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Abstract. Wind turbine blades are increasing in magnitude without a proportional increase of stiffness
for which reason geometrical and inertial nonlinearities become increasingly important. Often these effects
are analysed using a nonlinear truncated expansion in undamped fixed base mode shapes of a blade,
modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The
purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in
predicting the nonlinear response and stability of a blade by comparison to a full model based on a
nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that
under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred
to higher modes due to parametric or nonlinear coupling terms, which influence the response and stability
conditions. It is demonstrated that the response predicted by such models in some cases becomes instable
or chaotic. However, as a consequence of the energy flow the stability is increased and the tendency of
chaotic vibrations is reduced as the number of modes are increased. The FE model representing the case
of infinitely many included modes, is shown to predict stable and ordered response for all considered
parameters. Further, the analysis shows that the reduced-degree-of-freedom model of relatively low order
overestimates the response near resonance peaks, which is a consequence of the small number of included
modes. The qualitative erratic response and stability prediction of the reduced order models take place at
frequencies slightly above normal operation. However, for normal operation of the wind turbine without
resonance excitation 4 modes in the reduced-degree-of-freedom model perform acceptable. 

Keywords: wind turbine blades; nonlinear vibration; bernoulli-euler beam; co-rotating finite elements;
truncated modal expansion. 

1. Introduction 

In simulating the behaviour of a wind turbine many load combinations are studied to ensure that

the wind turbine is designed to withstand throughout its lifetime. Normally, these life cycle

simulations are performed using reduced-degree-of-freedom models because the computation time

has to be short. The worst cases are next used in more advanced structural models to verify and

optimize the design. During on-line operation of the wind turbine it is also essential with fast

working models, in case of active or semi-active vibration control when such mechanisms are
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installed. In this paper the predictions of response and stability of a wind turbine blade based on

such nonlinear reduced-degree-of-freedom model are validated by comparison with those of a full

nonlinear co-rotating FE model. Both models are formulated in a moving frame of reference

following the stiff body motion of the blade. The considered reduced-order model is based on a

spatial discretization using the fixed base undamped eigenmodes as a functional basis. The model

incorporates linear and nonlinear coupling terms between the different modes making energy

transfer a possibility, contrary to a linear model. This energy transfer is essential for correct stability

and response prediction. The geometrical nonlinear terms of the model originate from a nonlinear

description of the curvature of the blade and the rotation of internal and external forces during the

deformation. The inertial nonlinearities are caused by inertial axial forces induced by the support

point motion. The undamped fixed base eigenmodes are determined from an FE model of a beam

with pretwist using the Bernoulli-Euler beam theory with St. Venant torsion. 

In Larsen and Nielsen (2006a) and Larsen and Nielsen (2006b) the two lowest modes were

retained reducing the equations of motion to a nonlinear 2-degree-of-freedom system with the

above-mentioned nonlinear coupling terms. The idea was to investigate 2:1 internal resonance, due

to the eigenfrequency of the lowest edge mode is approximately two times the eigenfrequency of

the fundamental blade mode. Among the many studies was the relative influence of the different

parametric and nonparametric coupling terms along with the placement of the resonance peaks. The

stability of the 2-degree-of-freedom model was studied by a numerical calculated Lyapunov

exponent based on the algorithm of Wolf et al. (1984) for different relations between the first two

eigenfrequencies and for different relations between the frequency of the support point motion and

rotor rotation. At some excitation frequencies the response became both instable and chaotic. During

resonance, where the influence of nonlinearities is significant and the modal equations become

strongly coupled, it is questionable if only 2 modes are sufficient to get a correct prediction of the

response and stability. For this reason a convergency test is performed in this paper increasing the

number of modes to 4 and 6. Especially, the primarily nonlinear terms responsible for the energy

transfer between the modes are identified. Finally, the response and stability of the model by 2, 4

and 6 modes are compared to a full nonlinear co-rotating FE-beam model. The idea is to investigate

to which extent the energy transfer to higher modes than included in the reduced-degree-of-freedom

may influence qualitatively on the response and stability predictions. 

With emphasis on beam models for a rotor blade Volovoi et al. (2001) have reviewed several

beam theories considering effects such as transverse shear flexibility, Vlasov’s warping etc. The

overall conclusions were that for thin-walled box sections the Bernoulli-Euler theory containing

extension with St. Venant torsion and bending in two directions behaved adequately in most cases.

However, for short-wavelength modes shear effects need to be included using Timoshenko theory as

demonstrated by Yu et al. (2002). The study of flexible bodies attached to a moving support has

continued over seventy years. Baker et al. (1993) examined the response and stability of a

parametric and chaotic excited beam both experimentally and analytically. The analytical model,

derived by a Galerkin reduction of the plane equations of motion, could predict the behaviour from

parametric excitation but not for chaotic excitation. The slow convergence of a modal expansion can

be overcome by an expansion in nonlinear modes, Nayfeh et al. (1995). Based on a nonlinear

Bernoulli-Euler FE-beam model of a cantilever rotating beam, Apiwattanalunggarn et al. (2003)

devised a reduced model by use of a nonlinear normal mode expansion. Excellent agreement was

achieved by comparison to a full reference model. In creating a reference model the nonlinear co-

rotating formulation is ideal for large displacements. In this formulation a local coordinate system
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undergoing rigid body motion is assigned to each element. In this local coordinate system the elastic

deformations are small whereby regular beam theory is sufficient. This method has existed since the

seventies and described and examined in a number of papers and text books, among these Crisfield

1990 and Krenk 2005. The primary deviation between the formulations is the way of incorporating

rotations in three dimensions, because finite rotations do not add linearly as vectors. In Sandhu

et al. (1990) Euler rotations are used and the performance of the formulation is compared to other

large deformation formulations by a number of examples using curved 3D-beam elements showing

accurate and fast converging results. In the method described in Krenk (2005) quaternions are used

to describe the finite rotation of the nodes from which mean rotations are introduced to determine

the orientation of the base unit vectors of each element. In Crisfield et al. (1997) several time

integration algorithms using 3D co-rotational beams with two nodes and six degrees of freedom per

node are examined showing good performance by including numerical damping. Other authors

observed good experience by use of the Newmark integration with Newton Raphson iteration for a

co-rotational finite element formulation, e.g., Hsiao et al. (1999) and Behdinan et al. (1998).

In a regular three-bladed wind turbine the relation between the excitation frequency and the

rotational frequency of the rotor is ω0/Ω0 = 3 due to changes in wind load when the individual

blades are in top and bottom positions of the incoming shear wind field. This is an idealized ratio as

turbulence will introduce other ratios. Moreover, the relation between the excitation frequency and

the first eigenfrequency of the blade is below 1 i.e., ω0/ω1 < 1 during normal operation. In the

following simulations the response and stability will be examined for a frequency band of ω0/ω1 ∈
[0.5;1.5] well knowing that this interval is above the normal operating values of a wind turbine.

However, this larger interval will prove if the model produces stable results and examine what

happens in case of failure e.g., where the rotor speeds up. The chosen interval will result in

rotational frequencies of Ω0 ∈ [0.77;2.31]rad/s where the nominal value is Ω0 = 1.6 rad/s. In Larsen

and Nielsen (2006a) the first fixed base eigenfrequency of the blade at the nominal rotational

frequency of the rotor is ω1 = 5.14 rad/s resulting in a non-dimensional excitation frequency of ω0/

ω1 = 0.93 for normal operation. A shell model of the blade has been created giving the 10 lowest

eigenmodes i.e. up to a eigenfrequency of ω10 = 111.31 rad/s. The eigenfrequency corresponding to

the first torsional mode is ω9 = 100.22 rad/s, which does not have any significant bending

components. Also the remaining considered modes do not show any significant coupling between

bending and torsional components. Therefore, the torsional degree-of-freedom and eventually

couplings with bending components are not included in the model. 

2. Reduced degree-of-freedom model 

In this section the reduced degrees-of-freedom model is introduced together with the main

expressions, ending up with the nonlinear equations of motion for the modal coordinates. The

section is based on Larsen and Nielsen (2006a) where a more detailed description of the model and

the derived equations of motion can be found. 

2.1 Coordinate systems and support point motions 

In Fig. 1(a) the wind turbine is seen from upwind where the rotor rotates in the clockwise

direction. A fixed global (x1,x2,x3)-coordinate system is placed at the ground level in the centre of
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the tower. The x1-axis is oriented parallel to the rotor axes as shown in Fig. 1. To simplify the

matter it is assumed that the nacelle is not tilted and the blades are not coned. The length of a blade

is denoted L. A local (x1' ,x2' ,x3' )-coordinate system is fixed to the blade with origin at the hub with

the centre of gravity of the sections placed on the x3' -axis. The x1'  -and x2' -axis are placed in such a

way that they represent the flap-and edge-wise displacement, respectively. The position of the x2' -

axis is determined by the phase angle Φ(t) which is defined clock-wise from the global x2-axis. The

displacement and rotation of the hub, originating from the motion of the tower and nacelle, are

accounted for by introducing a prescribed linear translation and rotation with the global coordinates

ui, 0(t) and θ i, 0(t), respectively. 

In the following it is assumed that the motion of the nacelle and thereby the support point motion

only take place in the (x1,x3)-plane, corresponding to the following components, see Fig. 1(b).

u1, 0(t) = u(t), θ2, 0(t) = Θ2, 0u(t), u2, 0(t) = u3, 0(t) = θ1, 0(t) = θ3, 0(t) = 0 (1)

Here it is assumed that the motion of the tower is controlled by a simple modal coordinate

representing the horizontal motion u(t) of the nacelle. Θ2, 0 is a scaling factor for the corresponding

rotation of the nacelle. In the following u(t) is assumed to vary harmonically with the amplitude u0

and excitation frequency ω0 as 

(2)

Let  and  be column matrices storing the moving frame and fixed frame components of a

vector v. These components are related as 

(3)

 represents the components of the rotation tensor, rotating the fixed frame base vectors to the

moving frame base vectors, i.e., ii' = Aijij. The transformation matrix  is found as a sequence of

rotations. First, a rotation θ2, 0 of the rotor plane around the global x2-axis is performed, followed by

u t( ) u0cosω0t=

v ′ v

v ′ A v=

A

A t( )

Fig. 1 (a) Wind turbine seen from upwind, (b) Displacement of the nacelle, (c) Displacement of a material
point in the blade
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a blade rotation Φ(t) around the x1' -axis of the blade fixed (x1' ,x2' ,x3' )-coordinate system. 

 (4)

where 

(5)

The local components of the support point motion are  and =

, where Ai1(t) and Ai2(t) denote the components in the 1st and 2nd columns of . 

(6)

To simplify matters further, the effects on the hub displacement from the rotation θ2, 0 are

disregarded. Hence, , .

The time-derivative of Φ(t) specifies the rotational speed of the rotor

(7)

2.2 Modal equations of motion

In order to discretize the variational equations obtained from the principles of virtual work, the

displacement components  and the variational field  are represented by the

following modal expansions 

(8)

where  is the deformation component in the flap direction, and  is the

deformation component in the edgewise direction. qj(t) and δqj denote the modal coordinates and

virtual variations of this quantity.  represents the undamped eigenmodes, where the upper

index denotes the mode number and the lower index indicates the component. A discretized version

of  has been obtained by means of an FE-method, from which all necessary derivatives of

the eigenmodes also are obtained as described in Larsen and Nielsen (2006a). Retaining

nonlinearities up to 3rd order the ordinary differential equations for the modal coordinates become,

Larsen and Nielsen (2006a)
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where 

(10)

In Eq. (10) and below the summation convention is used on the Greek indices which count from

1 to 2, e.g.,  Mi specifies the modal mass for mode i, δij is

the Kronecker’s delta. ωi signifies the eigenfrequency of mode i. cij(t) denotes the components of

the modal damping matrix. The first term on the right-hand side signifies the structural damping

determined by the modal damping ratio ζi which is specified for each considered mode. As seen,

the structural damping has been assumed to decouple in agreement with the well-separated

eigenfrequencies and the low structural damping of the system. The last term represents the

contribution from the Coriolis forces. µ is the mass per unit length, and Eαβ‚ denotes the

components of the upper part of the spin rotational matrix  given as 

(11) 

kij(t) represents the components of the modal stiffness matrix. The first term on the right-hand side

signifies the modal structural stiffness, whereas the second part indicates the geometrical stiffness

due to centrifugal forces. Dαβ and D33 denote the components in the matrix  given as 

(12)

The position vector of a material point from the origin of the moving frame of reference is

denoted x(t) = x0(t) + u(t), where x0(t) is the undeformed or referential position and u(t) specifies

the local displacement vector of the particle as seen by an observer fixed to the moving frame of

reference, see Fig. 1(c). Then, the local components of the acceleration vector are given as, Larsen

and Nielsen (2006a)

(13)
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components of the centrifugal and Coriolis accelerations, respectively. The nonlinear coupling

coefficients in Eq. (9) are defined as follows 

(14)

As seen, the parametric excitation from  and  is also present in the quadratic

nonlinear coupling terms aijk(t) and bijk(t). The quadratic nonlinear coupling coefficient aijk(t)

includes both contributions from the rotation of the aeroelastic loads orthogonal to the deformed

blade and inertial contributions from the support point rotations and the rotational frequency of the

rotor. bijk(t) is also a quadratic non-linear coupling coefficient originating from inertial nonlinearities

from the support point rotation and the rotation of the rotor. aijk(t) is influenced by centrifugal terms,

whereas Coriolis terms enter in bijk(t). The cubic coupling term dijkl is due to the nonlinear

description of the curvature. E is the modulus of elasticity and eαβ‚ is the permutation symbol given

as 

(15)

 is the inertia tensor given by 

(16) 

where  and  are the principal moments of inertia, and ϕ is the twist angle cf. Fig. 2(b). gijkl is

another cubic nonlinear coupling coefficient caused by inertial nonlinearities. These are due to the

axial inertial forces which contribute to the geometrical stiffness along with the static axial force.

fi(t) denotes the modal loads in the ith mode given as 

(17)
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modal loads fi(t).  is the aerodynamic load described in Appendix B. The time dependent

coefficients are derived in Appendix A. 

3. Nonlinear co-rotating beam formulation 

To determine the accuracy of the reduced-degree-of-freedom model a nonlinear co-rotating beam

formulation is implemented. The model is based on Krenk (2005), where a detailed derivation of

the tangent stiffness matrix is given. 

The idea of a co-rotating formulation is to separate the deformation of each element into a rigid

body motion i.e., a translation and rotation of each element with respect to a fixed coordinate

system, and an elastic deformation within the local coordinate system fixed to the element. Because

the elastic deformations are moderate linear Timoshenko beam theory is adequate. Inside the local

coordinate system the beam is able to deform in the longitudinal direction, rotate around the beam

axis, and may undergo bending deformations and shear deformations. No coupling between

wharping and axial elongation is used i.e., only St. Venant torsion (homogeneous torsion) is used.

The orientation of the local coordinate system is defined by the base unit vectors  shown

in Fig. 2(a). The -axis is chosen along the deformed beam through the end points A and B of the

element, and the -and -axis are defined by the mean rotation at A and B. To get a simple

approach for constructing the constitutive relations the principal axes are introduced. This is done

by rotating the base unit vectors  the angle ϕ around the -axis corresponding to the

pretwist of the profile as shown in Fig. 2(b). The inertia of the blade is described by a constant

consistent mass matrix for a 3D-beam element. The inertial loads from the support point motion

together with the centrifugal and Coriolis contributions are determined from the respective

acceleration terms in Eq. (13) multiplied with a lumped mass matrix. Prismatic elements are used

when all geometric and material parameters are assigned. In solving the equations of motion

Newton-Raphson iteration is used. For time integration a nonlinear Newmark with numerical

damping has shown reliable. 

pα A,
″

i1″ i2″ i3″, ,
x3

″
x1

″ x2
″

i1″ i2″ i3″, , x3
″

Fig. 2 (a) an element in the co-rotating formulation, (b) rotation into principal axes based on the initial
pretwist of the profile and the angle to the principal axes
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4. Convergency studies of the reduced-degree-of-freedom model 

In this section several simulations of the reduced-degree-of-freedom model are performed with the

intention to determine the number of necessary eigenmodes with respect to response and stability.

Also the nonlinear couplings and related energy transfer are identified. The stability analysis is

based on a numerical calculated Lyapunov exponent using the algorithm by Wolf et al. (1984). In

the analysis the effect of including two, four and six modes is investigated. 

4.1 Input parameters 

As mentioned in the introduction it is chosen to fix the ratio between the support frequency and

the rotational frequency of the rotor at ω0/Ω0 = 3. Moreover, the relation between the support

frequency and the first eigenfrequency of the blade is varied in the interval ω0/ω1 ∈ [0.5;1.5].

Hence, as ω0 is varied the rotational speed Ω0 must change accordingly. In all the following

simulations the amplitude of the horizontal displacement of the nacelle is kept at the value u0 =

0.3 m. The model parameter of the rotation of the support is held constant at Θ2, 0 = 0.03 m−1 cf.

Eq. (1). The time integration is performed by a 4th order Runge Kutta with the time step ∆t =

T0, where T0 = . Stabilities such as variances and the Lyapunov exponent are based on time

series of the length of 1000 periods. The results will be presented as the root-mean-square (RMS)

value of the modal coordinates for the last fifth of the simulated time series in order to have

received stationarity of the response. All initial values of the modal coordinates have been chosen to

zero. 

4.2 Fixed base eigenmodes of the blade 

The geometrical and material parameters for the used blade are described in Appendix C. Hereby,

an FE Bernoulli-Euler beam model including St. Venant torsion has been devised from which the

undamped fixed base eigenmodes are determined. In Fig. 3 the flap component  and the edge-

wise componet  for the first six fixed base undamped eigenmodes are illustrated with the

dominating components normalized to 1 at the blade tip. Modal parameters and information

regarding the shape of the eigenmodes are listed in Table 1 for the first six modes. These modes are

determined from no rotational speed i.e., Ω0 = 0 whereby no additional stiffness from centrifugal

contributions are added in the modes. The damping ratio for all modes is kept constant at ζj = 0.01.

In the fundamental blade mode the aerodynamic damping ratio may vary from about 0.2 in case of

fully attached flow to negative values under deep stall conditions. In the used load model no

aerodynamic damping is included. The result of varying ζ1 has been examined in Larsen and

1

100
--------- 2π

ω0

------

Φ1

i( )

Φ2

i( )

Table 1 Modal parameters for the first six fixed base eigenmodes

Mode Φ( j) 1 2 3 4 5 6 

ωj [rad/s] 4.61 9.38 13.65 29.27 34.36 52.57 

Mj [kg] 399.1 846.2 367.9 326.6 471.3 232.3 

Dominating component Φ1 Φ2 Φ1 Φ1 Φ2 Φ1

Internal nodes in 0 1 1 2 2 3 

Internal nodes in 0 0 0 1 1 2 

Φ1

i( )

Φ2

j( )
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Nielsen (2006a), where the magnitude of the response at the most dominating resonance peaks

approximately became one third by increasing ζ1 from ζ1 = 0.01 to ζ1 = 0.05 and maintaining ζ2 =

0.01. 

As seen in Table 1 ω2~2ω1, which make internal resonances between these modes possible, either

due to nonlinear or parametric linear couplings between the 1st and 2nd modes. 

4.3 RMS-values of the modal coordinates for different number of modes 

In this section results are presented in terms of the RMS-values of the modal coordinates qj(t) as

the number of modes is increased in the model. The RMS-value Qj is defined by 

(18)

where  is the mean value and the sampling is performed over the last T = 200 periods of the

simulation. In Fig. 4 Qj is plotted as a function of the nondimensional excitation frequency ω0/ω1

for N = 2, 4, 6. Since the modal functions have been normalized to one at the tip in the dominating

component, Qj may be interpreted physically as the RMS displacement at the tip in that component.

Qj
2

T
--- qj µqj

–( )2 td
0

T

∫⎝ ⎠
⎛ ⎞

1/2

µqj
, 1

T
--- qj t( ) td

0

T

∫= =

µqj

Fig. 3 First six eigenmodes normalised to 1 in the blade tip based on the dominating component. (___) flap
component, . (_ _) edgewise component, Φ1

i( ) Φ2

i( )
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The results for Q1, Q3, Q4, Q6 and Q2, Q5 are plotted with different scales with respect to the flap

and edge component, respectively. Two conspicuous peaks are visible in almost all modal

coordinates at ω0/ω1 ≈ 0.85 and ω0/ω1 ≈ 1.22. As seen from Eq. (19), the modal loads f1(t) and f2(t)

contain harmonic components with the circular frequencies mΩ0, m = 1, ..., 4. In combination to the

frequency ratios  and ω0/Ω0 = 3, it was shown in Larsen and Nielsen (2006b) that

resonance from the load terms or internal resonance caused by linear or nonlinear parametric

coupling terms may occur in the fundamental blade or edgewise modes at any of the frequency

ratios ω0/ω1 = 3/m and ω0/ω1 = 6/m, respectively, where m = 1, ..., 12. The most severe resonance

ω2 2ω1≅

Fig. 4 RMS-values for the modal coordinates with 2, 4 and 6 modes. (_ _) 2 modes. (_._.) 4 modes. (__) 6
modes
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peaks occur nearby ω0/ω1  3/4 and ω0/ω1  1.0 corresponding to m = 4, 6. In Fig. 4 the

corresponding results have been shown for the present system. As seen, the peeks are placed at

somewhat higher frequencies due to the geometrical stiffness from the centrifugal force, which is

not introduced in the linear eigenvalue problem for finding the eigenmodes and eigenfrequencies i.e.

the geometric stiffness is not included in ω1. In Larsen and Nielsen (2006b) this effect was

introduced as an additional constant term in the linear eigenvalue problem for finding the

eigenmodes and eigenfrequencies. The magnitude of especially Q1 at the resonance frequency ratio

ω0/ω1 ≈ 1.22 shown in Fig. 4(a), is high above any realistic value as the length of the blade is only

46 m. These results should merely be considered as model predictions caused by nearby instability

due to loss of damping or stiffness. In reality the wind turbine will be controlled out of this region.

For N = 2 the first peak at ω0/ω1 ≈ 0.85 is visible in both Fig. 4(a) and Fig. 4(b). At the second

peak the response becomes instable in both modal coordinates and blows up. For N  = 4 the first

peak is slightly displaced to the left in both Fig. 4(a) and Fig. 4(b), and the next peak at ω0/ω1 ≈
1.22 is now visible. For ω0/ω1 > 1.22 the response stays inside the chosen limits, which is due to

energy transfer to especially mode 3. For N = 6 the same characteristics as for N = 4 are observed,

but with a slightly higher peak at ω0/ω1 ≈ 1.22 due to resonance in mode 5, see Fig. 4(b). Both

mode 4 and mode 6 contribute insignificantly to the response at all frequencies. 

4.4 Stability and chaotic behaviour of the reduced-degree-of freedom model 

In this section the stability and chaotic behaviour of the response will be further examined by

increasing the number of included modes. The stability of the system is investigated by the largest

Lyapunov exponent λ. 

≅ ≅

Fig. 5 Largest Lyapunov exponent with a marking of areas with chaotic response. (a) N = 2, (b) N = 4, (c)
N = 6. (_ _) Instable i.e. infinite response
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In Fig. 5 the Lyapunov exponent λ has been plotted as a function of the non-dimensional

excitation frequency ω0/ω1 for N = 2, 4, 6. A positive Lyapunov exponent may either indicate that

the response becomes instable or chaotic i.e., that exponential growth takes place of the distance

between two neighbouring states of the dynamic system in the phase space. In the following an

instable response is defined as a response with infinite magnitude, whereas a chaotic response is

finite but not periodic. For N = 2 the response is chaotic in the intervals ω0/ω1 ≈ [0.88;1.14], and for

ω0/ω1 > 1.18. For ω0/ω1 > 1.22 the response becomes instable as also shown in Fig. 4(a) and

Fig. 4(b). On Fig. 5(b) it is seen that by increasing the number of modes to N = 4 chaotic response

is registered in small intervals around the values ω0/ω1 = 1.03 and ω0/ω1 = 1.05. For ω0/ω1 > 1.22

the response is chaotic but finite, cf. Fig. 4. For N = 6 the value of the Lyapunov exponent is

further decreased and the chaotic response only takes place for ω0/ω1 > 1.22. Hereby, it can be

concluded that the stability overall is increased, and the tendency for chaotic behaviour is reduced,

as the number of included modes is increased. Based on the simulations it is evident that more than

2 modes are used. The analyses show that using 4 modes result in a good prediction of the response

and stability compared with the situation where 6 modes are included. Hence, the following

analyses are restricted to N = 4. 

4.5 Coupling and energy transfer between lower and higher modes 

In this section the important coupling coefficients responsible for the energy transfer between the

modes are identified. The following analyses are restricted to N = 4 with focus on the energy

transfer between the two first modes and the two next modes. 

4.5.1 Dominating terms 

In the following simulations it is shown that energy transfer between the two lowest modes and

two next primarily takes place for ω0/ω1 > 1.0, where the quadratic coupling terms i.e., aijk(t) and

bijk(t) are shown to be the most important. In these coupling terms the gyroscopic components D3β(t)

and E3β(t) enter, which consist of the rotational speed of the rotor Ω0 together with different rotation

components of the support point. As ω0/ω1 increases so does the rotational speed of the rotor Ω0

and the frequency of the support point displacement, whereby the coupling terms including these

parameters, quite reasonable become important. The cubic coupling coefficients are both time

independent and independent of the gyroscopic components whereby they have little influence on

the energy transfer. 

4.5.2 Energy transfer by exclusion of coupling terms 

In Fig. 6 the response for Q1 is presented for the reduced model with N = 4. The idea is to

investigate the energy between the two lowest and the two highest modes within the model by

excluding in turn linear, quadratic, and cubic coupling terms between the said modes. In Fig. 6(a)

the linear coupling term i.e., the coupling coefficients mij, cij and kij, where i = 1, 2 and j = 3, 4 or i

= 3, 4, j = 1, 2 are set to 0. As seen the response has only increased slightly from the full model

i.e., only a small part of energy is transferred through these coupling terms and mainly at high

values of ω0/ω1. In Fig. 6(b) the quadratic coupling coefficients aijk(t) between the two lowest and

two highest modes are excluded. As seen the response increases heavily at the peak ω0/ω1 ≈ 1.22

from which is concluded that these coefficients carry a substantial flow of energy. For ω0/ω1 > 1.22

the response corresponds more to the full model. Fig. 6(c) shows the corresponding results where
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the quadratic coupling coefficients bijk(t) are excluded. A large deviation relative to the reference

model is registered between ω0/ω1 ≈ [0.90;1.18], which to some extent corresponds to the results for

N = 2 in Fig. 4(a), but with higher RMS-values. At the peak ω0/ω1 ≈ 1.22 only insignificant

deviation is observed. However, for ω0/ω1 > 1.22 the response increases fast and passes out of the

plot, and only enters the limits in the end. Similar, the cubic coupling coefficients only change the

response minor cf. Fig. 6(d) and in this case lower the response compared to the full model.

Therefore, the cubic coupling coefficients dijkl and gijkl originating from geometric and inertial

nonlinearities are not the primary terms for energy transfer. From the analysis it is concluded that

energy transfer primarily takes place through the quadratic coupling coefficients, where the

couplings in aijk(t) mainly influence the response at the peak ω0/ω1 ≈ 1.22 and the couplings in bijk(t)

in the remaining part of the frequency band. 

5. Comparison of the reduced-degree-of-freedom model and the co-rotating model 

In this section the reduced-degree-of-freedom model with N = 2, 4, 6 is tested up against the

nonlinear co-rotating FE-model for static and dynamic loads. The same input parameters as previous

are used except that a time series with a sampling interval of 200 periods is used. A numerical

damping parameter of α = 0.05 is used in the nonlinear Newmark time integration scheme. In the

co-rotating model 20 beam elements are used corresponding to 126 degrees-of-freedom. The main

objectives are to compare the response and stability of the two models. 

Fig. 6 Q1 for the reduced-order-model with N = 4 where coupling coefficients between the two lowest and
two highest modes are excluded, (a) Exclusion of linear coupling terms, (b) Exclusion of quadratic
couplings in aijk(t), (c) Exclusion of quadratic couplings in bijkl(t), (d) Exclusion of cubic coupling
terms. (__) Reduced-order-model. (_ _) Exclusion of coupling coefficients
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5.1 Static load 

In the first comparison a static modal load corresponding to fi = fi,00 in Eq. (25) is applied, where

the support point is fixed and the rotor does not rotate i.e. the test corresponds to a cantilever blade.

In the reduced model all included modal coordinates and their belonging mode shapes are used to

determine the displacements. In Table 2 the tip displacement in the flap and edge direction for

different number of included modes is compared to the corresponding results for the co-rotating FE-

model. 

As demonstrated previously, only small differences appear between 4 and 6 modes and the results

in all cases are close to the predictions of the co-rotating FE-model. Even the results using merely 2

modes are in acceptable agreement with the referential results. It can hereby be concluded that the

two models perform almost identical for a static load when 4 modes are used in the reduced-degree-

of-freedom model. 

5.2 Dynamic load 

In this section the RMS-value of the tip displacement in the flap and edge direction is compared

for the reduced order model with N = 4 and the FE-model. The dynamic excitation is caused by a

harmonically varying support point motion in combination with a rotating rotor and aerodynamic

load as in the previous investigations. In Fig. 7 the results have been given for the following

interval of excitation frequencies ω0/ω1 = [0.5;1.5]

Table 2 Comparison of tip displacement between the reduced-degree-of-freedom models and the co-rotating
FE-model

Model 2 modes 4 modes 6 modes FE-model 

 Flap displacement [m] 5.54 5.42 5.42 5.45 

 Edge displacement [m] 0.86 0.83 0.82 0.80

Fig. 7 RMS-values for the tip displacement in the flap and edge direction. (_._.) 4 modes included in the
reduced-degree-of-freedom model. (__) Co-rotating FE-model
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As seen, the results are qualitatively in agreement for ω0/ω1 < 1.23, although substantial

deviations appear at the resonance peaks at ω0/ω1 ≈ 0.84 and ω0/ω1 ≈ 1.22, where the FE-model

produces much smaller response. The characteristics of the to models for ω0/ω1 > 1.23 are no longer

similar which is due to chaotic behaviour of the reduced-degree-of-freedom model as shown in

Fig. 5(b). It can hereby be concluded that the reduced-degree-of-freedom model is not valid for ω0/

ω1 > 1.23 and it predicts too high RMS-values at the resonance peaks. 

5.3 Stability 

From Fig. 5 it is seen that ω0/ω1 = 0.5 results in stable response for all three numbers of modes,

and that ω0/ω1 = 0.9 results in chaotic response, when 2 modes are used, and ordered response for

4 and 6 modes. For ω0/ω1 = 1.3 a chaotic response is obtained in all cases, and even instability for

N = 2. These frequency ratios are used in the following stability analysis. In Fig. 8 a Poincaré map

is shown for corresponding values of the tip displacement and velocity in the flap direction at time

intervals 2π /ω0 for both the co-rotating FE-model and the reduced-degree-of-freedom model for

N = 4. It turns out that the response period is determined from the interference of the response

caused by the circular frequencies ω0 + Ω0 and ω0 − Ω0, and for a rational value of ω0/Ω0 = 3 the

response period is in Larsen and Nielsen (2006b) shown to be periodic with the period 3T0. For

the co-rotating FE-model cf. the first row in Fig. 8, the Poincaré map shows as predicted three

different points in the phase plane. This is the case for all three values of ω0/ω1 corresponding to

an ordered response. As predicted by the Lyapunov exponent the reduced-degree-of-freedom

model is stable at ω0/ω1 = 0.5, cf. row two in Fig. 8. For ω0/ω1 = 0.9 the response is ordered but

with slightly more displacements of the points, and at ω0/ω1 = 1.3 the response is chaotic. The

reduced-degree-of-freedommodel predicts chaotic response at ω0/ω1 = 1.3 for N = 2, 4, 6, which is

not the case for a full model. This is due to increased transfer of energy to higher modes for the

full model.

Fig. 8 Poincaré maps for tip motion in flap direction. Column (a) ω0/ω1 = 0.5. Column (b) ω0/ω1 = 0.9.
Column (c) ω0/ω1 = 1.3
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5.4 Time consumption

In this section the computation time of the reduced-degree-of-freedommodel and the co-rotating

FE-model are compared. Both programs are developed in Fortran and in Table 3 the average

simulation time per period is presented.

It is clear that even though the programs could be optimized further a major advantage is gained

by using the reduced-degree-of-freedom models over the co-rotating model. From the reduced-

degree-of-freedom models the time consumption increases heavily by increasing the number of

modes. For large simulations it is therefore necessary to determine the minimum number of modes

which produce acceptable results. Based on the previous simulations 4 modes are the best choice

among the used number of modes.

6. Conclusions

Based on the convergency test of the reduced-degree-of-freedom model it can be concluded that

the response by use of two modes does not deviate much from the results by including more modes

when looking at a normal operating relation between the frequency of the support point motion and

the first blade eigenfrequency. By comparing the results using four modes with the results using six

modes almost no difference appears for ω0/ω1 < 1. It can also be concluded that the fourth mode

contributes very little whereby three modes would result in an efficient and qualitative prediction of

the response. If the system by malfunction speeds up the rotor resulting in a relation of ω0/ω1 > 1 it

is shown that the response for two modes becomes instable, which is not the case for four modes.

Including six modes do not change the qualitatively and quantitatively behaviour of the system. 

From the stability analysis it is shown that by increasing the number of modes the stability of the

system is improved. It is also demonstrated that the main terms for energy transfer between the first

two modes and the next two are the quadratic terms which describe inertial nonlinearties from the

support point motion and the rotor rotation. 

In the comparison between the reduced-degree-of-freedom model and the co-rotating FE-model

almost identical results under normal operation except at the resonance peaks were produced if the

number of modes are four or above. This outcome was repeated both in the static, dynamic and

stability tests where four modes produced results close to the co-rotating FE-model. However, for

values of ω0/ω1 outside the normal operating area the reduced-degree-of-freedom model no longer

match the co-rotating FE-model in neither response nor stability. A comparison between the time

consumption for the two models showed a major gain in using the reduced-degree-of-freedom model. 

It can hereby be concluded that the reduced-degree-of-freedom model is not reliable in predicting

the response nor the stability for arbitrary relations between the support point motion and the first

eigenfrequency of the blade. This way of incorporating couplings between the different modes for

energy transfer is therefore not sufficient and other methods where the truncated modes are included

Table 3 Comparison of average computation time per period for the reduced-degreeof-freedom model and the
co-rotating model 

Model 2 modes 4 modes 6 modes Co-rotating

Time/period [sek] 0.002 0.008 0.022 2.185
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should be investigated e.g. by use of nonlinear normal modes. 

However, for normal operation of the wind turbine outside the resonance peaks the two models

perform very similar when the number of modes are four but even three modes should produce

almost identical results reducing the computational cost. 
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Appendix A. TIme dependent coupling coefficients 

In this appendix the time dependent coupling coefficients i.e., kij(t), cij(t), aijk(t), bijk(t) and fi(t) are rewritten
into as many time independent terms as possible to gain a more optimized code. The aerodynamic load is also
described. 

có
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Inserting the relevant components of (t) and (t) as given by Eq. (12) and Eq. (11), respectively, and the
local components of the support point motions given by Eq. (6), the time dependent coefficients Eq. (10) and
Eq. (14) may be written in the following way 

(19)

where the time independent coefficients are found to be 

(20)

Appendix B. Aerodynamic load 

The incoming wind velocity  as seen from a considered cross section of the blade varies periodi-
cally with the rotational speed Ω0.  is assumed to vary logarithmic in the following way 

(21)

where V0 is the undisturbed mean wind velocity and h is the height of the rotor axis. The rotational wind
velocity is given as  = . Then, the resulting wind velocity  may be written as 

(22)

The following expression for the aerodynamic loads are used 

(23)
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where ρ is the density of air, V is the resulting wind velocity from the incoming wind velocity and the rota-
tional wind velocity, c is the chord length, and cL and cD are the lift and drag coefficients, respectively. In the
simulations the following values are used: V0 = 15 m/s, h = 60 m, ρ = 1.2 kg/m3, cL = 1.5 and cD = 0.05.

 denotes the mean value of , when the blade is at the top and bottom positions. Corre-
spondingly,  denotes half of the difference between these extreme values. The coefficients aijk,0(t)
and fi,0(t) in Eq. (20) may then be written in the following way

(24)

with

Appendix C. Specifications of blade

The theory is demonstrated using a 46 m pitch regulated blade. The aerodynamic profiles are NACA 63-
418 section profiles as illustrated in Fig. 9, scaled with chord and height values indicated in Fig. 11(d). The
inner 2.0 m of the blade has a circular cross section with a diameter of 2.0 m. In Fig. 10 the blade is shown
based on the geometry of the root and the scaling and pretwisting of the NACA 63-418 profile. The blade has
the pretwist angle, the mass, local moments of inertia, chord length and thickness distributions as indicated in
Fig. 11. The total weight is 10 t. The stiffness and mass distribution are chosen so that the eigenfrequencies
approximately match those given by a manufacture of a corresponding blade size. The modulus of elasticity is
E = 3 · 104 MPa. The twist throughout the blade is chosen so that the angle of attack of the resulting wind is
approximately 6o at a constant rotational speed of 1.6 rad/s, and an incoming wind velocity of 12 m/s. At
these nominal values a wind turbine with such three blades should produce approximately 2.75 MW accord-
ing to the Blade Element Momentum theory described in Hansen 2000.
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Fig. 9 Normalized profile of a NACA 63-418 blade
section

Fig. 10 Illustration of the used blade in the
simulations
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Fig. 11 (a) Pretwist angle throughout the beam, (b) Mass per unit length, (c) Distribution of local moment of
inertia. (__) . (_ _) . (__) . (d) (__) Chord length c. (__) Height h of cross sectionsI11″ I12″ I22″




