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Abstract. A new numerical model based on the spline finite strip method is presented here for the
analysis of buckling of built-up columns with and without end stay plates. The channels are modelled
with spline finite strips while the connecting elements are represented by a 3D beam finite element, for
which the stiffness matrix is modified in order to ensure complete compatibility with the strips. This
numerical model has the advantage to give all possible failure modes of built-up columns for different
boundary conditions. The end stay plates are also taken into account in this method. To validate the
model a comparative study was carried out. First, a general procedure was chosen and adopted. For each
numerical analysis, the lowest buckling loads and modes were calculated. The basic or “pure” buckling
modes were identified and their critical loads were compared with solutions obtained using analytical
methods and/or other numerical methods. The results showed that the proposed numerical model can be
used in practice to study the elastic buckling of built-up columns. This model is considered accurate and
efficient for the local buckling of short columns and global buckling for slender columns.
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1. Introduction

Built-up columns are widely used in steel structures especially when effective lengths are

important and the compressive forces are low. These columns are formed by two or more principal

elements assembled by lacing or batten plates (see Fig. 1). The moment of inertia of the cross

section of the column, and thus its flexural stiffness in the plane of the connecting element,

increases with the distance between the chord axes. Nevertheless, this saving may be
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counterbalanced by the increase in the weight and the cost of the connecting element. It should be

noted that for equal inertia, the built-up columns (especially the battened ones) are more flexible

than solid columns (Niazi 1993).

Generally, to estimate the bearing capacity of steel built-up columns with doubly symmetric cross-

sections under compressive loads, one should study the following modes of elastic instability in

addition to verifying the connecting element and their connections:

• The flexural buckling of the built-up column in a plane perpendicular to the battens. This is

classical Euler buckling.

• The flexural buckling of the built-up column in a plane parallel to the battens. In this case, one

should take into account the flexibility of the connecting element. These are usually replaced by

a continuous web with an equivalent shear stiffness K. One of the earliest theories is that of

Engesser (1889, 1891 and 1909) and more recently, Paul’s theory (1995). The latter has brought

two new innovations: it can account for the effect of stay plates at the ends of the column and

the equivalent web-chord attachment line is not restricted to be at the chord’s centroidal lines. A

more recent buckling solution (Wang 2002) considers the built-up column as a solid Timoshenko

column. The erosive effect of transverse shear deformation on the buckling capacity is clearly

shown by this method.

• The global buckling of the chords which can be flexural, torsional or torsional-flexural. This is

an instability that involves translation and/or rotation of the entire cross section of the chord.

Rational analysis hand solutions to long column buckling are available (Yu 2000). The partial

built-in of the chords into the battens may however cause some additional difficulty. The

adequate effective length factors could be evaluated by procedures used for columns in multi-

storey unbraced frames (Liu 2005).

Fig. 1 Built-up columns
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For these three modes, the cross sections of the chords move as a rigid body without any

distortion. In the case of built-up columns where the thickness of the chords are small, such as for

the cold-formed steel structural members, the local buckling of the plate elements forming the

section may occur and should be taken into account. Sometimes, these types of sections may fail in

a mode of distortional buckling which takes place as a consequence of distortion of the cross

section. These two modes which modify the cross section can be considered as “sectional” modes.

They can interact with each other as well as with the three global modes cited below (Dubina

1999). The interaction phenomena can be covered theoretically by asymptotic theory (Teter 2004),

but numerical analyses such as Finite Element Method, Finite Strip Methods and Generalised Beam

Theory are more practical to study these problems.

In the last decades, the finite strip methods have been widely used to study the stability of thin

walled sections taking into account all possible failure modes: local, distortional, overall instabilities

(flexural, flexural-torsional, lateral) and their combinations. They have been accurately applied by

many researchers (Lau and Hancock 1988, Key and Hancock 1993, Cheung et al. 1999, Ovesy et al.

2005) to linear and non-linear buckling analyses allowing for various types of non-linearities.

However, these numerical methods have never been used to study the stability of built-up columns.

The aim of this work is, precisely, to prove that this can be accomplished by combining adequate

beam finite elements with spline finite strips. 

The first spline finite strip method (SFSM) for buckling analysis (Lau and Hancock 1985) used

the uniform B3-spline functions in the longitudinal direction and conventional interpolation

functions in the transverse direction to represent the displacement field in a strip. This interpolation

allowed the finite strip method to take into account intermediate supports, various boundary

conditions and arbitrary loading. Recent improvement of the SFSM introduced non-symmetrically

spaced knots in the longitudinal direction (Kim 2004). This allows the selective local refinement to

improve the accuracy of solution at the location of concentrated effects (loads, connections,

restraints). 

It is obvious that the discrete effect of the batten plates or lacing bars in the built-up columns

could be better modelled by this last technique, however, in this study, uniform B3-spline is used

for simplicity. The purpose of this study is to develop a powerful, or at least a sufficient, numerical

tool to determine the linear local buckling load and mode of failure of built-up columns taking into

account the complete range of behaviour. This tool should serve as a better approach, or replace the

classical one based on a “guess” of all possible instabilities.

2. Spline finite strip method for the buckling analysis of built-up columns

2.1 The Spline Finite Strip Method (SFSM)

In the spline finite strip method, structures are divided into longitudinal strips with “n” nodal lines

parallel to the Z axis and having the same length L, as shown in Fig. 2. The use of uniform B3-

spline aims to “perfectly” fit the displacement function in the longitudinal direction, which will have

C2 continuity. Each nodal line is then divided into “m” equal sections by m + 1 section knots. Two

additional section knots are, however, required to completely define the spline function over the

length of the strip. These “m + 3” section knots are numbered from −1 to m + 1 as shown in Fig. 3

(Lau and Hancock 1985). A section knot “k” has four degrees of freedom uk, vk, wk and θk. The
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total number of degrees of freedom in a spline finite strip model is then equal to 4n(m + 3). The

four degrees of freedom cited are used to define four displacement functions of the nodal line: the

three translations parallel to X, Y and Z axes and the rotation about the Z-axis. The longitudinal

variation of any displacement function is given by the summation of (m + 3) local uniform B3-

splines

(1)

Where  is a local uniform B3-spline function as shown in Fig. 4 and αk is the degree of

freedom corresponding to the displacement function. αk may be considered as the amplitude of the

spline function. These displacement functions can take into account all possible end boundary

conditions and intermediate supports.

f Z( ) αkφk Z( )
k 1–=

m 1+

∑=

φk Z( )

Fig. 2 Strip subdivision of a thin-walled structure

Fig. 3 A typical B3-spline strip
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For a single strip, the vector of general displacement fields in local coordinates: {u} = [u v w]T is

approximated by the displacement functions at its two nodal lines and selected transverse shape

functions (i.e., in the x direction). For the in-plane, or membrane, displacements u and v linear

shape functions are employed. Out-of-plane displacement, w, is approximated by a cubic polynomial

in accordance to the Classical Plate Theory of plates. Using energy methods, the linear stability

eigenproblem can be obtained (Lau and Hancock 1985)

(2)

where [K] and [G] are the stiffness and stability matrices for the overall system, respectively. They

are obtained by assembling the elementary strip matrices. These matrices are first formulated in a

local strip coordinate system, and then transformed to the global coordinate system (for more details

see Lau and Hancock 1985).  is a vector of all degrees of freedom defined in the global

coordinate system. It is described as a vector composed of the degrees of freedom of the “n” nodal

lines

(3)

Each nodal line “q” has four vectors; each one describes one displacement type

(4)

Each one has m + 3 components, the amplitudes of the displacement at the m + 3 section knots

(5)

It is now established that the spline finite strip method is, with finite element method, the

numerical method that offers the largest number of possibilities for studying the buckling of thin

walled structures. It is sometimes recommended for practical use as in the Australian Standard

AS1538 (SAA 1988).

K[ ] λ G[ ]–( ) ∆{ } 0{ }=

∆{ }

∆{ } d1{ }T
  d2{ }T

  …  dq{ }T
  …  dn{ }T〈 〉

T
=

dq{ } uq{ }T
  vq{ }T

  wq{ }T
  θq{ }T〈 〉

T
=

vq{ }T
v 1–   v0  …  vk  …  vm 1+

〈 〉T=

Fig. 4(a) A local B3-spline Fig. 4(b) A linear combination of B3-splines
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2.2 The SFSM for built-up columns 

The aim of this work is to extend the SFSM for the stability analysis of built-up columns. The

main idea is to incorporate beam elements into the SFSM in order to be able to model the batten

plates or the lacing bars of built-up columns. 

A classical Bernoulli finite element beam has two end nodes, i and j, with 6 DOF per node, three

translations and three rotations (see Fig. 5) giving a displacement vector  with 12 components.

Its stiffness matrix  is widely given in many finite element (Bathe 1982). The superscript L

denotes local coordinate system while the subscript b denotes the beam element.

In the proposed method, the beam finite element may have any orientation in space. The only

condition is that the connection with the finite strip must be at nodal lines (see Fig. 6). Then, the

joint i must be on a nodal line, lets say q, at a coordinate Zi; its two other coordinates are given by

those of the nodal line: Xq and Yq. The second node j is on the nodal line r at Zj position. Its other

coordinates are Xr and Yr. At this level it should be noticed that one can have the two beam joints

on the same nodal line and that one can have a beam joint on a common nodal line to many strips.

With the coordinates of the two nodes i and j, plus a parameter defining the orientation of one of

the two principal axis of the beam section, one can easily define a (12 × 12) rotation matrix [R]

necessary to transform the DOF and the elementary matrix of the beam element from local to global

δb
L{ }

Kb

L[ ]

Fig. 5 A beam finite element with local and global coordinate systems

Fig. 6 Two strips connected by a beam element
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coordinate systems (Bathe 1982) as follows 

(6)

(7)

where  is the beam element stiffness matrix in the global coordinate system.  is the

beam DOF vector in the global coordinate system; it contains the DOF of nodes i and j 

(8a)

Those of node i are

(8b)

The beam element stiffness matrix (Eq. (7)) cannot be directly assembled to the global system of

Eq. (2). The vector  contains exclusive amplitudes of the B3-spline functions defining the four

displacement functions per nodal line. 

The objective is then to find a transformation allowing the passage from the beam DOF to those

in the  vector. The idea is to use the compatibility equations: the displacements of node i are

equal to those of nodal line q at Zi coordinate. For the four displacements of the SFSM, one can

directly write the four following equations

(9)

The two remaining DOF of joint i, the rotations about X and Y axes, can be found from the

derivatives of the displacement functions of the nodal line q, which have C2 continuity, as follows

(10)

Using Eq. (1) and the notations of Eqs. (4), (5) and (8), it is possible to write Eqs. (9) and (10) in

matrix form as follows

(11)

The elements  of the matrix are line vectors composed

of m + 3 values of the B3-spline functions evaluated at the position Zi of nodal line q, as defined by

the following equation

δb
L{ } R[ ] δ b
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Kb
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(12)

The vectors  and  contain the first derivatives of the B3-spline functions at

the coordinate Zi of the nodal line q.

Then, the 6 displacements of node i are related to the 4(m + 3) DOF of nodal line q by the

Eq. (11), which can be written in a condensed form

(13)

A similar equation can be obtained between the displacements of node j and the DOF of the nodal

line r where it is fixed at coordinate Zj

(14)

Eqs. (13) and (14) give a general relation between the 12 DOF of the beam element and degrees

of freedom of the spline finite strip model, those of nodal lines q and r

(15a)

(15b)

The strain energy of the beam element is given by

(16)

Using Eq. (15b), this energy can be expressed in DOF of the spline finite strip model, and can

then be added to the total energy of strips. Consequently, the stiffness matrix of the beam element in

the SFSM model is 

(17)

This matrix must be assembled into Eq. (2) at the DOF of the nodal lines q and r. Because of the

localized nature of the B3-spline, most of the terms of the transformation matrix are nulls. The

computing time can then be reduced by bandwidth minimisation. 

Based on the proposed method, a computer program has been developed to calculate the lowest

buckling loads using the sub-space technique and then draw the corresponding failure modes

(Djafour et al. 1999, 2001).

3. Numerical corroboration

The developed program is used for stability analysis of built-up columns. A comparative study is

done and results are presented to validate the model. A U-battened built-up column is selected for

φ Zi( )〈 〉 φ 1– Zi( )  φ0 Zi( ) … φk Zi( ) … φm 1+
Zi( )〈 〉=

φu′ Zi( )〈 〉 q φ v′ Zi( )〈 〉q

δi{ } Triq[ ] dq{ }=

δj{ } Trjr[ ] dr{ }=
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δj{ }⎩ ⎭
⎨ ⎬
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Trjr[ ]

dq{ }

dr{ }⎩ ⎭
⎨ ⎬
⎧ ⎫

=

δb
G{ } T[ ] db

SFS{ }=

1

2
--- δb

G{ }
T

Kb

G[ ] δb
G{ }

Kb

SFS[ ] T[ ]T Kb

G[ ] T[ ]=
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the study. The analysis is conducted by varying the number of the connecting elements and the

length of the column. Results are then compared to those obtained by other existing numerical and/

or theoretical methods. A 5 meter long U built-up column with 9 batten plates was selected as a

particular example to explain the adopted approach. For all the analyses the cross section of the

built-up column and its boundary conditions remain unchanged.

3.1 Analysis of built-up column and finite strip mesh

The studied column is composed of two equal U sections with a web of 90 mm and two flanges

of 30 mm (see Fig. 7). To characterize the behaviour of an isolated U section under a compressive

load an analysis by the semi-analytical finite strip method is performed first (Kerdal 1995). In this

method, the column’s ends are simply supported and instability occurs due to developing harmonic

waves in the longitudinal direction. The result of this work is given in Fig. 8 showing the variation

of the critical stresses and their corresponding shapes versus the harmonic half-wave length. Under

the action of compressive load, the channel section buckles locally into a number of half-waves, for

Fig. 7 Geometry of analysed column

Fig. 8 Single channel: Buckling stress versus half-wavelength
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length less than 0.532 m, and globally (Euler mode), for length greater than 1 m. Between these

limits, mixed modes can be observed. 

To obtain the built-up column, the two channel sections are inter-connected by rectangular battens

having a width of 60 mm. The thickness of the chords and the battens is equal to 2.42 mm. The

distance between the ends of the flanges is kept constant and equal to 100 mm. The distance

between centroidal axes is 148 mm. Fig. 7 gives all the dimensions of the analysed built-up column.

Other geometrical data such as cross sections and moments of inertia of the components of the

built-up column are given in Table 1. The model used in the analysis is elastic linear with Young’s

modulus E and a Poisson’s ratio of 0.3.

In the spline finite strip method, a big variety of boundary conditions can be modelled (Lau and

Hancock 1985). Because most of the built-up columns have stay plates at their ends in order to

suppress the supports shear deformation (Paul 1995), they are assumed hinged in the numerical

model by restraining U and V displacements in all nodal lines at sections Z = 0 and Z = L while

Table 1 Geometrical characteristics of the built-up column

Moment of inertia with respect to centroid

Structural component 
Area

(mm2)
Minor
(mm4)

Major
(mm4)

Single channel 363,0 30640,8 441434,7

One batten plate 145,2 70,9 43560,0

Built-up column 726,0 882869,5 4037906,4

Fig. 9 A typical battened column and its modelisation (this example has “3 batten plates”)
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displacement W is set free. The stay plates are modelled with very stiff beam elements (10 times the

stiffness of batten plates).

Fig. 9 shows the finite strip discretization used for the stability analysis of a U built-up column

under compressive load. Each web is divided into 4 strips while each flange is divided into 2 strips

giving a total of 16 strips and 18 nodal lines. The length of the column is divided into 33 sections

giving a total of 36 section knots. The batten plates are modelled using beam elements. If, for

example, the column is divided into four strips as shown in Fig. 9, the 3D model should have 6

beam elements for the batten plates and 4 more stiff elements for the stay plates. For all of the

following models the number of batten plates means the number of intermediate batten plate pairs.

Thus, Fig. 9 shows a model with “3 batten plates”. It necessitates 3 × 2 + 4 beam elements.

3.2 Adopted procedures

Table 2 gives the ten lowest critical stresses with their corresponding mode shapes presented in

two planes (face and profile views) for a 5 meter long U built-up column and 9 intermediate batten

plates. It is clear from the table that modes 1 and 3 correspond to the first two Euler buckling

modes in the YZ plane with one and two half-waves, respectively. The values of critical stresses of

these two modes are compared with theoretical ones. It is clear from Table 3 that the difference is

less than 1%.

The second mode in Table 2 is the flexural buckling in the batten plates plane (plane XZ) causing

Table 2 The first ten buckling modes for a built-up column connected by “9 batten plates” and having L = 5 m

Mode number 1 2 3 4 5 6 7 8 9 10

σcr /E (×10−3) 0,479 1,538 1,901 2,809 3,042 3,097 3,113 3,218 3,221 3,241

Mode shape 
plan xz

Mode shape 
plan yz

 

 

 

 



452 M. Djafour, A. Megnounif, D. Kerdal and A. Belarbi

their deformability. The analytical methods (Engesser 1909, Paul 1995) have treated this problem

with the assumption that the discontinuous effect of batten plates is replaced by a fictitious

continuous web having a shear stiffness K. Among various formulas (Timoshenko 1961), the

following expression is used 

(18)

In this expression, the batten plates are assumed to be Bernoulli beam elements, which conform to

the beam element of the developed program. “a” is the batten plates spacing, “b” is the length of

the plates taken between the centroidal axes of the chords, “E” is the material Young’s modulus,

“Ic” and “Ib” are the flexural moments of inertia of the channels and the plates, respectively. In this

example, a = 0.5 m and b = 0.148 m. These numerical values and those from Table 1 are used for

theoretical predictions from Engesser’s formula and Paul’s theory. Moreover, as in the latter method

the equivalent web-chord attachment line is not restricted to be at the chord’s centroidal lines, a

second Paul’s prediction is made. The batten plates are assumed to be attached at the ends of the

flanges. Thus, their flexible length is equal to 0.1 m. Table 4 gives the critical stresses of the 2nd

mode from different theories. The numerical value obtained is between Engesser’s value and the

second prediction value of Paul.

Modes 8 and 10 in Table 2 correspond to local buckling of the plate elements forming the U

shape. A lower bound of the corresponding critical stress can be obtained from the local buckling

theory of thin plates, supposing simply supported connections between plate elements (as

recommended by most of current design guidelines and codes). A better prediction of this stress can

be calculated by a rational elastic buckling analysis of thin walled structures, such as the semi-

analytical finite strip method (see Fig. 8). If the local buckling stress obtained by the program

(σcr /E = 3.218 × 10−3) is compared with the result of the finite strip method (σcr/E = 2.724 × 10−3)

an 18% of difference is found.

The other modes (4, 5, 6, 7 and 9) in Table 2 are more difficult to classify. They almost represent

the flexural buckling of chords between the batten plates, interacting, for some of them, with local

buckling (for modes 6, 7 and 9). These modes show clearly the discrete action of the 9 batten

plates, particularly mode 5 that develops 9 half-waves along the column. Supposing an effective

length of a = 0.5 m, the Euler prediction for weak-axis flexure (see Table 1) of the chord gives

σcr/E = 3.332 × 10−3. This is slightly greater than the numerical predictions for these modes. The

1

K
----

a b⋅
12EIb
--------------

a
2

24EIc
--------------+=

Table 3 The two first Euler buckling loads in YZ plan

σcr, num/E (×10−3) σcr, the/E (×10−3) σcr, num /σcr, the

Mode 1 0.479 0.48 0.998

Mode 3 1.901 1.92 0.99

Table 4 The first Euler buckling load in XZ plan

σcr, num/E (×10−3) σcr, Engesser/E (×10−3) σcr, Paul1* /E (×10−3)σcr, Paul2**/E (×10−3)

Mode 2 1.538 1.327 1.403 1.605

*Paul 1 with “b” calculated between centroidal axes of the chords.
**Paul 2 with “b” calculated from the ends of the flanges of the chords
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flexibility of the batten plates increases the effective length.

It is clear that the critical stress is given by the lowest value of the load. However, the knowledge

of higher mode responses has some benefits. In a parametrical study, the position of some modes

may change. The fact to calculate and draw more than one mode permits to follow, as a function of

the parameter, the behaviour of a mode which becomes non critical. In this study, the results of the

first ten modes are used in the buckling mode identification.

To identify and classify the modes according to their shapes constitutes the inverse work (simpler)

as compared to the one asked of the engineer who should predict all possible instability modes,

calculate the critical loads and retain only the smallest one. At this point, the developed program

will be a very helpful tool for the engineer.

3.3 Variation of batten plates number

The analysis is first conducted with a constant length of 5 meters and a variable number of batten

plates ranging from 1 to 29 in order to validate the proposed model. The built-up column has stay

plates at its ends. Different buckling modes have been observed, only four of them (say the classical

or pure ones) are considered in this study: the two first flexural modes in the YZ plane, the first

flexural mode in the XZ plane and the local buckling mode. Fig. 10 shows the variation of the

stresses corresponding to these four modes with the number of batten plates. 

It is clear, from the figure that for the two first flexural buckling modes in the YZ plane, the

values obtained by the proposed numerical method are almost the same as those obtained by the

Fig. 10 Comparison of bucking stresses for a battened column (L = 5 m)
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Euler theoretical method. For the first flexural buckling mode in the XZ plane (batten plates plane),

the obtained results are compared with four other methods where three of them take into account

the deformability of the batten plates and the fourth one supposes an Euler type buckling of a solid

column. For less than 10 batten plates, the numerical results are within those obtained by Engesser’s

method, and those obtained by Paul’s method where the batten plate’s ends are supposed to be

attached to the channels at their flange edges. Beyond this point, the numerical values are greater

than the results of all other methods and converge rapidly to the Euler value. It is possible to say

that for this type of behaviour, the curve obtained by the proposed numerical method is quite good.

Also, this type of mode (the first flexural buckling in the XZ plane) has changed its position while

the number of batten plates has changed. It was in the first position until 3 battens, it then passed to

the second one with 4 to 12 battens, and finally to the third position from 13 battens. This is due

exclusively to the flexural buckling modes in the YZ plane i.e., if the 5 meter built-up column is

restrained in the YZ plane, the flexural buckling mode in the XZ plane is always critical.

For the local buckling mode, the numerical values obtained by the proposed method are 18% off

from the estimation of the semi-analytical finite strip method (see Fig. 8). However, it is well

known that if a plate is very long, the critical stress and the local buckling wave length are

constants and independents of the boundary conditions in the longitudinal direction (Timoshenko

1961). In other words, since the distance between batten plates is, for all examples, relatively high

compared to the channels’ dimensions, the program should give a value near the one obtained by

the finite strip method (σcr/E = 2.724 × 10−3).

The same work as presented above has been performed for two more lengths of the built-up

Fig. 11 Comparison of bucking stresses for a battened column (L = 4 m)
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column. Figs. 11 and 12 show the variation of the four stresses (corresponding to the four

considered buckling modes) with the number of batten plates for a 4 meter and 3 meter column

length, respectively. It is clear that almost the same conclusions and remarks can be drawn as for

the 5 meter length, except that it was difficult to monitor the buckling stress in the XZ plane beyond

the local buckling value. This is due to the great multiplicity of local buckling eigenvalues. In fact,

for longer plates, different instability shapes corresponding to different numbers of half-waves may

have very close local buckling stress values.

One can also conclude from Figs. 10 through 12 that when the length of the built-up column

decreases, the local buckling stress obtained by the proposed numerical method will converge to the

value calculated by the semi-analytical finite strip method. This can have two explanations. First,

for longer columns, the local buckling mode occupies a higher order (8th position for a 5 meter

column), whereas for a shorter column it can occupy the first position. It is well known that in an

eigenproblem, the precision of an eigenvalue decreases with its order. The second explanation is due

to the number of sections used in the spline finite strip model. This number is maintained constant

(33) for all the lengths studied. The distance between the nodal knots, which defines the finesse of

the model, is then proportional to the column length. However, for an accurate representation of the

local buckling, one needs to represent the local buckling wave whose length is approximately

constant. So, for greater column lengths, it becomes difficult to represent this wave precisely. The

semi-analytical finite strip method estimates the local buckling wave length to 0.099 m for the

studied U shaped section, while for a 5 meter length the interval between the section knots is 0.152

m. This causes the 18% difference in the results. With a 2 meter built-up columns and 4 batten

plates, the proposed numerical method gives σcr /E = 2.750 × 10−3 which represents a difference of

less than 1%.

Finally, the proposed model based on the spline finite strip method can be applied to elastic

Fig. 12 Comparison of bucking stresses for a battened column (L = 3 m)
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buckling analysis of built-up columns and is considered to be accurate and efficient for the local

buckling of short columns and global buckling for slender columns.

4. Conclusions

A new technique based on the spline finite strip method is proposed for the elastic stability

analysis of built-up columns. The channels can have any arbitrary cross section and possess any

boundary conditions. The method is able to predict the buckling load incorporating all the possible

failure modes (local, overall and mixed modes). The numerical results necessitates buckling mode

identification which constitutes inverse work as compared to the one asked of the engineer who

should predict all possible instability modes, calculate the critical loads and retain only the smallest

one. At this point, the developed program will be a very helpful tool for the engineer and to a

certain extent, researchers. The obtained results are compared with the predictions of some

theoretical equations. Finally, the proposed model is considered to be accurate and efficient in

predicting local buckling of short built-up columns and global buckling of slender built-up columns.
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