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Abstract. Column shear failures observed during recent earthquakes and experimental data indicate that
shear deformations are typically associated with the amount of transverse reinforcement, column aspect
ratio, axial load, and a few other parameters. It was shown that in some columns shear displacements can
be significantly large, especially after flexural yielding. In this paper, a piecewise linear model is
developed to predict an envelope of the cyclic shear response including the shear displacement and
corresponding strength predictions at the first shear cracking, peak strength, onset of lateral strength
degradation, and loss of axial-load-carrying capacity. Part of the proposed model is developed using the
analysis results from the Modified Compression Field Theory (MCFT). The results from the proposed
model, which uses simplified equations, are compared with the column test data.

Keywords: shear deformation; reinforced concrete column; seismic response; shear failure; shear
strength degradation.

1. Introduction

The total lateral deformation of a reinforced concrete (RC) column subjected to lateral loads is the

sum of deformations due to flexure, shear, and slip of the longitudinal bars at column ends (Fig. 1).

Flexural deformations vary with the moment along the length of column, while the slip

deformations are concentrated at column ends and typically are not included in flexural

displacements. These two deformation components can be estimated fairly accurately using

available models. Shear deformations are the focus of this study with the objective of modeling an

envelope of the cyclic lateral load-shear displacement response of a column. Setzler and Sezen

(2007) attempted to combine these three deformation components to predict the total lateral

deformation of RC columns.

Shear deformations have traditionally been ignored in design and analysis of RC columns mainly

because of three reasons: 1) it is not easy to isolate and measure shear deformations in a real

structure or during experimental testing in the laboratory, 2) the shear behavior of cracked

reinforced concrete is not fully understood, and there is no consensus on how to model shear

behavior of beams and columns. As a result, usually semi-empirical models are used in shear

design, and 3) shear deformations are relatively small compared to flexural deformations. The
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contribution of shear deformations to total deformations is probably less than 10 percent for a

properly designed column (Lehman and Moehle 2000). However, shear deformations can be

significant in older existing columns with reinforcement details not meeting the requirements of the

current design codes. For example, the test column shown in Fig. 2(a) experienced shear failure

after the longitudinal steel yielded and flexural strength was reached. While only about 10 percent

of the total lateral displacement, ∆total was due to shear deformations at first flexural yielding, the

contribution of shear deformations to total displacement increased to approximately 40 percent at a

lateral displacement three times the yield displacement, i.e., at a displacement ductility of 3 (Fig. 3).

The experimental data in Fig. 3 indicate that the contribution of shear to the total lateral response

increases with increasing displacements as a result of further cracking and damage to member. Four

of the five specimens shown in Fig. 3 were tested by Sezen and Moehle (2006), and the last

specimen, U6 was tested by Saatcioglu and Ozcebe (1989). These specimens were used later in this

paper to validate the proposed shear deformation model.

Modern structural engineering practices aim to prevent shear failure in columns which is brittle

and frequently leads to partial or total collapse of the structure. Reinforced concrete buildings

constructed prior to 1970s are prone to shear failure, especially in high seismic regions in the

Fig. 1 Components of lateral deformation in a reinforced concrete column

Fig. 2 Shear failure of test columns: (a) Specimen-1, (b) Specimen-2 (Sezen 2002), and column shear failures
during: (c) 1999 Kocaeli, Turkey earthquake, and (d) 1971 San Fernando, California earthquake
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United States, because of insufficient and poor detailing as per the code requirements of that time.

Also, in many countries around the world, column shear failure appears to be the most common

failure mode leading to structural collapse and loss of life during earthquakes (Fig. 2). Post

earthquake reconnaissance (e.g., Aschheim et al. 2000, Dogangun 2004) shows that columns with

poorly detailed and/or inadequate transverse reinforcement are likely to exhibit large shear

deformations, which need to be estimated relatively accurately in order to predict the overall column

behavior and to identify potential shear failure. The main objective of this study is to investigate the

shear behavior and predict shear deformations of columns experiencing flexural yielding and

subsequently failing in shear.

Only few models (e.g., Modified Compression Field Theory, MCFT proposed by Vecchio and

Collins (1986 and 1988), softened truss and membrane models by Hsu (1988) and Hsu and Zhu

(2002), and the model proposed by Lehman and Moehle 2000) attempted to generate a

continuous monotonic lateral load-shear displacement response for RC panels or beam-columns.

Many researchers used MCFT analysis results to develop simplified response envelopes. Some of

those simplified models will be discussed below. The majority of previous research work related

to shear behavior of columns concentrated on prediction of a specific response quantity. For

example, ACI Committee 426 (1973) reports an equation to predict the shear strength required to

initiate flexure-shear cracks. Shear displacement models at the maximum shear strength are

proposed by Park and Paulay (1975) and recently by Gerin and Adebar (2004). Several models

are available to predict the maximum shear strength, e.g., ACI 318 (2005), Priestley et al. (1994),

and Sezen and Moehle (2004). The residual shear strength after shear failure is considered by

Pincheira et al. (1999).

Fig. 3 Contribution of flexure, shear and slip displacements to total displacement
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2. Previous shear models

Most research studies investigating the shear deformations in RC members, including beams,

columns and shear walls, are based on the MCFT (Vecchio and Collins 1986 and 1988). Currently

the AASHTO bridge design code (American Association of State Highway and Transportation

Officials, 2000) uses MCFT for shear design of RC structures. The MCFT is a powerful tool to

predict the shear behavior of reinforced concrete including the effect of tensile resistance of cracked

concrete. The detailed consideration of tensile resistance of concrete increases both the accuracy and

complexity. In addition, in order to satisfy force equilibrium and strain compatibility conditions, an

iterative algorithm is required. Currently, MCFT is probably the most accurate available model,

however it is complicated to implement. The computer program, Response-2000 (Bentz 2000)

which implements MCFT is used in this study to investigate the shear behavior of columns. The

program gives the overall lateral load-displacement relations including flexural deformations,

however lateral load-shear displacement relations are not readily available in its output. The

program calculates the shear strain distribution over the height of the column at each load step. The

lateral load-shear displacement relations reported in this paper are determined by integrating these

shear strain diagrams over the column height. As shown in Fig. 4, Response-2000 stops its analysis

once the peak lateral strength is reached.

It should be noted that the MCFT models the RC shear behavior under monotonically increasing

lateral loads only. Similarly, the main objective of this study is to develop a monotonic shear model.

Although some researchers (e.g., Maruyama and Jirsa 1979, Takayanagi et al. 1979) proposed

hysteretic shear models, due to lack of sufficient experimental data and complex nature of the

problem, these models were limited in scope. Ozcebe and Saatcioglu (1989) did the pioneering

work for hysteretic modeling for shear. In their cyclic model, the monotonic envelope was obtained

from the Compression Field Theory (CFT), an older version of MCFT.

Gerin and Adebar (2004) developed a simplified model to predict the lateral load-shear

deformation response of membrane elements with uniformly distributed reinforcement in the two

directions, e.g., shear walls. As illustrated in Fig. 5(b), the model includes a linear elastic response

prior to development of first shear cracks in concrete. The peak lateral strength, Vn is assumed to be

Fig. 4 Comparison of experimental data with MCFT results for Specimen-1 (Sezen 2002) and Column U6
(Saatcioglu and Ozcebe 1989)
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reached when the horizontal reinforcement yields at a displacement ∆y. Based on evaluation of test

data, a conservative limit for the ultimate shear strain or displacement is also provided.

Ozcebe and Saatcioglu (1989) used the nonlinear MCFT response (Fig. 5(a)) in their models as an

envelope or backbone curve as it is, while others such as Lee and Elnashai (2001) and Pincheira

et al. (1999) represented MCFT response by simplified piecewise linear models (Figs. 5(c) and

5(d)). It should be noted that, in order to be able to create these piecewise linear models or

backbone curves, it is necessary first to carry out an MCFT analysis of the RC member using a

computer program like Response-2000. In their model, Lee and Elnashai considered both the shear

cracking and reinforcement yielding as parameters affecting the shear response. In the model used

by Pincheira et al., the effect of shear cracking is recognized and the strength degradation starts

immediately after the peak strength is reached. This model was developed primarily to analyze

older nonductile columns. Most recently, Mostafaei and Kabeyasawa (2007) proposed a model

including the effect of axial-shear-flexure interaction on column behavior. The column shear

behavior was incorporated into the model by applying MCFT.

Based on MCFT analysis of column specimens and experimental data, a simplified monotonic

shear model is developed in this paper. In the proposed model, the first yielding in the longitudinal

steel is not considered as a critical response stage. In other words, the proposed lateral load-shear

displacement relationship is independent of the flexural yielding in the column, contrasting most of

the available simplified models, including those used by Priestley et al. (1996), Gerin and Adebar

(2004), and Panagiotakos and Fardis (2001).

3. Proposed model

In order to develop a piecewise linear lateral load-shear displacement relationship or envelope,

shear displacements and/or strengths must be predicted at certain critical stages. As shown in Fig. 6,

the critical points identified in the proposed model include: first shear cracking (Point A), maximum

Fig. 5 Lateral load-shear displacement models: (a) MCFT, (b) Gerin and Adebar (2004), (c) Lee and Elnashai
(2001), and (d) Pincheira et al. (1999)



44 Halil Sezen

shear strength (Point B), onset of strength degradation (Point C), and loss of axial-load-carrying

capacity (Point D).

The shear cracking point, identified as Point A in Fig. 6, does not correspond to the first cracking

in concrete, which is usually due to flexure. Rather, Point A indicates the initiation of diagonal

shear cracks. Either analytically or during the experiments, it is extremely difficult to identify this

point clearly, because there will be flexural cracks in the column at this stage and the shear cracks

may form as the extension of those pre-existing flexural cracks. MCFT is used here to predict the

first shear cracking.

Even though MCFT yields a quite accurate response until the maximum shear strength is reached

(Fig. 4), it is based on a relatively complex theory with an iterative algorithm. MCFT does not

provide a simple formulation suitable for hand calculations, which would be more useful for

practical purposes. In this research, MCFT analysis results were used to develop simple equations to

define Points A and B in Fig. 6. To achieve this, it was necessary to first check if MCFT provides

certain consistent trends.

For an extensive evaluation of MCFT results, a virtual test matrix consisting of columns with

different physical properties, material properties, and load conditions was designed. The columns

had properties in the following range: section sizes including 356, 457, and 610 mm square (14, 18,

and 24 inches); aspect ratio, a/d (a = shear span, and d = effective section depth) ranging from 2.3 to

9.3; axial load ratio (P/Agfc', Ag = gross cross sectional area) varying from 0.05 to 0.62; concrete

compressive strength, fc': 20.7 to 41.4 MPa (3 to 6 ksi); longitudinal steel yield strength, fyl: 276 to

448 MPa (40 to 65 ksi); transverse steel yield strength, fyv: 345 to 483 MPa (50 to 70 ksi); longi-

tudinal steel reinforcement ratio, ρl: 1% to 4%; and transverse steel reinforcement ratio, ρv: 0.175%

to 0.525%. 

The above ranges of parameters cover most reinforced concrete columns exhibiting shear, shear-

flexure, and flexure failures. To observe the effect of a certain column parameter, only that property

was varied while keeping all parameters the same, creating a large matrix. Note that the aspect

ratios were also varied in the analyses to extend the evaluations well into the pure shear and pure

flexure failure ranges. Specimen-1 (Sezen 2002) was used as the control specimen or “standard

Fig. 6 Proposed monotonic lateral load-shear displacement relationship
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column” for developing the test matrix. 

Fig. 7 shows the shear response of Specimen-1 under different axial loads. Each curve has the

same initial stiffness, evidently independent of the compressive axial load. The unique deviation

points in Fig. 7 are observed to correspond to the beginning of shear cracking, which happens much

after formation of flexural cracks as per MCFT. In other words, flexural cracking does not seem to

affect the shear stiffness. Obviously, flexural cracking greatly influences the flexural stiffness of the

column, which is not the subject of this paper. The shear response after shear cracking seems to

depend very much on the axial load level as all other parameters are unchanged. The plots in Fig. 7

indicate that the cracked shear stiffness increases with increasing axial load. This is expected

because the increase in axial load tends to make the column stiffer, reducing the displacements.

However, the initial shear stiffness is somewhat different under tensile or zero axial load. All

columns in the test matrix exhibited very similar behavior. Detailed analysis results can be found in

Patwardhan (2005). Based on these observations, an initial shear stiffness was defined to represent

the response prior to the first shear cracking (slope of line OA in Fig. 6). 

3.1 Uncracked shear stiffness

Evaluation of calculated MCFT responses showed that the uncracked shear stiffness can be

satisfactorily predicted using the principles of elasticity from Eq. (1), which is based on the

assumption that the shear stress distribution is uniform over the cross section of column. This is a

reasonable assumption for reinforced concrete members.

 (1)

where L = column length, and G = shear modulus = Ec/2(1 +µ). Poisson’s ratio, µ for normal strength

concrete is approximated as 0.30. Then, for normal strength concrete, G = 1820 √ fc' in MPa units.

Consistent with Eq. (1), MCFT analyses of columns in the test matrix showed that the uncracked

shear stiffness is independent of other parameters such as column aspect ratio, amount of transverse

and longitudinal reinforcement. As an example, Fig. 8 shows that the uncracked shear stiffness of

Specimen-1 remains unchanged prior to shear cracking if the longitudinal reinforcement ratio is

varied.

∆cr

VcrL

GAg

-----------=

Fig. 7 Shear response of test column, Specimen-1 subjected to different axial loads 
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3.2 Cracking shear strength

Consistent with the trend shown in Fig. 7, the cracking shear strength, Vcr (Point A in Fig. 6) is

primarily a function of uncracked shear stiffness, GA/L and axial load, P. For columns in the test

matrix, Vcr values calculated from MCFT analyses are plotted as a ratio of GA/L and as a function

of axial load ratio in Fig. 9. Based on regression analysis of results, Eq. (2) is recommended

  (2)

In Eq. (2), P/fc'Ag is unitless, and GA/L has MPa units.

3.3 Maximum shear strength and corresponding average shear strain

There are a number of available existing models to predict the maximum shear strength, Vn of a

RC column (at Points B and C in Fig. 6). In this study, Eq. (3) proposed by Sezen and Moehle

(2004) is adapted.

Vcr
P

2fc′ Ag

-------------- 0.10+⎝ ⎠
⎛ ⎞ GA

L
--------

P

2fc′ Ag

-------------- 0.10+⎝ ⎠
⎛ ⎞ 1820 fc′ A

L
--------------------------= =

Fig. 9 Calculated cracking displacement versus axial load ratio

Fig. 8 Effect of longitudinal reinforcement ratio on shear displacement
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   (3)

where Av is cross-sectional area of transverse reinforcement oriented parallel to the applied shear

and having longitudinal spacing s. The factor k is defined to be equal to 1.0 for displacement

ductility less than 2, to be equal to 0.7 for displacement ductility exceeding 6, and to vary linearly

for intermediate displacement ductilities. For columns failing in shear, ideally the maximum shear

strength calculated from Eq. (3) and MCFT analysis should be the same.

The average shear strains or shear displacement at the maximum shear strength appear to be

influenced by many factors. The effect of each parameter on the calculated average shear strain is

investigated by keeping all other parameters constant. For example, it was found that the shear

strain is inversely proportional with the square root of axial load ratio, P/Ag fc' (Patwardhan and

Sezen 2006). It was also found that the shear strain varies linearly with the product of longitudinal

steel yield strength, fyl and longitudinal steel ratio, ρl. Based on regression analyses presented in

Fig. 10, a linear relationship is proposed to calculate the shear strain, γn at the maximum strength.

The unit of fyl is MPa, ρl is expressed in percentage, and aspect ratio, a/d and axial load ratio are

unitless. The corresponding shear displacement, ∆n can simply be calculated by multiplying γn by

the column length, L. 

Eq. (4) is valid for columns exhibiting shear-flexure and flexure failures only. In other words, the

maximum shear strength Vn is equal to or larger than the shear capacity Vp corresponding to the

maximum flexural strength, or plastic hinge moment, Mp, possibly obtained from sectional moment-

curvature analysis. Vp can be calculated by dividing Mp by the shear span, a (=L for a cantilever

column). The behavior of columns failing in shear before flexural yielding is not investigated here,

but reported in Patwardhan (2006).

 (4)

Vn Vs Vc+ k
Avfyvd

s
-------------- k

0.5 fc′
a d⁄

----------------- 1
P

0.5 fc′ Ag

-----------------------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

0.8Ag MPa( )+= =

γn
fyl ρl⋅

5000 a d⁄ P

Ag fc′
------------⋅ ⋅

------------------------------------------------ 0.0004–=

Fig. 10 Regression analysis of parameters affecting the shear strain at maximum strength
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3.4 Onset of shear strength degradation

The shear response of a column can be predicted reasonably well by the MCFT until the

maximum strength is reached (Fig. 4). However, the column experiences additional shear

deformations under the sustained lateral load while exhibiting significant strength degradation and

an eventual axial load failure. Thus, at least two more points on the shear envelope representing the

onset of shear degradation and axial load failure (Points C and D in Fig. 6) need to be defined.

As illustrated in Fig. 5(b), Gerin and Adebar (2004) identifies a point where the shear strength

degradation begins in their model. However, their model is based on a theoretical shear

displacement at yield and shear strain ductility. The flexural yielding was not considered to be

critical in the proposed model. The model by Gerin and Adebar is modified to obtain the ultimate

shear strain, γu

 (5)

where vn (= Vn /bd, b = width of cross section) is the shear stress at the peak strength (Point B or C

in Fig. 6), and the shear strain at the peak strength, γn is calculated from Eq. (4). The corresponding

shear displacement, ∆u (at Point C in Fig. 6) can then be obtained by multiplying the shear strain γu

by the column height.

3.5 Shear displacement at axial load failure

It has been a common practice to stop the column testing in the laboratory as soon as some

strength degradation was observed. In recent years, few researchers loaded their test columns

beyond the peak strength and after the shear failure until the axial-load-carrying capacity was

completely lost. As a result, there is very limited test data including complete response all the way

up to axial load failure (Point D in Fig. 6). Consequently, due to lack of experimental evidence,

deformation capacities after shear failure were not investigated until recent years. Using a shear

friction model and test data, Elwood and Moehle (2005) and Elwood (2004) proposed an equation

to calculate the drift ratio at axial load failure for shear-damaged columns.

 (6)

where θ is the angle of the shear crack and dc is the depth of the core concrete, measured to the

centerlines of the transverse reinforcement. In the derivation, θ was assumed to be 65 degrees.

Following the procedure presented in Setzler (2005), the shear displacement at axial load failure (∆af

in Fig. 6) can be calculated by subtracting the maximum flexural and slip displacements from the

total lateral displacement, ∆ALF.

4. Model verification

During the vast majority of column experiments, only the total lateral displacement, but not shear

γn 4 12
vn

fc′
-----–⎝ ⎠

⎛ ⎞ γn=

 ∆ ALF

L
------------

4

100
---------

1 tan θ
2

+

tanθ P
s

Av fyvdctanθ
-----------------------------⎝ ⎠

⎛ ⎞
+

--------------------------------------------------------=
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displacements, was measured and reported because it is difficult to measure shear deformations

independent of flexural deformations. Accurate measurement of shear deformations requires placing

a series of horizontal, vertical and diagonal displacement potentiometers over the height of the

specimen. As a result, RC column experimental data with reported shear displacements are scarce.

Few column tests with available shear displacement data are used to evaluate the proposed model.

The proposed model was applied to six test columns: four columns tested by Sezen and Moehle

(2006) and two by Saatcioglu and Ozcebe (1989). Properties of columns and calculated and

measured lateral strengths are shown in Tables 1 and 2. The shear cracking and peak strengths, Vcr

and Vn are calculated from Eqs. (2) and (3), respectively. Vp is the lateral force required to develop

maximum flexural moment capacity, Mp which is calculated from moment-curvature analysis of the

cross section. Vmax,MCFT is the maximum lateral strength calculated from Response-2000. The data in

Table 2 indicates that the measured maximum lateral strengths, Vtest compare reasonably well with

the strengths predicted from Eqs. (2) and (3) and MCFT analysis. Ideally, Vmax,MCFT should be equal

to the smaller of Vp and Vn. Fig. 11 compares the experimental lateral load-shear displacement

Table 1 Properties of test columns

Column a b a/d fc' fyl fyv ρl ρv s P P/Agfc' µδ

mm mm MPa MPa MPa % % mm kN

Saatcioglu and Ozcebe (1989)

U1 1000 350 3.28 43.6 430 470 3.8 0.27 150 0 0 3.12

U6 1000 350 3.28 37.3 437 425 3.8 0.84 65 600 0.13 7.37

Sezen and Moehle (2006)

Specimen-1 1473 457 3.76 21.1 447 469 2.5 0.17 305 667 0.15 2.88

Specimen-2 1473 457 3.76 21.1 447 469 2.5 0.17 305 2669 0.61 1.29

Specimen-3 1473 457 3.76 20.9 447 469 2.5 0.17 305 var.* var.* 2.72

Specimen-4 1473 457 3.76 25.6 447 469 2.5 0.17 305 667 0.15 3.14

*Specimen-3 was tested under varying axial load.

Table 2 Test column strengths

Column Vcr Vn Vp Vmax,MCFT Vtest

kN kN kN kN kN

Saatcioglu and Ozcebe (1989)

U1 147 228 290 246 276

U6 225 368 362 360 343

Sezen and Moehle (2006)

Specimen-1 104 285 303 315 315

Specimen-2 240 409 308 328 359

Specimen-3-H* 209 409 308 338 301

Specimen-3-L*  88 234 258 238 247

Specimen-4 114 281 305 315 294

*High and low axial loads for Specimen-3 are 2669 kN (H*) and 249 kN (L*), respectively.
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relations with the monotonic response envelope predicted using the proposed model. Overall, the

measured and calculated responses show a good agreement.

Fig. 11 Lateral load-shear displacement relations for columns tested by Sezen and Moehle (2006) and
Saatcioglu and Ozcebe (1989)
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5. Conclusions

A model was proposed to predict the monotonic shear response of reinforced concrete columns.

The model predicts the shear displacements and strengths at certain critical response stages,

including first shear cracking, peak strength, onset of shear failure, and axial load failure. The shear

displacements at first shear cracking and at the maximum strength are predicted from simplified

equations which were defined using the results from the Modified Compression Field Theory,

MCFT analyses of a large number of columns. In order to predict the shear response at the onset of

shear degradation, a slightly modified version of an existing model was used. Due to lack of test

data as well as models for predicting displacements at axial load failure, a widely used existing

model for total lateral displacement was adapted. Then, the shear displacement is calculated as the

difference between the total lateral displacement and the maximum flexural and slip displacements.

The predictions from the proposed model are in good agreement with the scarcely available

experimental data.
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