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Abstract. Reinforced concrete beams can be strengthened in a structural retrofit process by attaching
steel plates to their sides by bolting. Whilst bolting produces a confident degree of shear connection under
conditions of either static or seismic overload, the plates are susceptible to local buckling. The aim of this
paper is to investigate the local buckling of unilaterally-restrained plates with point supports in a generic
fashion, but with particular emphasis on the provision of the restraints by bolts, and on the geometric
configuration of these bolts on the buckling loads. A numerical procedure, which is based on the
Rayleigh-Ritz method in conjunction with the technique of Lagrange multipliers, is developed to study the
unilateral local buckling of rectangular plates bolted to the concrete with various arrangements of the
pattern of bolting. A sufficient number of separable polynomials are used to define the flexural buckling
displacements, while the restraint condition is modelled as a tensionless foundation using a penalty
function approach to this form of mathematical contact problem. The additional constraint provided by the
bolts is also modelled using Lagrange multipliers, providing an efficacious method of numerical analysis.
Local buckling coefficients are determined for a range of bolting configurations, and these are compared
with those developed elsewhere with simplifying assumptions. The interaction of the actions in bolted
plates during buckling is also considered.
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1. Introduction

Steel plates may be bolted to the sides of a concrete beam in order to design against seismic
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loading, as well as to strengthen the beam in a structural retrofit procedure (Oehlers 1990). The

process of bolting provides a unique but reliable form of shear connection (Nguyen et al. 2001),

and which allows for the transfer of shear, axial and bending actions into the plates, for which they

need to be designed in order to utilise their strengthening and ductility properties. These actions,

however, may precipitate local buckling of the steel plate. The local buckling that occurs is of a

unilateral nature, in that the buckles may only form away from the concrete to which the steel plate

is juxtaposed. This is a special case of a mathematical contact problem that arises in engineering

practice, and has been studied extensively by Smith and his colleagues (Smith et al. 1999a,b,c,

Bradford et al. 2000).

The solution of contact problems by the technique of mathematical programming, and a general

mathematical procedure for obtaining the best distribution of pressure over the contacting region,

were presented by Conry (1970) and Conry and Seireg (1971). Chand et al. (1976) developed a

compatible solution technique with the finite element method to handle contact problems with

complex boundary configurations, although the efficiency of finite element approaches to the

problem has been questioned recently by Smith et al. (1999d). A numerical procedure for large

transverse deflections and a buckling analysis of clamped and simply supported plates constrained

by the presence of a rigid plane, based on a finite element approximation, was proposed by Ohtake

et al. (1980a,b). Fischer and Melosh (1987) introduced a new variant of the well-known Simplex

algorithm to distinguish between contact and non-contact points for elastic contact problems.

The effect of large deformations on the behaviour of circular plates on unilateral Winkler-type

foundations using the finite difference method was investigated by Khathlan (1994). Shahwan and

Wass (1994) presented a mathematical model for the buckling of unilaterally constrained, finite,

rectangular plates. In their analysis, the influence of different boundary conditions, material

orthotropy and the distribution of transverse load were investigated, and the weak form of the

governing differential equation was solved using the Galerkin method. A perturbation technique was

presented to determine the interactive buckling loads and post-buckling equilibrium paths of

composite laminated plates on two-parametric elastic foundations (Shen and Williams 1997).

Oehlers et al. (1994) developed simple design procedures to prevent the local buckling of the steel

decking in a composite profiled trough girder before the ultimate strength of the beam is reached,

while Uy (2001) developed a counterpart rule for the design of concrete-filled steel tubes against

unilateral buckling of the steel plating. These studies showed that since the steel plate is constrained

to buckle only outward from the concrete, to which it is juxtaposed, this mode of the buckling

permits increases in the width of the plate of up to 70%. Wright (1995) also studied the local

buckling of plates with various boundary conditions, including the effect of their being juxtaposed

with a rigid medium such as concrete. The derivation of limiting width to thickness ratios for this

class of plates was presented in Wright’s study, and it was shown that these limiting ratios were

much higher than their counterparts for plates not in contact with a rigid medium. Recent work by

Bradford et al. (2000) has quantified the section classification limits for various classes of

compactness for plates that may buckle only in a unilateral mode. The problem of finding the

buckling loads of unilaterally constrained plates was considered by Shahwan and Wass (1998). In

their analysis, the condition of contact at buckling was resolved by modelling the constrained plate

as having two distinct regions, viz. a contacted and an uncontacted region. They showed that owing

to the constraint on the deformation being ‘one-sided’, an increase in the local buckling stress of

approximately 30% over the unconstrained situation was obtained.

More recently, Smith et al. (1999a,b) studied the buckling of side-plated reinforced concrete
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beams, both experimentally and numerically. In their numerical study, they presented a Rayleigh-

Ritz formulation for the local buckling analysis of rectangular unilaterally restrained plates in

compression, bending and shear. In their experiments, a series of tests was used to investigate the

local buckling of mild steel plates bolted to the sides of reinforced concrete beams, and to validate

the results of their numerical treatment.

Although not quantified hitherto, the number and configuration of the bolts on a plate bolted to

the sides of a concrete beam will affect the boundary conditions that have been assumed in all

previous studies as of an idealised type, and so will affect the buckling response of the plate. In

order to circumvent the idealisations that need to be made to this type of unilateral buckling, this

paper uses the Lagrange Multiplier technique, which has enjoyed considerable success in the

treatment of constrained minimisation problems, to consider the constraint provided by the bolts on

the local buckling of side plates. This is done in a generic fashion for elastic unilateral plate

buckling with discrete restraint points, but with the application to side plating for retrofit being

borne in mind. Both the unilateral and bilateral local buckling coefficients of side plates with

different types of bolting configurations are determined. The practical application of the theory is

that it forms a basis for allowing a more accurate choice, in lieu of the approximate guidelines

developed with simplifying assumptions for the boundary conditions, for a suitable and optimal bolt

spacing and arrangement in order to avoid premature buckling of the plate.

2. Theory

2.1 General

The well-known Rayleigh-Ritz method for solving elastic unilateral local buckling problems for

plates under combined loading has been set out by Smith et al. (1999c). In this section, the relevant

augmentation of this method to include the discrete point constraints imposed by the bolts is

developed. Fig. 1 shows the geometry of a unilaterally restrained steel plate that is bolted to the side

of a concrete beam. In this figure, the basic state of stress at the onset of local buckling is shown,

and consists of a uniform shearing load Nxy and a longitudinal compressive load of average value Nx

that varies linearly across the width of the plate from (Nx – No) at the edge y = 0 to (Nx + No) at the

edge y = b. The axial force ±No is therefore that caused by the longitudinal in-plane bending action,

and the prebuckling actions can be determined using the partial interaction modelling of Nguyen

et al. (2001).

Fig. 1 Side-plated and bolt layout
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2.2 Buckling deformations

In the Rayleigh-Ritz formulation, the out-of-plane displacement field w can be assumed to be of

separable form, where shape functions in x(ξ ) are multiplied by those in y(η), where ξ = x/a and

η = y/b, with ξ ∈ [0, 1] and η ∈ [0, 1]. The flexural buckling displacements w(ξ, η) are chosen to

be polynomial-based, consisting of complete two-dimensional polynomials. This formulation has

been previously used with success for modelling bilateral buckling and plate vibration problems

(Wang and Liew 1994, Liew and Wang 1995), and has the form

(1)

where αij are Ritz coefficients with the dimensions of length. Eq. (1) may be written conveniently in

matrix form as

(2)

In the present study for the buckling analysis, instead of using the usual boundary conditions such

as free, clamped and simply supported at the plate edges as described by Smith et al. (1999c), the

restraints that are provided by a particular configuration of bolting are considered. This is achieved

by use of the technique of Lagrange Multipliers, as is developed subsequently.

Strain energy stored during buckling

The elastic strain energy of a plate during buckling UP is that due to flexural buckling in the

normal direction, and is given by Timoshenko and Gere (1961)

(3)

where A is the area of the plate, commas denote partial differentiation, and the plate flexural rigidity

is

(4)

in which E is Young’s modulus, t is the plate thickness and ν is Poisson’s ratio.

In order to account for the condition of unilateral restraint imposed on the flexural buckling

deformations of the plate because of the concrete beam, a nonlinear elastic foundation model that

exhibits a sign-dependent relationship is used (Shawan and Wass 1994, Smith et al. 1998, 1999a).

The numerical attributes of this method for solving this form of contact problem in terms of

convergence and accuracy have been discussed previously by Smith et al. (1999d). The continuous

(infinitesimal) pressure distribution imposed by the concrete surface is approximated by a set of

forces acting at discrete points, defined a priori by discretising the plate into a sufficiently fine grid

of ‘elements’ of dimension ∆x × ∆y. To achieve this, a sufficiently large spring stiffness kf is adopted

to simulate the rigid concrete surface. By invoking a linear elastic relationship for the spring, since

both the plate and the highly stiff juxtaposed restraining medium obey the laws of linear elasticity,
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may be written as

(5)

where , wi(ξg, ηg) represents a grid point (of which there are p in total) at which a

spring is defined, and ℘S  is a penalty function that represents the contact status, and is chosen to

define the unilateral constraint of prohibiting the foundation to have tensile normal stresses, and of

prohibiting the penetration of any part of the plate into the concrete medium. The relationship

between the flexural displacement w and the contact status ℘S  with respect to a rigid support to

satisfy compatibility is depicted in Fig. 2. Its mathematical representation is simply

(6)

which has the physical interpretation for the present problem (Baniotopoulos et al. 1994, Smith et al.

1999a,c)

(7)

2.3 Change of total potential energy

The unilaterally restrained steel plate that is subjected to the initial in-plane forces that consist of

longitudinal and shear forces (Fig. 1) experiences a decrease in the total potential energy of these

forces during buckling. This effect is documented elsewhere (Azhari and Bradford 1993), and the

potential decrease VP may be written as

(8)

Using Eqs. (3), (5) and (8), the total change in potential of the system during buckling in the
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Note that in formulating Eq. (9) for various conditions of idealised edge support, Smith et al.

(1999a,c) made use of boundary polynomials in what is referred to as the pb-2 Rayleigh-Ritz

treatment of the problem. Instead of the use of boundary polynomials, the Lagrange multiplier

formulation for restraints at the discrete bolt positions will be used, as is developed in the

following.

2.4 Lagrange multiplier technique

A convenient device for modelling the effect of the discrete point restraints that are provided by

the bolts is the Lagrange Multiplier technique (Timoshenko and Gere 1961). Herein, the nB bolt

restraints are assumed to provide restraint conditions of the form

(10)

where  are the buckling displacements at the bolt positions that are assumed to vanish.

These nB conditions may be expressed in terms of the Ritz coefficients  in the form

(11)

in which  is the vectorial representation of the two-dimensional separable polynomial ξ iη j at the

location of the k-th discrete bolt restraint.

In accordance with the Lagrange Multiplier technique, a new functional Πβ, developed by

multiplying each of the (null) constraints in Eqs. (10) and (11) by an appropriate Lagrange

multiplier βk, is used to augment the total change in potential Π in Eq. (9) caused by the elastic and

geometric strain energies. This general form of the new functional may be stated as

(12)

where the term on the right hand side of Eq. (12) is the sum of the product of the constraints and

their associated Lagrange multipliers, and nB is the number of bolts. Of course, in Lagrange

multiplier methodology, Eq. (12) vanishes, and it is worth noting further that the physical

significance of the Lagrange multipliers is that they represent the (infinitesimal) forces induced in

the bolts during buckling.

An augmented functional, Πa, may be constructed by the addition of the original energy
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respect to any perturbation of either  or βk, whose mathematical statement is

(14)

This produces i equations of the type

(15)

and a further nB equations of the type

(16)

By noting that the variations δαi and δβk are arbitrary, differentiating with respect to  and

manipulating the expression algebraically, Eqs. (15) and (16) may be written compactly in matrix

form as

(17)

in which [KP], [KS] and [KG] are the stiffness matrix of the plate, the stiffness matrix of the rigid

foundation (and which is nonlinear in the buckling deformations owing to the nonlinearity of the

contact penalty function ℘), and the stability matrix of the plate, respectively. It should be noted

that for consistency of the dimension of the stiffness matrices (p + nB) × (p + nB), the matrices [KP]

and [KS] should have null sub-matrices in the nB rows and columns corresponding to the Lagrange

multipliers, while the matrix [KP] is null, except for the nB rows and columns corresponding to the

Lagrange multipliers βk. Details of the entries in the stiffness matrices in Eq. (17) are given in

Hedayati (2001). The buckling load factor, as well as the buckling mode shape  and normalised

bolt forces , may be extracted from Eq. (17) using a standard eigensolver (such as the power

method based routine of Swartz and O’Neill 1995), in conjunction with the iterative procedure

outlined by Smith et al. (1999a,c) that makes recourse to Aitken’s ∆2 process to hasten the

convergence.

3. Numerical results

3.1 General

The numerical procedure based on the Rayleigh-Ritz method and the Lagrange Multiplier technique

described in the previous section has been implemented in FORTRAN computer code, and applied to

study the elastic buckling of side plates of various geometrical configurations. The side-plated

reinforced concrete beam and bolting layout with the applied loading is shown in Fig. 1. In order to

present the results in a dimensionless format, they are given as local buckling coefficients that are

defined for axial action, bending and shear respectively as (Allen and Bulson 1980)
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The sides of the plate are assumed to be free. In the following, the numbers and arrangement of

the bolts that are needed to simulate the plate boundary conditions as being either simply supported

or clamped, in the normal structural idealisation of the boundary conditions, are considered.

3.2 Conventional boundary conditions for side-plated beams

Smith et al. (1999c) studied the local buckling of side plates with the idealised boundary

conditions of SSSS, CSCF and CFCF, in which F denotes free, S denotes simply supported and C

denotes clamped. In order to demonstrate the validity and accuracy of the numerical procedure, in

addition to the boundary conditions used by Smith et al. (1999c), the local buckling coefficients for

plates with different boundary conditions have been determined.

Table 1 shows a summary of the axial compressive (ka), pure bending (kb) and pure shear (ks)

local buckling coefficients for each plate type that are required to cause bifurcation, for both the

bilateral case (subscripted b) and the unilateral case (subscripted u). It should be noted that the term

bilateral indicates that the local buckling is free to occur in both directions, in deference to the

unilateral mode for which the plate may only buckle away from the rigid restraint. Over the range

of plate aspect ratios γ = b/a for plates with SSSS, CSCF and CFCF boundary conditions, the

results computed by the method herein agree almost exactly with those reported by Smith et al.

(1999c).

Table 1 Bilateral and unilateral buckling coefficients for pure compression, bending, and shear

Boundary
conditions

γ = a/b
Axial compression Bending Shear

ka,b ka,u kb,b kb,u ks,b ks,u

SSSS

1.0 4.00 4.00 25.53 26.53 9.32 9.33

2.0 4.00 4.50 23.88 26.27 6.54 6.68

3.0 4.00 4.50 24.13 26.59 5.84 6.68

CCCC

1.0 10.08 10.08 47.75 47.78 14.64 14.78

2.0 7.97 9.78 41.95 42.16 10.25 11.85

3.0 7.43 9.70 41.70 42.50 9.54 11.85

CSCS

1.0 6.74 6.74 32.00 32.00 12.56 12.70

2.0 4.85 5.32 26.09 26.20 6.71 6.83

3.0 4.41 5.28 25.01 25.13 5.93 6.62

CCCF

1.0 4.58 4.58 7.26 7.26 8.50 8.66

2.0 1.92 1.92 3.19 3.19 2.76 2.80

3.0 1.68 1.86 2.81 2.90 2.07 2.11

CSCF

1.0 4.37 4.37 7.24 7.24 8.43 8.65

2.0 1.41 1.41 2.69 2.69 2.35 2.36

3.0 0.86 0.86 1.70 1.70 1.35 1.36

CFCF

1.0 3.92 3.92 7.24 7.24 7.49 8.70

2.0 0.97 0.97 2.68 2.68 1.77 1.78

3.0 0.43 0.43 1.62 1.62 0.69 0.70
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3.3 Discrete restraint points for bolted side plates

The advantage of the method developed herein over that presented by Smith et al. (1999a,c) is

that it can handle the constraints imposed by the bolts, at discrete point locations, on the boundary

conditions for the plate, which in turn influence the local buckling coefficients. The local buckling

of plates with free edge boundary conditions, but with bolts consisting of several configurations in

both arrangement and bolt number have been investigated. Table 2 shows the local buckling

coefficients of such plates with different aspect ratios subjected to axial compression, pure bending

and pure shear. The results shown in Table 2 that have been obtained from the Lagrange Multiplier

technique are discussed summarily in the following, with reference to the various configurations

illustrated in Fig. 3.

It was reported by Smith et al. (1999c) that the local buckling coefficient for a simply supported

square side plate under axial compression, for both the bilateral and unilateral constraint cases, is

4.0. For a square side plate whose edge conditions are FFFF, the use of 8 bolts (Fig. 3a) gives local

buckling coefficients of (ka)b = (ka)u = 3.52, while the use of 12 bolts (Fig. 3b) or 16 bolts (Fig. 3c)

increases these values to (ka)b = (ka)u = 3.95 and (ka)b = (ka)u = 3.99 respectively. This means that

using 8, 12 and 16 bolts on the side plate replicates a condition of simple support to an accuracy

Table 2 Local buckling coefficients of plates bolted to the sides of beams

Bolting
arrangement

γ = a/b
Axial compression Bending Shear

ka,b ka,u kb,b kb,u ks,b ks,u

Fig. 3(a)

1.0 3.52 3.52 6.91 6.92 4.00 4.79

2.0 0.95 1.428 2.55 2.60 1.87 2.12

3.0 0.41 0.68 1.55 1.73 1.28 1.42

Fig. 3(b)

1.0 3.95 3.95 13.48 13.48 7.01 7.09

2.0 2.17 3.89 4.53 4.54 3.16 3.29

3.0 0.95 2.64 2.59 2.78 1.78 2.32

Fig. 3(c)

1.0 3.99 3.99 22.14 22.14 8.51 8.52

2.0 3.75 4.58 7.04 7.06 5.08 5.45

3.0 1.70 2.30 3.85 3.88 2.64 3.99

Fig. 3(d)

1.0 2.96 3.06 5.61 5.84 5.41 7.43

2.0 0.98 0.98 2.68 2.68 1.91 1.94

3.0 0.46 0.46 1.70 1.70 0.78 0.78

Fig. 3(e)

1.0 3.90 3.91 6.83 6.89 8.15 8.69

2.0 1.08 1.08 2.86 2.86 2.02 2.04

3.0 0.48 0.48 1.75 1.75 0.81 0.81

Fig. 3(f)

1.0 6.44 8.64 10.59 10.60 6.97 9.46

2.0 2.02 2.02 4.34 4.35 4.20 5.89

3.0 0.95 1.81 2.62 4.07 2.67 3.20

Fig. 3(g)

1.0 9.998 10.47 18.97 29.02 14.27 15.14

2.0 3.59 3.72 6.65 8.21 6.01 10.57

3.0 1.67 3.37 3.73 3.85 3.76 5.98
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(on the unconservative side) of 12%, 1.25% and 0.25% respectively.

If groups of paired bolts are used, as in Figs. 3(d) to 3(g), the free boundary condition may tend

towards a clamped boundary condition. When the side plate is bolted with the configuration shown

in Figs. 3(d) and 3(e), the boundary conditions of the plate move from a condition of FFFF to

CFCF. It can be seen from Table 1 that for a plate with idealised restraints of CFCF at its edges,

then (ka)u = 3.92, (kb)u = 7.24 and (ks)u = 8.70, which are the same as the values quoted by Smith

et al. (1999c). From Table 2, the use of 12 bolts in the configuration depicted in Fig. 3(d) results in

local buckling coefficients of (ka)u = 3.06, (kb)u = 5.84 and (ks)u = 7.43, while using 16 bolts in the

configuration shown in Fig. 3(e) results in local buckling coefficients of (ka)u = 3.91, (kb)u = 6.89

and (ks)u = 8.69 which are very close to the idealised CFCF local buckling coefficients.

The use of the bolting configurations shown in Figs. 3(f) and 3(g) may be suitable to replicate a

condition of CCCC for the plate edges. The local buckling coefficients of a square plate with four

edges free and that is bolted with 24 bolts in the configuration of Fig. 3(g) are (ka)b = 9.998, (ka)u =

10.47, (kb)b = 18.97, (kb)u = 29.02, (ks)b = 14.27 and (ks)u = 15.14. Allen and Bulson (1980) quote

the local buckling coefficient for a square plate under compression without the restraint of a rigid

medium (bilateral buckling) as 10.08, to which the value obtained with 24 bolts is within an

accuracy of 0.8%, while Bradford (1998) has derived the local buckling coefficient for the same

plate restrained by a rigid medium (unilateral buckling) to be 10.67, with which the 24 bolt solution

agrees to within an accuracy of 1.9%. It is important to note that the arrangement and number of

Fig. 3 Bolting configurations
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bolts in the configuration that may be required to further restrain the plate’s boundary and so

increase the local buckling coefficients is dependent on the aspect ratio of the side plate.

3.4 Buckling interaction analysis

In the deployment of side plates in retrofit, the shear connection may transfer axial, bending and

shear actions simultaneously, and so their interaction on the values at buckling is important. The

unilateral local buckling behaviour with different bolting configurations under combined shear and

compression and under combined shear and bending has been investigated. Figs. 4 and 5 show

interaction curves for the unilateral local buckling coefficients for square plates under combined

shear and compression, while Figs. 6 and 7 show these counterparts for various bolting

Fig. 4 Interaction curves for unilateral buckling of
square side plates in shear and compression
for bolting configurations shown in Figs. 3(h),
3(i) and 3(j)

Fig. 5 Interaction curves for unilateral buckling of
square side plates in shear and compression
for bolting configurations shown in Figs. 3(d),
3(e) and 3(g)

Fig. 6 Interaction curves for unilateral buckling of
square side plates in shear and bending for
bolting configurations shown in Figs. 3(h),
3(i) and 3(j)

Fig. 7 Interaction curves for unilateral buckling of
square side plates in shear and bending for
bolting configurations shown in Figs. 3(d),
3(e) and 3(g)
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configurations. The interaction curves were determined by fixing the ratio between the compression

and shear actions (in Figs. 4 and 5) and between the bending and shear (in Figs. 6 and 7), and

factoring these monotonically in a proportional loading regime by the buckling load factor in the

numerical analysis. The solution procedure requires that the axial and bending stability matrices

([KG] in Eq. (17)) to be subtracted from the stiffness matrix ([KS] in eqn. (17)), and the solution to

be obtained based on the shear stability matrix only. It can be seen from Figs. 4 to 7 that the

interaction curves vary between being parabolic and circular, and in most cases are close to being

parabolic.

4. Conclusions

A method of solution for the local instability of plates juxtaposed with a rigid medium and with

discrete point supports has been developed, based on the Rayleigh-Ritz method in conjunction with

a Lagrange Multiplier technique. A framework has been developed within this generic modelling

whereby the local buckling coefficients for plates that are bolted to the sides of beams in a strength

or seismic retrofit can be determined. The method is computationally efficient, and agrees with

independent solutions for specific restraint cases. The technique has been used to determine the

unilateral and bilateral local buckling coefficients for plates under shear, axial and bending actions

for a variety of bolting configurations, as well as their interaction at buckling. The local buckling

coefficients are strongly dependent on the regime of the point restraints, and indeed several bolts

may be needed to replicate the simplified boundary conditions for which the local buckling

coefficients have been reported by other researchers. Nevertheless, the paper sheds quantitative light

on the effect of the configuration of bolts for side plates on the elastic local buckling coefficients.
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