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Abstract. The problem of a semi-infinite magneto-electro-elastically impermeable mode-III crack in a
magneto-electro-elastic material is considered under the action of impact loads. For the case when a pair
of concentrated anti-plane shear impacts, electric displacement and magnetic induction impacts are exerted
symmetrically on the upper and lower surfaces of the crack, the magneto-electro-elastic field ahead of the
crack tip is determined in explicit form. The dynamic intensity factors and dynamic energy density factor
are obtained. The method adopted is to reduce the mixed initial-boundary value problem, by using the
Laplace and Fourier transforms, into three simultaneous dual integral equations, one of which is converted
into an Abel’s integral equation and the others into a singular integral equation with Cauchy kernel. Based
on the obtained fundamental solutions of point impact loads, the solutions of two kinds of different
loading cases are evaluated by integration. For some particular cases, the present results reduce to the
previous results.

Keywords: dynamic response; crack; magneto-electro-elastic field; intensity factor; dynamic energy
density factor; magneto-electrically impermeable.

1. Introduction

Composite material consisting of a piezoelectric phase and a piezomagnetic phase has drawn

significant interest in recent years, due to the rapid development and application of this material in

adaptive control systems. The magnetoelectric coupling is a new product property of the composite,

since it is absent in each component. In some cases, the coupling effect of piezoelectric/

piezomagnetic composites can be even a hundred times larger than that in a single-phase

magnetoelectric material. Consequently, they are extensively used as magnetic field probes, electric

packaging, acoustic, hydrophones, medical ultrasonic imaging, sensors, and actuators with the

functionality of magneto-electro-mechanical energy conversion (Wu and Huang 2000). When

subjected to mechanical, magnetical and electrical loads in service, these magneto-electro-elastic

composites can fail prematurely due to some defects, such as cracks, holes and inclusions arising

during their manufacturing process. Therefore, it is of great importance to study the fracture
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behaviors of piezoelectric/piezomagnetic composites under magneto-electro-elastic interactions

(Song and Sih 2003, Sih and Song 2003).

The development of piezoelectric-piezomagnetic composites has its root from the early work of

Van Suchtelen (1972) who proposed that the combination of piezoelectric-piezomagnetic phases

might exhibit a new material property - the magnetoelectric coupling effect. Since then, the

magnetoelectric coupling effect of BaTiO3-CoFe2O4 composites has been measured and much of the

theoretical work for the investigation of magneto-electro-elastic coupling effect has been studied

(Wu and Huang 2000, Song and Sih 2003, Sih and Song 2003, Harshe et al. 1993, Avellaneda and

Harshe 1994, Nan 1994, Benveniste 1995, Wang and Shen 1996, Huang and Kuo 1997, Li and

Dunn 1998, Li 2000, Pan 2001, Gao et al. 2003a, 2003b, Lage et al. 2004).

On the other hand, although the dynamic fracture problems of piezoelectric material with cracks

are widely investigated (Dascalu and Maugin 1995, Khutoryansky and Sosa 1995, Li and Mataga

1996a, Li and Mataga 1996b, Shindo et al. 1996, Ding et al. 1996, Chen and Yu 1997, Chen and

Yu 1998, Shindo et al. 1999, Wang and Yu 2000, Kwon and Lee 2000, Li 2001, Gu et al. 2002), to

the best of our knowledge, the analysis of dynamic crack problems magneto-electro-elastic material

is very limited. Du et al. (2004) obtained the scattered fields of SH waves by a partially debonded

magneto-electro-elastic cylindrical inhomogeneity, and determined the numerical results of crack

opening displacement. Feng et al. (2006) investigated both the near- and far- field properties of arc-

shaped interfacial cracks. Chen et al. (2007) studied the propagation of harmonic wave in magneto-

electro-elastic multilayered plates. Pan and Heyliger (2002) considered the free vibration problem of

simply supported and multilayered magneto-electro-elastic plates. Buchanan (2003) considered the

free vibration problem of an infinite magneto-electro-elastic cylinder. Hou and Leung (2004)

analyzed the plane strain dynamic problem of a magneto-electro-elastic hollow cylinder by virtue of

the separation of variables, orthogonal expansion technique and the interpolation method. Recently,

Ramirez et al. (2006) further investigated free vibration response of two-dimensional magneto-

electro-elastic laminated plates. For dynamic fracture problem of magneto-electro-elastic materials

with cracks, Feng et al. (2005) studied the dynamic fracture behaviors of magneto-electrically

impermeable interfacial crack between two dissimilar magneto-electro-elastic materials using the

energy density criterion. Zhou et al. (2005) analyzed the dynamic behavior of two collinear

interface cracks. Hu et al. (2006) studied the moving crack at the interface between two dissimilar

magneto-electro-elastic materials. Feng and Su (2006, 2007) further studied the dynamic fracture

behaviors of cracks in a functionally graded magneto-electro-elastic strip and plate, respectively.

In this paper, the dynamic problem of a magneto-electro-elastic material with a semi-infinite

magneto-electrically impermeable crack under concentrated anti-plane shear, in-plane electric

displacement and magnetic induction impact loads is studied. Using the Laplace and Fourier

transforms, the mixed initial-boundary value problem is first reduced to three pairs of dual integral

equations. Then, one pair is transformed into an Abel’s integral equation and the others into a

singular integral equation with Cauchy kernel. Both the Abel’s integral equation and Cauchy

integral equation can be solved analytically. Furthermore, the dynamic intensity factors and dynamic

energy density factor (EDF) are obtained in explicit analytic form, rather than approximate

expressions and numerical results. Finally, the solutions corresponding to two kinds of different

loading cases are presented via simple integration.
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2. Statement of problem

Consider an infinite magneto-electro-elastic material that contains a semi-infinite Griffith crack

with reference to the rectangular coordinate system x, y, z, as shown in Fig. 1. The magneto-electro-

elastic medium exhibits transversely isotropic behavior and is poled in z-direction. The anti-plane

shear point impact and in-plane electric displacement and magnetic induction point impacts are

suddenly applied on the crack surfaces at t = 0, and then maintain constants as imposed loads. In

Fig. 1, H(•) denotes the Heaviside unit step function, δ (•) is the Daric delta function.

The constitutive equations for anti-plane magneto-electro-elastic problem can be written as

 (1)

(2)

(3)

where  are the anti-plane shear stress, in-plane electric displacement and

magnetic induction, respectively;  are the material constants; w, φ and ψ are

the mechanical displacement, electric potential and magnetic potential, respectively.

The governing equations of the anti-plane magneto-electro-elastic boundary value problem are as

follows

(4)

(5)

(6)
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Fig. 1 A semi-infinite crack in a magneto-electro-elastic material subjected to anti-plane shear and in-plane
electric displacement and magnetic induction point impact loads
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By introducing 

(7)

the governing Eqs. (4)-(6) can be expressed as

(8)

(9)

(10)

where  is the shear wave speed and

(11)

The constitutive relations (1)-(3) can be rewritten as

(12a)

(12b)

(13)

(14)

Due to symmetry of the problem, it is sufficient to analyze the magneto-electro-elastic field in the

upper half-plane, i.e., y ≥ 0. For magneto-electrically impermeable crack considered here, the

boundary conditions can be stated as follows

(15)

                                      

, (16)

It is pointed out that Eq. (16) implies  for .
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the magneto-electro-elastic medium is subjected to the vanishing initial conditions

, ,

(17)

By taking the Laplace transform with respect to t and the Fourier transform with respect to x to

both sides of Eqs. (8)-(10), together with (17), we obtain

(18)

(19)

(20)

respectively, where p and s are the Laplace and Fourier parameters, respectively. ,

and  are the unknowns to be determined from given boundary conditions (15) and (16), and

. In the deriving of Eqs. (18)-(20), the unbounded terms for the upper half-

plane have been discarded.

The stress , electric displacement  and magnetic induction  in

the Laplace transform domain can be expressed in terms of  and  as follows
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With the aid of the vanishing initial conditions (17), the boundary conditions in the Laplace

domain can be written as
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(26)

(27)

(28)

On the other hand, a comparison of the boundary conditions (24) with Eqs. (21)-(23), after a

simple algebraic operation, yields

(29)

(30)

 (31)

where

 (32)

So far, three simultaneous systems of dual integral equations, Eqs. (26) and (29) for ,

Eqs.(27) and (30) for , Eqs. (28) and (31) for , are obtained, respectively.

4. Derivation and solution of singular integral equations

In the following, we will eliminate ,  and  from dual integral equations

and get three singular integral equations, respectively. One is two-dimensional weakly singular

integral equation, which can further be transformed into an Abel’s integral equation, and the others

are singular integral equation with Cauchy kernel. For the three equations, the solutions can be

obtained in closed-form.

To solve the resulting dual integral equations for , we introduce an auxiliary function

 such that  and

(33)

From Eq. (29), we get

(34)

 is unknown to be determined for x > 0.

Taking the inverse Fourier transform of (33), we find

A s p,( )e isx–

sd
∞–

+∞

∫ 0, x 0>=

B s p,( )e isx–

sd
∞–

+∞

∫ 0, x 0>=

C s p,( )e isx–

sd
∞–

+∞

∫ 0, x 0>( )=

αA s p,( )e isx–

sd
∞–

+∞

∫
2πT0δ x b+( )

p
---------------------------------- , x 0<=

s B s p,( )e isx–

sd
∞–

+∞

∫
2πD0δ x b+( )

p
----------------------------------- , x 0<=

s C s p,( )e isx–

sd
∞–

+∞

∫
2πB0δ x b+( )

p
----------------------------------, x 0<=

T0

1

µ
--- τ0

f15g11 e15µ11–

µ11ε11 g11

2
–

---------------------------------D0–
e15g11 f15ε11–

µ11ε11 g11

2
–

--------------------------------B0–⎝ ⎠
⎛ ⎞

=

A s p,( )
B s p,( ) C s p,( )

A s p,( ) B s p,( ) C s p,( )

A s p,( )
σ x y t, ,( ) σ x y 0, ,( ) ∂σ x y 0, ,( )/∂t 0= =

σ * x y p, ,( ) 1

2π
------ αA s p,( )e αy–

e
isx–

sd
∞–

+∞

∫=

σ * x 0 p, ,( )
T0δ x b+( )

p
--------------------------- , x 0<=

σ * x 0 p, ,( )



Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack 615

(35)

Substituting Eq. (35) into Eq. (26), we have

(36)

where x in Eq. (26) has been replaced with x0 for convenience. Application of the inverse Laplace

transform to Eq. (36) yields

(37)

where the following relation

(38)

has been used. Interchanging the order of integration and utilizing the following result
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the solution of which is easily found to be

(45)

namely,

(46)

Now, the auxiliary function  is determined. The following is to find the solution of the

dual integral equations for .

Performing the inverse Fourier transform of Eq. (22) reduces to
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Based on the theory of a singular integral equation, the solution of Eq. (54) (Muskhelishvili 1953)

is found to be

(55)

A straightforward evaluation of the singular integral at the right-hand side of Eq. (55) gives

(56)

Substituting Eq. (52) into Eq. (56) yields the solution of Eq. (51) as

(57)

Similarly, the unknown function  and magnetic induction  can be finally

determined to solve dual integral Eqs. (28) and (31). They are respectively

(58)

(59)

5. Analysis of crack tip field, field intensity factors and energy density factor

For the problem under consideration, using the obtained results Eqs. (46), (57) and (59), together

with Eqs. (33), (47) and (58), the inversion of Laplace transform of Eqs. (21)-(23) results in the

transient response of anti-plane shear stress σzy, in-plane electric displacement Dy and magnetic

induction By along the crack line. They are respectively

(60)

 (61)

(62)

It is concluded that stress field has apparent transient response due to impact loads, while both

electric displacement and magnetic induction do not have transient response. For stress field, shear

waves excited by a pair of concentrated impact loads applied at a point  on the crack

surfaces reach a position  when traveling time , while for a position ,

, stress field is disturbed only by electric displacement and magnetic induction

since shear waves do not reach this position within time . Moreover, the electric

η Dy
* η

2
0 t, ,( )

D0H t( )

π
2

------------------
η0

η0 η–( ) η0

2
b0

2
+( )

------------------------------------------ η0d
∞–

∞

∫=

η Dy
* η

2
0 t, ,( )

D0H t( )
π

------------------
b0

η
2

b0

2
+

-----------------=

Dy x 0 t, ,( )
D0H t( )

π
------------------

1

x b+

------------
b

x
---, x 0>=

C s p,( ) By x 0 t, ,( )

C s p,( ) 1

s
----- By

* x 0 p, ,( )eisx
xd

∞–

∞

∫–=

By x 0 t, ,( )
B0H t( )

π
-----------------

1

x b+

------------
b

x
---, x 0>=

σzy x 0 t, ,( )

τ0
π x b+( )
--------------------

b

x
---, 0 x c2t b–< <

f15g11 e15µ11–( )D0 e15g11 f15ε11–( )B0+

µ11ε11 g11

2
–

-----------------------------------------------------------------------------------------------
1

π x b+( )
--------------------

b

x
---, x c2t b–>

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Dy x 0 t, ,( )
D0

π x b+( )
--------------------

b

x
---, x 0>=

By x 0 t, ,( )
B0

π x b+( )
--------------------

b

x
---, x 0>=

b– 0,( )
x 0,( ) t x b+( )/c2> x 0,( )

x x0> c2t b–=( )
t 0 x0 b+( )/c2,[ ]∈



618 Wenjie Feng and Jinxi Liu

displacement and magnetic induction are only related to corresponding electrical point impact loads

and magnetical point impact loads, respectively. In addition, it should be noted that the stress field

when , electric displacement and magnetic induction are all independent of material

constants.

From Eqs. (1)-(3), we further obtain that for 

(63)

(64)

where

(65)

As illustrated by Eqs. (63) and (64), when  , since shear waves do not arrive at ,
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displacement and magnetic induction impact loads simultaneously. When ,

,  and  are all disturbed by combined impact loads including
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In general, of particular interest is transient feature due to impact loads, so now we focus our
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material (Li 2001). This means our results are universal and correct.

Recently, some investigators found that the EDF is an essential quantity for analyzing the

magneto-electro-elastic crack growth behavior (Sih and Song 2003, Song and Sih 2003). For the

anti-plane problem, the EDF is defined as

(68)

in which r has been referred to as the core region within which microstructure effects become

important. , . After some algebra operation, the EDF can be directly expressed

as
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where
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It can be easily found that the EDF against time have no peak for concentrated combined impact

loads, this coincides with field intensity factors. Eq. (69) also implies that the nearer the impact

loads approaching to the crack tip, the easier the crack growth and propagation according to energy

density criterion. In addition, for the pure mechanical case, the EDF is equivalent to the traditional

definition of energy release rate.

6. Examples of application

Since the present results are derived from concentrated combined loads, Eqs. (60)-(63) and

Eq. (67) can be taken as fundamental solutions, from which the corresponding general solutions
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Fig. 2 A semi-infinite crack in a magneto-electro-elastic material subjected to anti-plane shear and in-plane
electric displacement and magnetic induction impact loads on the crack surfaces of a finite length
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are applied on a part of the crack faces (Fig. 2), i.e.,

(71)

where

(72)

the asymptotic expressions for the magneto-electro-elastic field ahead of the crack tip along the

crack line and the field intensity factors can be directly evaluated by integrations of the

corresponding expressions with respect to b from b1 to b2. The final results of them are respectively
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be expressed as
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(79)

(80)

(81)

The EDF can then be obtained as

(82)

Obviously, the fracture behaviors for the two cases considered above are the same as those of

point impact. In addition, it should be noted that, if taking  in Eqs. (73) and

(74), and taking  in Eqs. (75)-(77), Eqs. (78)-(82) can be also recovered from

Eqs. (73)-(77), respectively, and that the results of Chen and Yu (1998) for semi-infinite crack in

piezoelectric material are, in fact, the corresponding degenerate expressions of the present work, i.e.,

Eqs. (78)-(82).

7. Conclusions
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magnetic induction are all independent of material constants and only related to the

correspondingly mechanical, electrical and magnetic loads, respectively. However, the intensity

factors of strain, electric field and magnetic field all depend on both material constants and

applied loads including mechanical loads, electrical loads and magnetic loads.

(4) After shear wave arrive crack tip, the energy density factor against time has no peak for

concentrated combined impact loads. According to the maximum energy density factor fracture

criterion, the nearer the impact loads approaching the crack tip, the easier the crack growth and

propagation.

(5) Previous dynamic semi-infinite crack problems of piezoelectric, piezomagnetic, or purely

elastic materials can directly be reduced from the present work.
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