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Symbolic computation and differential quadrature method 
- A boon to engineering analysis
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Abstract. Nowadays computers can perform symbolic computations in addition to mere number
crunching operations for which they were originally designed. Symbolic computation opens up exciting
possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due
to the advent of computers as well as general purpose finite element software. But now, classical analysis
has reemerged as an attractive computer option due to the capabilities of symbolic computation. The
repetitive cycles of simultaneous – equation sets required by the finite element technique can be
eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This
consequently saves in data preparation, storage and execution time. The power of Symbolic computation
is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to
generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix
method 4) to find the stresses of a plate subjected to in-plane loading using Levy’s approach 5) to draw
the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic
equilibrium equations from Lagrange equation. This paper also presents yet another computationally
efficient and accurate numerical method which is based on the concept of derivative of a function
expressed as a weighted linear sum of the function values at all the mesh points. Again this method is
applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to
moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform
or non-uniform thickness. The numerical results obtained are compared with those available in existing
literature in order to verify their accuracy.

Keywords: symbolic computation (Computer Algebra); coupled shear wall; natural frequency; flexural
stiffness; geometric stiffness; mass matrix; differential quadrature; mesh points.

1. Introduction

Numerical methods rule supreme in modern structural analysis, thanks to the advances in

computing hardware over the last three decades. Nowadays the analysis of even the most complex

structures can be performed into relative ease using modern numerical tools such as the finite

element method but are also seen as allowing these to be undertaken even by engineers whose

background in mechanics is relatively modest or low. Parallel with this increase in capacity for

solving large problems, there has also been a gradual but definite shift in emphasis as classical

techniques have been totally neglected in favour of numerical techniques. This with few exceptions
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of relatively simple closed form solutions, there is an increasing tendency to assume

indiscriminately that Finite Element method is to be preferred even when long established analytical

techniques whether approximate or exact are readily available. It is usually the case that new

advances in mathematics are first taken up by scientists, and that it is only later that such advances

come to the attention of the engineering community. This observation certainly holds in the

development of computerized symbolic manipulations where application to structural engineering

lagged behind their counterparts in fields such as quantum physics, celestial mechanics etc. Thus

about five decades elapsed since the first reported use of symbolic computations (Pavlovic 2003)

and serious attempts to harness these to structural mechanics problems. A very important illustration

of the potential use of computer algebra concerns those instances where a given set of calculations

needs to be solved on a recurring basis. Such calculations may include multiple (partial)

differentiation and integration, trigonometric and exponential functions, matrix inversions etc. Now

all these operations find important applications in structural analysis, and there are frequent

instances where the relevant calculations will be performed a very large number of times during the

solution of a particular problem. Then it is clearly advantageous to perform such calculations in

symbolic form, especially if the relevant computer package is used regularly.

Closed form solutions would often provide good understanding of the relevant physical

phenomena and permits the identification of, and classification into different regimes of behaviour

that enables the designer to attain a “feel” for the problem at hand. Economic parametric studies

could be undertaken based on newly discovered “laws” which do not demand a vastly increased

computational expenditure. The size of the problem which computer can handle algebraically as a

rule is very small compared to that in which straight forward numerical computations are

performed. There is already considerable scope for the application of computer generated symbolic

calculations in the field of structural engineering (Wilkins 1973). 

The aim of this present paper is to outline briefly some of the features of application software

using Symbolic Computation or Computer Algebra to deal with symbolic data, and to illustrate

some of the potential use in structural engineering to specific problems such as 1) coupled shear

wall 2) to generate beam element matrices 3) natural frequency of shear frame 4) stress distribution

of a rectangular plate 5) influence surface for deflection and moment for a simply supported plate,

for which Finite Element method requires modeling and solving large size of algebraic equations

6)getting dynamic equilibrium equations from Lagrange’s equations. The paper also presents a new

approach using the differential quadrature method (DQM) for analysis of a)coupled shear wall and

b) lateral buckling of thin-walled beams due to moment gradient and c) buckling of a column and

d) static and buckling analysis of circular plates of uniform or non-uniform thickness.

2. Background

The history of the development of symbolic algebra manipulated by computers is traced by

Sammet (1969). The first programs for symbolic differentiation appeared in 1953, but the subject

seems to have been dropped from then until the early 1960’s. At that time, work commenced on

several general programs or languages for algebraic manipulations. 

“Symbolic Manipulation” or “Computer Algebra” is essentially “expert systems” incorporating

knowledge in the field of Mathematics as given by Beltzer (1990a,b). These programs have the

remarkable capability of manipulating not only numbers but also abstract symbols which represent
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numerical quantities. One can refer to the powerful systems namely earlier ALTRAN (ALgebra

TRANslator) and the more recent MATHEMATICA (Wolfram 1991), MATHCAD (Benker 1999) or

MAPLE. These systems are more versatile than traditional compute codes such as FORTRAN,

BASIC and C which can perform only numerical computations. Pavlovic (2002) has reviewed the

development of symbolic computation until 2003. The use of the MACSYMA system in symbolic

Finite Element computations can be found in Korchoff and Fenves (1979). Mbakogu and Pavlovic

(1998, 2000) applied symbolic computation for the free vibration response of plates other than

circular ones. The solutions presented by them are well suited to parametric studies covering

arbitrary plane geometries and material properties. Levy et al. (2004) developed geometric stiffness

of members using Symbolic Algebra. Some of the applications of symbolic computations include

the theory of random vibration and stability (Benaroya and Rehak 1987). 

MATHEMATICA, a general software system developed by Wolfram is capable of performing

numerical, symbolic and graphical computations in a unified manner. It is a very large software

system containing hundreds of functions for carrying out various tasks in science and engineering.

The symbolic computation capability enables the performance of many kinds of algebraic operations

such as expansion, factorization and simplification of polynomials and rational expressions as well

as solution of polynomials. The system can handle numbers of any precision and supports linear

algebraic operations such as matrix inversion and eigen system computation. This has well defined

rules and syntax, which provides a ready platform for creating programs and graphics as well as for

extending its capabilities. . 

3. Benefits of symbolic processing

Mathematica has two components – an interface and a kernel viz: -a) Interface – Type in

equations to solve and commands b) Kernel – Evaluates commands and stores data. They are

somewhat independent! Like any programming language,

Mathematica has syntax

Learning the syntax is the key to proficiency

Almost all errors are syntax mistakes

Error messages in Mathematica can be cryptic

Input Interface has cells

Different types of cells for different types of text

Palettes too

MATHEMATICA has additional packages such as

* LAPLACE TRANSFORMS

* VECTOR ANALYSIS

* SYMBOLIC SUM

* DESCRIPTIVESTATISTICS

* PADE

* MISCELLANEOUS CHEMICAL ELEMENT

* GRAPHICS POLYHEDRA

Using Mathematica one can expand the equation, differentiate a function, solve the algebraic and

differential equations, integrate a function, plot a function and do matrix operations with ease.
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The symbolic calculation 

▶ gives much more visibility to the analyst

▶ the engineer can more easily grasp the inter-relationship of the problem variables recognize

simplification to be made

▶ he can do more accurate job

▶ the easiness with which these codes provide analytical results allow to focus on the ideas

rather than on overcoming computational difficulties.

▶ it encourages appreciation of the qualitative aspects of investigations . 

▶ it will have greater impact on engineering education.

4. Limitations

Memory space is the most common limiting factor in MATHEMATICA calculation. Time can

also however be a limiting factor. The internal code of MATHEMATICA typically uses polynomial

time algorithm whenever feasible. In case no polynomial time algorithm is available, Mathematica

can use non-polynomial algorithm. The usefulness of computer based symbolic operations is

provided in the cases of expansions containing functions such as for instances, the exponential Sinh

and Cosh. Care must be taken to maintain valid results and avoid undue contamination by range

and rounding errors. More specific applications in the field of structural engineering will follow.

5. Examples

5.1 Coupled shear wall

Frame action is obtained by the interaction of slabs and columns and this is not adequate to give

the required lateral stiffness for buildings taller than 15-20 stories. Shear walls must be strategically

located. Shear walls can be of open or closed sections. They are provided around elevators and

Fig. 1 Coupled shear wall
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staircases. Shear walls possess adequate lateral stiffness to reduce inter storey distortions due to

earthquake induced motions. They are better both with respect to life safety and damage control.

When two or more shear walls are connected by a system of beams or slabs, total stiffness exceed

the summation of individual stiffnesses. Openings normally occur in vertical rows as shown in

Fig. 1 throughout the height of the wall and the connection between wall cross section is provided

by a connecting beam which forms part of the wall or floor slab or a combination of both. The

degree of coupling between the two walls separated by a row is expressed in the form of geometric

parameter α. Coupled shear walls may be analyzed by using Rosman’s method (Rosman 1966)

considering it as a continuum. The individual connecting beams of finite stiffness Ib are replaced by

an imaginary continuous connection of lamina as shown in Fig. 1. The equivalent stiffness of the

lamina for a height of dx =  where ‘h’ is the height of the storey.

When the walls deflect inducing vertical shear force in the lamina and the system is made

statically determinate by introducing a cut in the lamina which is assumed to lie at the point of

contra flexure as shown in Fig. 1. The displacement at each wall is determined by the addition of a)

wall rotation b) link beam bending c) beam shear deflection d) due to axial compression and tension

in the wall. Governing differential equation is given by

(1)

where T is the tension (compression) in the wall and the geometric parameter α2 and ψ are given by

Eqs. (2a), (2b).

(2a)

(2b)

H : Total height of the shear wall 

h : storey height

l : centre to centre distance of the wall

I1, I2 : moments of Inertia of wall 1 and 2 respectively

A1, A2 : areas of wall 1 and 2 respectively

(3)

Where Ib'  is the moment of Inertia of the link beam without shear deformation

b, d width of the opening and depth of the link beam 

ν-Poisson’s ratio of concrete taken as 0.16

Ib-Moment of Inertia of the link beam with shear deformation.

Shear/unit length of the continuum is denoted as

(4)

Me is the moment due to external lateral load (may be earthquake or wind load) and for loading 1)

constant load at the top 2) for uniformly distributed load 3) for trapezoidal distribution 4) for
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parabolic distribution the moment due to external load in general given by 

where

(5)

<c> can be obtained for the type of loading specified on the coupled shear wall and T can be

solved from the differential Eq. (1) and using the boundary conditions T[0] = 0 and T'[H] = 0 where

H is the height of the shear wall.

Total moments resisted by two walls is given by

(6)

Moments resisted by each wall is according to their stiffness as

(7)

Moment in the link beam is given by

(8)

For earthquake resistant design of shear walls, one needs to know the drift and the governing

equation for deflection may be written as

(9)

Me p0〈 〉 c{ }=

p0〈 〉 1  x  x
2
  x

3
  x

4〈 〉=

c〈 〉 c0  c1  c2  c3  c4〈 〉=

m Me Tl– p0〈 〉 c{ } Tl–= =

m wall 1–( )

m wall 2–( )⎩ ⎭
⎨ ⎬
⎧ ⎫ I1

I2⎩ ⎭
⎨ ⎬
⎧ ⎫

m/ I1 I2+( )=

M LB( ) Qb/2 qhb/2= =

EI
d

2
y

x
2

d
-------- Me Tl–=

Fig. 2 Variation of T along the height of the wall
(x = 73.15 base)

Fig. 3 Variation of Moment in wall-1 along the depth
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Integrating the above equation (or solving the differential equation) with respect to x and

substituting the boundary conditions y = 0 and y' = 0 at x = H one will be able to arrive at the

deflection of the coupled shear wall due to wind or earthquake loading. 

The program is executed in MATHEMATICA and the variation of T, moment in wall-1, moment

in wall-2, moment in link beam and deflection of the wall are shown in Figs. 2-5 and 6 respectively

for the coupled shear wall of height 73.15 m with width of the walls 4.88 and 2.44 m and thickness

of the wall 0.3 m, width and depth of opening as 2.44 m, depth of link beam as 1.22 m and centre

to centre of the wall as 6.1 m subjected to trapezoidal load of 30 kN/m at the top and 15 kN/m at

the bottom. Young’s modulus and Poisson’s ratio may be assumed as 20 GPa and 0.2. For the

problem considered ; ψ = 0.0114; c2 = 15; c3 = −0.0346. The program in Mathematica

is shown in below.

α
2

0.08237=

Fig. 4 Variation of Moment in wall-2 along the
depth

Fig. 5 Variation of Moment in Link Beam along the
depth

Fig. 6 Deflection of the coupled shear wall
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If the same problem has to be carried out by Finite element packages, the coupled shear wall has

to be modeled into 4 node finite elements. Wilson (2002) recommends that four node element

cannot model linear bending if fine mesh is used and produces infinite stresses. Hence the coupled

shear wall has to be modeled into beam, column and rigid zones otherwise the results are not

reliable. Parametric studies for the coupled shear considered could be easily made by changing α, ψ
in Symbolic Programming whereas it cannot be done so easily with Finite element method.

5.2 Automatic generation of stiffness matrix in finite element method

One of the first investigations on automatic generation of stiffness matrix was performed by

Cecchi and Lami (1977). The flexural stiffness matrix, geometric stiffness matrix and mass matrix

of a beam element can be generated using MATHAMATICA as

DSolve[{T''[x] − 0.08237 * T[x] == −0.0114 * (15 * x2− 0.0346 * x3),

T[0] == T'[73.15] == 0}, T[x], x]

.

T = T[x]

    

Plot[t, {x,0,73.15}]

m = 15 * x2− 0.0346 * x3− t * 6.1

m1 = m * 2.9557/3.2688

m2 = m− m1

Plot[m1,{x,0,73.15}]

Plot[m2,{x,0,73.15}]

q = D[t, x]

mlb = q * 2.44 * 3.66/2

Plot[mlb,{x,0,73.15}]

Dsolove[y''[x] == m/(20000000 * 3.2688), y[73.15] == y'[73.15] == 0}, y[x], x]

z = y[x]

Plot[x,{x,0,73.15}]

Do[Print[x,” “,t,” “,m1,” “, m1,” “,mlb,” “,z,” “], {x,0,73.15,7.315}]
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where n is the shape function vector and g and f are the first and second derivatives of n. 

Flexural Stiffness matrix [s] is given by

Geometric Stiffness matrix [kg] is given by

g

D n 1 1,[ ][ ] x,[ ]

D n 2 1,[ ][ ] x,[ ]

D n 3 1,[ ][ ] x,[ ]

D n 4 1,[ ][ ] x,[ ]⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

f

D g 1 1,[ ][ ] x,[ ]

D g 2 1,[ ][ ] x,[ ]

D g 3 1,[ ][ ] x,[ ]

D g 4 1,[ ][ ] x,[ ]⎝ ⎠
⎜ ⎟
⎜ ⎟
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⎜ ⎟
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=

nt Transpose n[ ]=
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where ‘r’, ‘ev’ and [ma] represent mass density, area of the cross section and the mass matrix

respectively.

5.3 Natural frequency using transfer matrix method for a shear wall frame

Consider a shear frame shown in Fig. 7 consisting of ‘n’ stories. The free body diagram of the ith

storey is shown in Fig. 8. Here ‘m’ is the mass, ‘k’ is the stiffness, ‘V’ the shear, ‘w’ is the natural

frequency and ‘v’ the displacement.

ma rf n
n

L

∫ ntdlx⋅=

Mass matrix

0.37142evLr  0.0523evL
2
r  0.1285evLr  0.0309evL

2
r–

0.0523evL
2
r  0.0095evL

3
r  0.0309evL

2
r  0.0071evL

3
r–

0.12857evLr  0.0309evL
2
r  0.37142evLr  0.05238evL

2
r–

0.03095evL
2
r  – 0.00714evL

3
r  – 0.05238evL

2
r–   0.0095evL

3
r

Fig. 8 Free body diagram of ith storey

Fig. 7 Shear frame of ‘n’ stories
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Considering inertia force, the shear in the ith storey can be written in terms of shear of (i + 1)th

storey.

(10)

(11)

or

(12)

Initially the displacement at the top storey level and the natural frequency are both assumed. By

using the transfer matrix method, it is possible to find the displacement at the base as well as shear

in the base storey. If the support displacement is not zero, a new value for the natural frequency is

assumed and the procedure is repeated till we get the value of the base displacement as zero. To

find the natural frequency of the three storeyed shear building as shown in Fig. 9 given the mass

and the stiffness MATHCAD (Benker 1999) is used.

Since ‘MATHCAD’ can solve the problem using symbolic processing, we will write in symbolic

form

Transfer matrix at top frame (assume p = ω2)

(13)

(14)

Vi Vi 1+
m1ω

2
v1+=

vi vi 1––
Vi
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----
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----------
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2
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-----------------+= =
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⎧ ⎫ 1  m1ω

2

1

ki

---  – 1
miω

2

ki

------------–

Vi 1+

vi⎩ ⎭
⎨ ⎬
⎧ ⎫

=

V3

v2⎩ ⎭
⎨ ⎬
⎧ ⎫ 1  m3p

1
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---  – 1
m3p

k3

---------–

V4 0=

v3⎩ ⎭
⎨ ⎬
⎧ ⎫

a[ ]
0

1⎩ ⎭
⎨ ⎬
⎧ ⎫

= =

V2
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1
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---------–
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⎨ ⎬
⎧ ⎫
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v2⎩ ⎭
⎨ ⎬
⎧ ⎫
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⎨ ⎬
⎧ ⎫

== =

Fig. 9 3 storeyed shear frame
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(15)

(16)

where d is a function of (m1, m2, m3, k1, k2, k3, p) and using few trials p can be found out as

d(2,1.5,1,1800,1200,600,211) = (17)

(18)

One can also get the mode shape as <1 0.6428 0.301, 0>. Hence ω = = 14.520 radians/sec.

A program ‘frtr.ncd’ is written in MATHCAD to calculate the fundamental frequency of 3 storey

shear frame.

5.4 Application of Levy’s method using MATHCAD

The Levy method (Pavlovic 2003) is a powerful analytical technique which finds wide application

in the fields of elasticity, plates and shells. The method consists of reducing a governing differential

equation from partial to ordinary form, the latter being amenable to a standard solution process. The

main requirement which needs to be fulfilled before the method can be used is that the boundary

conditions along a portion of the contour of the system must be of a specific kind. Now, we will

consider our discussion to rectangular boundaries shown in Fig. 10 although other contours can also

be dealt with. Governing partial differential equation for two dimensional elasticity problems (under

zero or constant body forces) is given by

(19)

Where φ is the Airy’s stress function and the stresses are given by

V1

v0⎩ ⎭
⎨ ⎬
⎧ ⎫ 1  m1p

1

k1

----  – 1
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---------–
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⎧ ⎫
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v1⎩ ⎭
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⎧ ⎫

c[ ] b[ ] a[ ]
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1⎩ ⎭
⎨ ⎬
⎧ ⎫

== =

c( ) b[ ] a[ ]
0

1⎩ ⎭
⎨ ⎬
⎧ ⎫

d{ }
V1

v0⎩ ⎭
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⎧ ⎫
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4–×⎩ ⎭

⎨ ⎬
⎧ ⎫

p 211  v0 0= =

211

∂
4
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∂ x
4

--------- 2
∂

4
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∂ x
2
∂ y

2
-----------------

∂
4
φ

∂ y
4

---------+ + 0=

Fig. 10 Rectangular plate subjected to in plane stresses
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(20)

Assuming zero direct stress action along the edges x = 0 and x = a, the solution of Eq. (19) can

be expressed in the following form as

(21)

The function Ym can be found out by substituting each term of Eq. (21) into Eq. (20) which then

becomes ordinary differential equation as

(22)

The solution to Eq. (22) is easily obtained, so that a typical term Ym in Eq. (21) takes of the form

(23)

The constants Cs can be evaluated using the specified boundary conditions a the edges y = 0 and

y = b as (expressing the loadings in terms of Fourier series)

(24)

In this way, for each value of m, the set of Cs is solved in terms of the corresponding set of Ds

and this gives the mth term of the stress function, from which the stress distribution due to the mth

term of the applied surface loading can be determined. The full solution can be obtained by

superposing the solutions. This means that, although the whole procedure is fairly straight forward,

the calculation of each series term requires the solution of a system of four simultaneous equations.

One can reduce the effort considerably if instead of solving each set of equations numerically one

could obtain a single, general solution of a typical set symbolically. Hence the matrix for the mth

term of the Fourier series as

(25)

σx
∂

2
φ

∂ y
2

---------= ; σy
∂

2
φ
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---------= ; τxy
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-------------–=
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∞

∑
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-------= =
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yd
-----------– αm
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∞
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∞

∑=
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∞
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D4( )msinαmx

m 1=

∞

∑=
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where

(26)

The above is programmed in MATHCAD and the σx, σy, τxy stress distribution due to cosine

variation of shear stress distribution at the edge y = 0 are shown in Fig. 11.

β coshαb; γ sinhαb= =

Fig. 11 Stress distributions in a plate
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5.5 Influence surface for deflection and moments in a simply supported isotropic plate.

Consider a simply supported isotropic plate of sides ax and by subjected to unit load at a point

. The deflection at a point  is represented by . Regarding x, y as the

variables, w =  is the equation of the elastic surface of the plate submitted to a unit

load at a fixed point . Now considering  as variable, the deflection equation given by

Eq. (27) defines the influence surface for the deflection of the plate at a fixed point  the

position of the traveling unit load being given by . If, therefore, some load of intensity f

distributed over an area A is given, the corresponding deflection at any point of the plate may easily

be obtained. For Navier’s solution the influence surface for the deflection is given by Timoshenko

and Krieger (1959)

(27)

The corresponding MATHEMATICA program is given below.

The influence surface for deflection and moment in the direction of X axis are shown in Figs. 12

and 13 respectively for a square plate (ax = by = 1)

x y,( ) ξ η,( ) K x y ξ η, , ,( )
K x y ξ η, , ,( )

x y,( ) x y,( )
ξ η,( )

x y,( ) x y,( )

w K x y ξ η, , ,( ) 4

π
4
abD

----------------

sin
mπξ

a
-----------sin

mπη

b
-----------sin

mπx

a
-----------sin

mπy

b
-----------

m
2

a
2

------
n
2

b
2

-----+⎝ ⎠
⎛ ⎞

2
----------------------------------------------------------------------------

n 1=

∞

∑
m 1=

∞

∑= =

C xi et xc yc ax by m n, , , , , , ,[ ] sin m*Pi*xc/ax[ ]*sin n*Pi*yc/by[ ]*=

sin m*Pi*xi/ax[ ]*sin n*Pi*et/by[ ]

f m n.ax by, ,[ ] 4/ π
4

*ax*by( )* m/ax( )2 n/by( )2+( )( )=

h C xi et xc yc ax by m n, , , , , , ,[ ]*f m n.ax by, ,[ ]=

g sum h m 1 5, ,{ }, n 1 5, ,{ },[ ]=

Plot3D g xc 0 1, ,{ } yc 0 1, ,{ }, ,[ ]

Fig. 12 Influence surface for deflection at centre (for
a simply supported isotropic square plate)

Fig. 13 Influence surface for Moment in the direction
of x-axis (at centre of the plate)
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5.6 To arrive at Euler lagrange equilibrium equations

Consider a two bar pendulum shown in Fig. 14. The resultant velocities  of the first and

second mass may be written as

(28)

Lagrange is written as

(29)

Substituting (30)

By differentiating one will be able to get two Euler Lagrange equilibrium equations as obtained

from Mathematica.

"Section D19, TWO DEGREES OF FREEDOM"

"state the lagrangian of the two bar pendulum -Lagrangian is"

la=(m1+m2)*L1^2*h1t^2/2+m2*L2^2*h2t^2/2+m2*L1*L2*h1t*h2t*Cos[h1-h2]+

m2*g*L2*Cos[h2]+(m1+m2)*g*L1*Cos[h1];

"compute the derivatives and get two Euler-Lagrange equations"

q1=D[la,h1t];q2=D[la,h2t];f1=D[la,h1];f2=D[la,h2];

d={h1t->D[h1[t],t],h2t->D[h2[t],t],h1->h1[t],h2->h2[t]};

s1=q1/.d;c1=f1/.d;s2=q2/.d;c2=f2/.d;

equation1==Simplify[c1-D[s1,t]]

equation2==Simplify[c2-D[s2,t]]

Section D19, TWO DEGREES OF FREEDOM

state the lagrangian of the two bar pendulum -Lagrangian is

compute the derivatives and get two Euler-Lagrange equations

equation1 == -(L1 (g m1 Sin[h1[t]] + g m2 Sin[h1[t]] + L2 m2 Sin[h1[t]-h2[t]] h2'[t] + L1 (m1 +

   m2) h1''[t]+L2 m2 Cos[h1[t] - h2[t]] h2''[t]))

equation2 == -(L2 m2 (g Sin[h2[t]] - L1 Sin[h1[t] - h2[t]] h1'[t] + L1 Cos[h1[t] - h2[t]] h1''[t] +

   L2 h2''[t]))

R
·
1 R

·
2,

R
·
1 l1θ

·
1 ; R

·
2

2

l2
2
θ
·
2

2

l1
2
θ
·
1

2

2l1l2θ
·
1θ

·
2cos θ2 θ1–( )+ +==

L T V–
1

2
--- m1 m2+( )l1

2
θ
·
1

2 1

2
---m2l2

2
θ
·
2

2

m2l1l2θ
·
1θ

·
2cos θ2 θ1–( )+ += =

 m2gl2cosθ2– m1 m2+( )gl1cosθ1–

θ1 h1; θ2 h2; θ
·
1 h1t; θ

·
2 h2t====

Fig. 14 Two bar pendulum
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6. Differential quadrature method

It is well known that analysis of engineering systems include two main steps; construction of

mathematical models for a given physical phenomenon and the solution of mathematical equation.

As seen in the examples before, most engineering problems are governed by a set of differential

equations. Because of finite difference and finite element methods, the solution of static and

dynamic equations of complicated structures is now possible. There is yet another efficient method

called Differential Quadrature Method (DQM) which can be used quite easily for solving

differential equations. DQM was introduced by Bellman and Casti (1971). The basic concept of the

method is that derivative of a function at a given point can be approximated as a weighted sum of

the functional values at all of the sample points in the domain of that variable. Hence it is possible

to reduce differential equations into a set of algebraic equations using the above approximation with

boundary conditions applied. The accuracy of the method depends on the number of sampling

points used. Since the introduction of Quadrature method, application to various engineering

problems has been investigated and their success has shown potential of the method as attractive

numerical techniques (Bert and Malik 1996, Sherbourne and Pandy 1991). Tomasiello (1998)

analysed static and free vibration of beam and rectangular plates by the differential quadrature

method. Shu et al. (2000) applied Differential quadrature method for curvilinear quadrilateral

plates. Li and Huang (2004) applied moving Least squares differential quadrature method for free

vibration of anti-symmetric laminates. Civalek (2004, 2005) and (Civalek and Ulker 2004)

combined harmonic differential quadrature method with finite difference method for the

geometrically non-linear analysis of double curved isotropic shells resting on elastic foundation. 

6.1 DQM Method explained

For a function f (x), DQM approximation of the mth order derivative at the ith sampling point is

given by

(31)

where ‘n’ denotes the number of sampling points in the domain. Assuming Lagrangian interpolation

polynomial

(32)

where

(33)

The differential of above function given by Eq. (31) or first derivative leads to

d
m

x
m

d
--------

f x1( )

f x2( )

·

f xn( )⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

Hij

m( )

f x1( )

f x2( )

·

f xn( )⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

for i j, 1 2 … n, , ,= =

f x( ) M x( )
x xi–( )M1 xi( )

---------------------------------- for i 1 2 … n, , ,= =

M x( ) Πj 1=

n
x xj–( )=

M1 xi( ) Πj 1 j i≠,=

n
xi xj–( ) for i 1 2 … n, , ,==
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(34)

The second and third and higher derivative can be calculated as

(35)

and the number of sampling points n > m.

For the sampling point, we adopt well accepted Chebyshev-Gauss-Lobatto (CGL) mesh

distribution given by Shu (2000) in a non-dimensional form as

(36) 

For some cases, uniform distribution may also be adopted.

6.2 Treatment of boundary and initial conditions

6.2.1 Boundary conditions

Consider a column pinned at both ends. The boundary conditions may be written as v = 0; at x = 0

and x = 1 and v'' = 0 at x = 0 and x = 1 . These boundary conditions may be incorporated in DQM as

D(n + 1, 1)v1 = 0

D(n + 2, n)vn = 0

D(n + 3,1:n){v} = c(1, 1:n, 2){v} = 0

D(n + 4,1:n){v} = c(n, 1:n, 2){v} = 0 (37)

Similarly other types of boundary conditions such as fixed and free ends may be incorporated.

6.2.2 Initial conditions

In time coordinate problems one can use inverse node numbering as in space rocket launching.

That is one can use initial time point as the Nth point and the time domain end point as the first

point. Usually time coordinate is normalized between 0 and 1. If we assume initial displacement

and velocity as 1 accordingly shape functions could be determined. For the initial displacement the

shape function will have the following properties.

(38)

(39)

For details, one can refer to the paper by (Wu and Liu 1999).

Hij

1( ) M1 xi( )
xi xj–( )M1 xi( )

----------------------------------- for i j 1 …n…i j≠,= ==

Hij

1( )
Hi j

1( )

j 1= j i≠,

n

∑–=

Hij

2( )
Hik

1( )
Hkj

1( )…i j 1m2…n= =

k 1=

n

∑=

Hi j

m( )
Hik

1( )
Hkj

m 1–( )
   for  i j 1 2 …n, ,= =

k 1=

n

∑=

xi
1

2
--- 1 cos

i 1–( )
n 1–( )

----------------π–=

hN τn( ) 1;  hN

1( )
τN( ) 0;  hN τi( ) 0 i 1 2 N 1–, ,=( )== =

hN τn( ) 0;  hN

1( )
τN( ) 1;  hN τi( ) 0 i 1 2 N 1–, ,=( )== =
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6.3 Coupled shear wall

The governing differential equation for coupled shear wall as discussed in section 5.1 with

α2 = 0.08237, ψ = −0.0114, c0 = 0, c1 = 0, c2 = 15, c3 = −0.0346, c4 = 0 is given by

(40)

where Me is the moment due to external lateral load of 30 kN/m at the top and 15 kN/m at the

bottom. Assume C(: , : , 2) = is the 2nd differential of the function, the left hand side of Eq. (40) is

written as

 

(41a)

and the right hand side can be written as

(41b)

The boundary condition T[0] = 0 and T'[H] = 73.15] can be incorporated as

BC1--------Z(n + 1, 1) = 1.0 and 

BC2--------Z(n + 2, 1:n) = C(n, 1 : n, 1)/H

The boundary conditions are given by 

(42)

Combining governing equations and boundary conditions we get

(43)

Using Lagrange multiplier approach as recommended by Wilson (2002), Eq. (43) can be modified

to square matrix as

(44)

The above equation has both equilibrium and equation of geometry. This matrix is also symmetric

and is not positive definite. Therefore pivoting may be required during the solution process. Hence

d
2
T

dx
2

-------- 0.08237T– Me c0 c1*x c2*x
2

c3*x
3

c4*x
4

+ + + += =

Z 1:n 1:n,( ) C :, :, 2( )/H2
=

with  Z i i,( ) Z i i,( ) 0.08237–=

e i 1,( ) 0.0114Me xi( )–=

Z[ ]1 T{ } 0{ }=

2 n n× 1 n× 1×

Z[ ]0
n n×

Z[ ]1
2 n×

T{ }

e{ }

n 1×

0{ }

2 1×⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

Z[ ]0  Z[ ]1
T

Z[ ]1  0[ ]

T{ }

λ{ }⎩ ⎭
⎨ ⎬
⎧ ⎫ e{ }

0{ }⎩ ⎭
⎨ ⎬
⎧ ⎫

=
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penalty method is preferably be applied. Once T is solved, one can fine the moments in the walls as

M1, M2 and in the link beam M(LB).

To solve for the deflection the governing equation is (see Eq. (6))

 (45)

with boundary conditions as y[H = 73.15] = y'[H = 73.15] = 0, using DQM we get

(46)

and the right hand side is

(47)

Again using Lagrange multiplier approach we get

(48)

Solving Eq. (48), the deflection along the height of coupled shear wall can be found out.

The values are exactly same as those obtained by MATHEMATICA.

6.4 Lateral Buckling of I beam subjected to moment gradient (Chen and Atsuta 1977)

A simply supported beam with unequal major axis end moments  is shown in Fig. 15

The governing differential equation can be written as

(49a)

where Iω and KT are the warping moment of inertia and torsional constant respectively and E and G

are the Youngs modulus and Rigidity modulus respectively. Me is the externally applied moment

given by 

(49b)

d
2
y

dx
2

-------- Me 6.1*T–=

Z[ ]0 Z 1:n, 1:n( ) C :,:,2( )/H2
= =

Z[ ]1
Z n 1+ n,( ) 1=

Z n 2 1:n,+( ) c :,:,1( )/H=

=

e i 1,( ) Mei( ) 6.1*T i( )–=

Z[ ]0  Z[ ]1
T

Z[ ]1  0[ ]

y{ }

λ{ }⎩ ⎭
⎨ ⎬
⎧ ⎫ e{ }

0{ }⎩ ⎭
⎨ ⎬
⎧ ⎫

=

αMcr Mcr,

EI
ω
φ″″ GKTφ′–

Me

2

EIy
-------φ=

Me Mcr α 1 α–( )x

L
---+⎝ ⎠

⎛ ⎞
=

Fig. 15 Lateral buckling of beam due to moment gradient
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with boundary conditions

 for simply supported ends (50a)

free to warp and

  restrained to warp (50b)

Considering simply supported beam free to warp the equilibrium equation of Eq. (48) and

boundary condition of Eq. (50a) can be written as

(51)

The right hand side matrix [e] is written as

(52)

Using Wilson’s method of applying boundary conditions, the governing equation is written as

(53)

φ 0[ ] φ L[ ] φ ″ 0[ ] φ ″ L[ ] 0== = =

φ 0[ ] φ L[ ] φ ′ 0[ ] φ ′ L[ ] 0== = =

Z[ ]0 Z 1:n,1:n( ) EI
ω*c :,:,4( )/L4

GKT*c :,:,2( )/L2
–= =

Z[ ]1

Z n 1+ 1,( ) 1=

Z n 2+ n,( ) 1=

Z n 3,1:n+( ) c 1 1:n 2, ,( )/L2
=

Z n 4,1:n+( ) c n 1:n 2, ,( )/L2
=

=

e[ ] ei i,
1

EIy
------- α 1 α–( )

xi

L
---+⎝ ⎠

⎛ ⎞
2

= =

n n×

1

Mcr

2
-------- Z[ ]0  Z[ ]1

T

Z[ ]1  0[ ]

φ{ }

λ{ }⎩ ⎭
⎨ ⎬
⎧ ⎫ e[ ]  0[ ]

0[ ]  0[ ]

φ{ }

λ{ }⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Fig. 16 Variation of critical moment with respect to α



734 S. Rajasekaran

Consider a simply supported beam of span 8.633 m with Iy = 18.6e-6 m4, Iω = 0.918e-6 m6;

KT = 0.691e-6 m4, E = 200 GPa and G = 77 Gpa. Solving as an eigen value problem, one will be able

to get the critical moment. When the beam is subjected to uniform moment the critical moment is

found to be 195 kN·m. Fig. 16 shows the variation of critical moment with respect to α. Moreover,

the value for critical moment for uniform bending agrees with the values given by (Chen and Atsuta

1977).

6.5 Buckling of column (comparison with Finite Element method)

Consider a cantilever column of wide flange section with a width of 0.2 m and depth of 0.3 m

and length of 2 m with overall thickness of 0.04 at flanges and at web subjected to axial load. The

properties have been obtained from a program “PROP” as,

(EA) = 2.8e-2

(EIx) = 4.52e-4

(EIy) = 5.49e-5

(EIω) = 1.2e-6

(GJ) = 1.49e-5 

The number of sampling points used here is 20 and (CGL) is adopted. The buckling load obtained

from DQM is 6777 kN which agrees with the closed form solution  of

(Timoshenko and Gere 1961). The same beam could be idealized with either plate elements or

beam elements. When the same problem is solved in FEAST-C (Anonymous 1995), using plate

elements, the buckling load obtained is 7429 kN with 9% error. Because of the kinks between

plates, when a thin-walled beam is idealized into plate elements, it is not possible to get the exact

value for the buckling load. The buckled shape of the model obtained using FEAST-C is shown in

Fig. 17. When the beam is idealized with 1,2 4 and 8 beam elements with three degrees of freedom

at each node, the buckling loads obtained are 7441, 6900, 6698 and 6618 kN for 1,2,4 and 8

elements as compared to the closed form solution of 6773 kN.

π( 2
EIy/4L

2 ) 6773 kN=

Fig. 17 Buckled shape of a column obtained using FEAST-C
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6.6 Bending of circular plates subjected to uniformly distributed load.

Consider a simply supported thin circular plate of uniform thickness (flexural rigidity, D-uniform)

subjected to uniformly distributed load q. There are two governing differential equations in the

literature both the third and fourth order differential equations can be used to obtain the deflection

of the plate. In this study, fourth order equation is derived from the equilibrium equation of the

plate as

(54)

where Mr, Mt are the radial and tangential moments in a circular plate and r is the radius and w is

the deflection and υ is the Poisson’s ratio.

If the plate is of uniform thickness (D-constant) the governing equation reduces to a fourth order

differential equation as

 (55)

Using Differential quadrature method with 20 grid points of CGL distribution, the above equation

reduces to 

+

(56)

where ‘l’ is the radius of the plate and inx1, inx2, inx3 are the inverse of r, r2 and r3 respectively.

The boundary conditions of the simply supported plate may be written as

 (57)

The right hand side e(1: n − 3) = 1; Z is made symmetric using the Wilson’s procedure of

Lagrangian multiplier and solving the following equation , the deflection δ is

obtained. 

Numerical example: 

For a circular plate of 3 m radius subjected to lateral load of 1 kN/sq·m with Poisson’s ratio of 0.3

the deflection at centre is obtained as 5.15895/D whereas the closed form solution gives the value

of . 

If D is assumed to vary along the radius, the variation of D may considered in differential

quadrature and the governing differential equation is
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(58)

where  may be written as

(59)

and using the similar procedure, the maximum deflection may be computed.

Numerical example

Assume D varies as  where ξ = r/l measured from centre of the plate. The maximum

deflection at the centre of the plate due to lateral load of 1kN/sq·m is 3.045/D and there is no

literature available to compare this value.

6.7 Buckling of circular plate subjected to radial edge loads.

For buckling calculation, the right hand side of Eq .(53) may be replaced by , one

can solve as an eigenvalue problem as  to find the critical radial buckling

load. 

Numerical example

For a plate of uniform thickness, the buckling load Ncr is obtained as 0.46649 and  = Ncrl
2/

D = 4.19 which agrees with the value of 4.20 obtained by closed form solution.(Iyengar 1988). If D

varies as  the buckling load obtained as 0.7750 and = Ncrl
2/D = 6.775 and no closed

form result is available for comparison.

7. Conclusions

The present article has attempted to bring attention to some of the potential uses of computer

languages capable of performing algebraic instead of merely numerical operations by considering

the examples of a) Coupled Shear wall b) automatic generation of stiffness matrix in finite element

method c) natural frequency by transfer matrix method d) application of Levy’s method e)influence

surface of a simply supported plate and f) writing equilibrium equations from Lagrange. Thus in

discussing MATHEMATICA it was made clear that the range of these symbolic operations is

considerable, encompassing for example, differentiation, integration, equation solving, matrix

inversion and other procedures which constitute the basic ingredients of most structural analyses.

Direct use was made of one such facility for solving linear system of equations in order to obtain a

truly closed form solution of the Levy method for plane stress problems. Large number of repetitive

numerical computations is eliminated as in the case of coupled shear wall problem. One of the more

obvious advantages in performing operations such as equation solving or matrix inversion
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symbolically is the drastic savings in computing time. Parametric studies could easily be carried out

in symbolic computation whereas in Finite element method it is time consuming to perform

parametric studies. Series solutions can be applied for the study of the elastic buckling or the natural

response of thin-walled members made of thin plates. This reduces to an eigen value problem in

which the order of the determinant is four times number of plates. Such determinant may be

computed symbolically so that the search for the critical condition reduces on the trivial task of

numerical iteration of a simple expression instead of much more time consuming problem of

iterating actual determinant. The use of symbolic algebra gives to the analyst much more visibility

with respect to the solution methods. The symbolic algebra manipulation languages are important

steps in the trend of reducing the drudgery of an analysis, thereby freeing the analyst to concentrate

on solution techniques. The engineer can then more easily grasp the interrelationships of the

problem variables, recognize simplifications to be made, and do a better and more accurate job.

Unfortunately some of the codes do not yet support Greek letters, which may require the use of two

notation systems, one with Latin letters for symbolic computation and the other for the usual ones

for the rest. This inconvenience may disappear in near future with further developments in software

and hardware. All areas of structural design and analysis are tending towards more rigorous physical

arguments for behavioural predictions. The replacement of empirical techniques by analyses

founded upon sound principles of elasticity, vibration, statistics, etc was fostered by the use of

computers to handle the detailed numerical problems that arose. It is only logical to further exploit

the computer by using it to formulate the difficult problems it has let us attack. There are also some

problems and limitations. The most unfavorable condition is its relative slow sped and large storage

requirements.

The DQM is applied to solve a) coupled shear wall b) lateral buckling of thin-walled beams c)

static and buckling analysis of uniform and non-uniform circular plates subjected to uniformly

distributed lateral load and uniform radial edge loads. Accurate results are obtained for the

problems. This approach is convenient for solving problems governed by the higher order

differential equations. It is also easy to write algebraic equations in the place of differential

equations and application of boundary conditions is also an easy task. It is also explained in the

paper how Lagrange multiplier method is used to convert rectangular matrix to square matrix for

the solution of equations. Results with high accuracy are obtained and fast convergent trend is

observed in all study cases. 

It is expected that the symbolic computation and DQM will find a wide range of applications in

structural engineering. 

Acknowledgements

The author thanks the management, Dr R Rudramoorthy, Principal, PSG College of Technology

for providing necessary facilities for the research work reported in this paper. 

References

Anonymous (1995), Vikaram Sarabai Space Centre (VSSC), Trivandrum, Feast-C Users Manual, SEG, SDS
Group, ISRO, Trivandrum.



738 S. Rajasekaran

Bellman, R. and Casti, J. (1971), “Differential quadrature and long term Integration”, J. Math. Anal. Appl., 34,
235-238.

Beltzer, A.I. (1990a), “Engineering analysis via symbolic computation – a breakthrough”, Appl. Mech. Rev.,
43(6), 119-127.

Beltzer, A.I. (1990b), A Symbolic Computation Approach, Variational and Finite Element Methods, Springer,
Berlin.

Benaroya, H. and Rehak, M. (1987), “The neumann series/born approximation applied to parametrically excited
stochastic systems”, Prob. Eng. Mech., 2, 75-81. 

Benker, H. (1999), Practical Use of MATHCAD- Solving Mathematical Problems with a Computer Algebra
System, Springer.

Bert, C.W. and Malik, M. (1996), “Free vibration analysis of tapered rectangular plates by differential quadrature
method- a semi analytical approach” , J. Sound Vib., 190(1), 41-63.

Cecchi, M.M. and Lami, C. (1977), “Automatic generation of stiffness marix for finite element analysis”, Int. J.
Numer. Meth. Eng., 11, 396-400.

Chen, W.F. and Atsuta, T. (1977), Theory of Beam-Columns – Vol. 2. Space behaviour and design”, McGraw-
Hill Inc., New York.

Civalek, O. (2004), “Application of Differential Quadrature (DQ) and harmonic differential quadrature (HDQ)
for buckling analysis of thin isotropic plates and elastic columns”, Eng. Struct., 26(2), 171-186.

Civalek, O. and Ulker, M. (2004), “Harmonic Differential Quadrature (HDQ) for axisymmetric bending analysis
of thin isotropic circular plates”, Struct. Eng. Mech., 17(1), 1-14.

Civalek, O. (2005), “Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on
elastic foundation by a combination of harmonic differential quadrature – finite difference methods”, Int. J.
Pres. Ves. Pip., 82, 470-479.

Iyengar, N.G.R. (1988), Structural Stability of Columns and Plates, Chichester: Ellis Horwood.
Kornchoff, A.R. and Fenves, S.J. (1979), “Symbolic generation of finite element system matrices”, Comput.

Struct., 10, 119-124.
Krowiak, A. (2006), “Symbolic computing in spline based differential quadrature method”, Commun. Numer.

Meth. En., 22, 1097-1107.
Levy, R., Chen, C.S., Lin, C.W. and Yang, Y.B. (2004), “Geometric stiffness of members using symbolic

algebra”, Eng. Struct., 26, 759-767.
Li, Q.S. and Huang, Y.Q. (2004), “Moving least – squares differential quadrature method for free vibration of

antisymmetric laminates”, J. Eng. Mech., ASCE, 130(12), 1447-1457.
Mbakogu, F.C. and Pavlovic, M.N. (1998), “Closed form fundamental frequency estimate for polar orthotropic

circular plates”, App. ACO, 54, 207-228.
Mbakogu, F.C. and Pavolic, M.N. (2000), “Bending of clamped orthotropic rectangular plates: A variational

symbolic solution”, Comput. Struct., 77, 117-128.
Pavlovic, M.N. (2003), “Review article symbolic computation in structural engineering”, Comput. Struct., 81,

2121-2136.
Rosman, R. (1966), Tables for the Internal Forces of Pierced Shear Walls Subjected to Lateral Loads, Verlag

von Wilhelm Ernst & Sohn, Berlin. 
Sammet, J.E. (1969), Programming Languages: History and Fundamentals, Prentice-hall, New Jersey.
Sherbourne, A.N. and Pandey, M.D. (1991), “Differential quadrature method in the buckling analysis of beams

and composite plates”, Comput. Struct., 40(4), 903-911.
Shu, C., Chen, W. and Du, H. (2000), “Free vibration analysis of curvilinear quadrilateral plates by the

differential quadrature method”, J. Comput. Phy., 163, 452-466.
Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Berlin, Springer. 
Timoshenko, S.P. and Krieger, S.W. (1959). Theory of Plates and Shells, McGraw-Hill Book Co., Inc., New

York.
Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-hill, New York.
Tomasiello, S. (1998), “Differential quadrature method application to initial and boundary value problems”, J.

Sound Vib., 218(4), 573-585.
Wilkins, Jr. D.J. (1973), “Applications of a symbolic algebra manipulation languages for composite structures



Symbolic computation and differential quadrature method - A boon to engineering analysis 739

analysis”, Comput. Struct., 3, 801-807. 
Wilson, E.L. (2002), Three Dimensional Static and Dynamic Analysis of Structures, Comput. Struct., Inc,

Berkeley, California. 
Wolfram S. (1991), MATHEMATICA: A System for Doing Mathematics by Computer, 2nd ed. New York,

Addison Wesley.
Wu, T.Y. and Liu, G.R. (1999), “A differential quadrature as a numerical method to solve differential equations”,

Computat. Mech., 21, 197-205.




