the equilibrium conditions in the same manner

as in the previous two applications, the system of order N specified in Eq. (79) becomes the system

of order N-2 in Eq. (28). Using the truncated Neumann expansion, the explicit form of the solution

vector is obtained as in Eq. (33).

3.3.2 Statistical moments of the response vector

Using Eq. (33), we can find the statistical moments of the response vector for various values of

the orders P and M. For example, the moments in case of second order Neumann expansion the are

as follows
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3.3.3 Results 
In this application the covariance kernels of the random bending rigidity and the random load are

modeled using the exponential model and the Triangular model. Firstly, it is considered that bending

rigidity and load are both modeled by exponential model. Secondly, the load is modeled by

Exponential model and the bending rigidity is modeled by Triangular model. In the numerical

implementation of the preceding analysis, the beam is of length L = 1.0 m and it was discretized

into ten finite elements . The Exponential covariance model has correlation length,

 and the Triangular covariance model has correlation length, .

Also, it is assumed that the bending rigidity, has unit mean, = 1.0 N.m2 and variance, 

and the load process has zero mean and unit variance. For the preceding numerical values the

results in Figs. 15-18 are obtained. Figs. 15 and 16 show the deflection variance and the deflection

C.O.V along the beam for various values of the orders M and P. It is evident that the solution is

affected mainly by the change of P. As P increases we can get more accurate solution. These

N
el

10=( )
lcor 1/c 1.0= = lcor 1/c 2.0= =

EI σEI

2
.04=

Fig. 15 Deflection variance along the beam,
Exponential covariance model for the
load and Triangular covariance model for
the bending rigidity

Fig. 16 Deflection C.O.V along the beam,
Exponential covariance model for the
load and Triangular covariance model
for the bending rigidity

Fig. 17 Deflection variance along the beam,
Exponential covariance model for both
load and bending rigidity

Fig. 18 Deflection C.O.V along the beam,
Exponential covariance model for both
load and bending rigidity
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figures show the results corresponding to the Exponential model for the load and Triangular model

for the bending rigidity. Figs. 17 and 18 show the corresponding results when load and bending

rigidity are both modeled by exponential model.

4. Conclusions

In this paper, the spectral SFEM approach is used for solving the stochastic differential equations

with random operator and/or random excitation. The work was confined to continuous-parameter

processes since they constitute the majority of mathematical models used for processes encountered

in practice. With no loss of generality, all random quantities are modeled as second order processes

defined only by their means and covariance functions. A general SSFEM formulation of the

problem is presented and three applications are introduced to check the validity of that formulation.

The numerical results are compared with results available in the literature, if possible. The first

application is a simply supported reinforced concrete beam under random load represented by a

random field. This problem has an analytical solution presented in Elishakoff et al. (1999), which

was taken as a validation tool for the presented spectral SFEM of this application. It is found that

the SFEM solution is approximately identical to the analytical solution for relatively small number

of terms in the K-L expansion of the load process. The second application is a cantilever beam with

random bending rigidity (EI) represented by a random field. The results of this problem are

compared with the results presented by Ghanem and Spanos (1991), which agreed with our

presented results. The success of the presented SFEM formulation in solving the previous two

problems encouraged us to present the third application, which is a new application, that is a simply

supported reinforced concrete beam, whose bending rigidity is a random field, under loading being

also a random field. The spectral SFEM formulation introduced in this paper succeeded in

presenting an approximate solution for this problem. The convergence of the solution is approached

while the orders of K-L and Neumann expansions are increased.
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Appendix-A 

Derivation of the eigenfunctions and eigenvales of the covariance kernel of the Wiener

Process (Nonstationary Process)

This process was developed as a model for Brownian motion and is discussed in details in (Parzen 1962,
Rosenblatt 1962). It is an important process for several reasons (Loeve 1977)

1. A large class of processes can be transformed into Wiener process.
2. A large class of processes can be generated by passing a Wiener process through a linear or nonlinear

system.

If  is a Wiener process, then it is Gaussian, defined for x > 0 and is characterized by the following
properties

(A1-a)

(A1-b)

(A1-c)

and its p.d.f is: (A1-d)

where τ2 is a deterministic constant. 
The kernel of this process is given by the equation

(A2)

Consider realization of this process on the interval . The eigenfunctions and eigenvalues of the cova-
riance kernel are the solutions of

          
(A3)

or (A4)

Differentiating Eq. (A4) twice w.r.t. x gives

(A5)

(A6)

where

(A7)

To find the B.C.s of the D.E (A6), substitute for x = 0 in (A4) and x = a in (A5) to get the following two
conditions
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The general solution of the D.E (A6) is 

(A9)

Applying the B.C.s in (A8), one can get
    
   (A10)

The 2nd equation in (A10) gives the infinite number of solutions for w as

(A11)

For these solutions the eigenfunctions are given by
          
         (A12)

Using the orthonormality condition of the eigenfunctions (Loeve 1977), the value of b2 is found to be
.

Finally,       (A13)

and       (A14)
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