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Abstract. This paper examines the application of artificial neural networks (ANN) to the response
prediction of geometrically nonlinear truss structures. Two types of analysis (deterministic and
probabilistic analyses) are considered. A three-layer feed-forward backpropagation network with three
input nodes, five hidden layer nodes and two output nodes is firstly developed for the deterministic
response analysis. Then a back propagation training algorithm with Bayesian regularization is used to train
the network. The trained network is then successfully combined with a direct Monte Carlo Simulation
(MCS) to perform a probabilistic response analysis of geometrically nonlinear truss structures. Finally, the
proposed ANN is applied to predict the response of a geometrically nonlinear truss structure. It is found
that the proposed ANN is very efficient and reasonable in predicting the response of geometrically
nonlinear truss structures. 

Keywords: artificial neural networks; geometrically nonlinear analysis; truss structures; uncertainties;
response.

1. Introduction 

Response prediction of geometrically nonlinear structures has been the subject of extensive studies

during the past few decades. This problem is of great importance to solve the structural response of

long-span and slender structures such as cable-supported bridges. Various methods have been

developed for determining the response of these types of structures. These methods may be broadly

divided into two categories as: (1) deterministic methods; and (2) probabilistic methods. 
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Deterministic methods are based on the assumption of complete determinacy of structural

parameters. This nonlinear finite element method is one of the most common and traditional

methods for a deterministic analysis. Extensive reviews of the method are found in Bathe (1982),

Crisfield (1991). However, the method involves step-by-step numerical iterations for each response

analysis of geometrically nonlinear structures, and therefore requires a relatively long computation

time. Manual intervention to the program may be needed since iterations do not converge for some

cases. 

In reality, however, there are uncertainties in design variables. These uncertainties include

geometric properties (cross-sectional properties and dimensions), material mechanical properties

(modulus and strength, etc.), load magnitude, distribution, etc. Thus, deterministic methods cannot

provide complete information regarding the responses of geometrically nonlinear structures. 

Probabilistic methods are appropriate tools for the analysis of structural systems with randomly

varying material and/or geometric properties. Three methods have been used to predict the response

of geometrically nonlinear structures with parametric uncertainties, namely, the Monte Carlo

simulation (MCS), the first-order approximation (FORA), and the response surface method (RSM).

Imai and Frangopol (2000) used the first two methods to analyze probabilistically the mean and

variance of member axial forces of a truss and a suspension cable. The results show that the first-

order approximation method and Monte Carlo simulation are in close agreement. However, the two

methods have some drawbacks. First, for accurate results, the Monte Carlo simulation needs

numerous repetitions of a deterministic analysis, thus consuming an enormously large amount of

computation time. Second, the first-order approximation method needs computations of the response

gradients for geometrically nonlinear structures with parametric uncertainties. Unfortunately, the

existing deterministic finite element codes available to design engineers cannot compute response

gradients. Therefore, to use the method, it is necessary to modify the existing deterministic finite

element codes. 

RSM is another method for the probabilistic analysis of structures with random system

parameters. This method has been developed to perform probabilistic response analysis of

geometrically nonlinear structures. Cheng et al. (2004) used the RSM for predicting the response of

a geometrically nonlinear truss and the flutter reliability of suspension bridges (Cheng et al. 2005).

The main limitation of the method is that when the number of random variables is increased, the

number of deterministic analysis increases greatly, thus making them computationally expensive. 

The artificial neural networks method (ANN) can be pursued for the response prediction of both

deterministic and nondeterministic structures. The ANN has the following advantages: (1) it is able

to learn and generalize from examples and experience to produce meaningful solutions to problems;

(2) it is easy to map the relationship between the input and output data without knowing ‘a priori’ a

relationship between those data; (3) it is robust in dealing with noise or incomplete input data; and

(4) it can adapt to solutions over time and to compensate for changing circumstances. Due to these

advantages, the ANN has found numerous applications in civil and structural engineering. A paper

by Adeli (2001) presents a summary of applications of ANN in this area from 1989 to 2000. More

recent development of the ANN may be found in papers by Flood et al. (2001), El-Kassas et al.

(2001), Lee (2003), Oreta (2004), Giunta et al. (2004), Hemez (2004), Pierce et al. (2006), among

others. Although much work has been performed in this area, to the authors’ knowledge, the

application of ANN to the response prediction of either deterministic or nondeterministic

geometrically nonlinear truss structures has not been reported. 

The purpose of this paper is to examine the feasibility of using the ANN to predict the response
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of both deterministic and nondeterministic geometrically nonlinear truss structures. For this purpose,

a description of the geometrically nonlinear problem is first given. Secondly, an ANN for

deterministic response analysis is developed. The accuracy of the ANN is then compared with the

results from nonlinear finite element method. Finally, the developed ANN, combined with the MCS

method, is used to predict the response of nondeterministic geometrically nonlinear truss structures. 

2. Description of problem 

Consider a truss shown in Fig. 1, which was used in Imai and Frangopol (2000). The problem

considered here is to determine the truss response in both deterministic and nondeterministic

approaches. This can be done by mapping a functional relationship between the response and the

various design variables which can be expressed mathematically as 

(1)

(2)

 

where u2 = vertical displacement at Node 2; T = member axial force; f1, f2 = unknown approximate

functions; and E, A, P = modulus of elasticity, area and load, respectively. 

Note that the above design variables (E, A and P) are usually treated as a deterministic quantity

for all discretized elements of the structure, thus the structural response is also deterministic.

However, in reality there are uncertainties in design variables. As it is well known, due to the

system uncertainties caused during the process of measurement, structural element manufacturing

and erection of the truss, material properties and geometric parameters of the truss may fluctuate in

the vicinity of the nominal values. Therefore, system parameters should be treated as random rather

than deterministic variables. Besides, the external loads are also random variables due to their

natures and/or insufficient information. 

For the sake of simplicity, only three design variables (above-mentioned E, A and P) are chosen

as the random variables of interest for this study. Table 1 shows the statistics of these random

variables. As the objective of this study is to examine the feasibility of using the ANN to predict

the response of both deterministic and nondeterministic geometrically nonlinear truss structures, all

u2 f1 E A P, ,( )=

T f2 E A P, ,( )=

Fig. 1 Two-bar truss 
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random parameters in the present study are based on arbitrary but typical values. On the other hand,

since the determination of the correlation of the random parameters is a difficult task, using the

independence assumption can greatly simplify the response analysis of nondeterministic truss

structures. Therefore, all random parameters in the present study are treated as stochastically

independent from each other. Without any loss of generality, three different values (i.e., 0.5, 5.7 and

10.0 degrees) of the angle in Fig. 1 are considered in this study. 

3. ANN for deterministic response analysis 

ANN is an information processing technique based on the way biological nervous systems, such

as the human brain, process information (Adhikary and Mutsuyoshi 2004). This technique as a

whole has the capability to respond to input stimuli, produce the corresponding response, and adapt

to the changing environment by learning from experience. More detailed description of ANN can be

found in Flood and Kartam (1994). 

There are a number of ANN paradigms. A multilayer feed-forward backpropagation network,

which is one of the well-known and the mostly widely used ANN paradigms, is used in this study.

The neural network toolbox available in MATLAB software is utilized to construct the proposed

ANN analysis. Some of the important elements of the proposed ANN are briefly discussed in the

following sections. 

3.1 ANN architecture and training algorithm 

The proposed ANN structure consists of an input layer with 3 input nodes, a hidden layer with a

different number of hidden nodes and an output layer with 2 output nodes. The ANN with 3 input

nodes and 2 output nodes will be referred to as N3 models. For the sake of comparison, three N3

models are considered in this study. They are N3-1-2 (3 input nodes, 1 hidden node, and 2 output

nodes), N3-3-2 (3 input nodes, 3 hidden node, and 2 output nodes) and N3-5-2 (3 input nodes, 5

hidden node, and 2 output nodes). Fig. 2 shows the architecture of a N3-3-2 model, in which the

left column is the input layer, the right most column is the output layer, and the middle one is the

hidden layer. In all N3 models, a hyperbolic tangent sigmoid transfer function g(z) = 2/(1 + e
−2z

) − 1

is used to transfer the values of the input layer nodes to the hidden layer nodes, whereas the linear

transfer function g(z) = z is adopted to transfer the values from the hidden layer to the output layer. 

The training phase of the N3 models is implemented by using a training algorithm. In this study, a

backpropagation training algorithm is used to train all models. To make sure that these models are

well trained and have the capability to generalize, Bayesian regularization is implemented in the

above backpropagation training algorithm. Bayesian regularization minimizes a linear combination

of squared errors on training samples and network weights. It also modifies the linear combination

Table 1 Statistical parameters of random variables of a two-bar truss

Variable µ σ Unit Distribution Sources

E 200 4 GPa Normal Imai and Frangopol (2000)

A 250 5 mm2 Normal Assumed

P 18 3.6 kN Normal Imai and Frangopol (2000)
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so that at the end of training the resulting network model has good generalization qualities. A more

detailed discussion of the Bayesian regularization can be found in the literature (e.g., MacKay

2005). 

The training process of the N3 models is terminated when any of the following conditions are

satisfied: the maximum number of iterations (epochs) is reached; the performance gradient falls

below a minimum value, or the performance is minimized to the target value. 

3.2 Data preparation and processing 

To train the above N3 models, 27 sets of training data were generated using a 3
3 

full factorial

experiment design with 3 levels in E, A and P respectively. Particulars of the levels of each design

variable are as follows: 

E = {188, 200, 212}(GPa) 

A = {235, 250, 265}(mm2) 

P = {7.2, 18.0, 28.8}(kN) 

For each point in this design space, a deterministic analysis of the truss was carried out using the

nonlinear finite element method. Six new data sets were randomly generated within the above

design space. These new data sets (referred to as test data sets) were be used for testing the trained

N3 models to verify their prediction ability. 

To improve the training process of the model, all training data sets need to be scaled before

presenting them to these models. A scaling equation (Alqedra and Ashour 2005) for a design

variable P that is limited to the minimum (Pmin) and maximum (Pmax) values given in Table 2 was

used and is described as Pscaled = .2 P Pmin–( )/ Pmax Pmin–( )× 1–

Fig. 2 Architecture of a N3-3-2 model 

  

Table 2 Values for scaling data

Variable Minimum Maximum

E 188 GPa 212 GPa

A 235 mm2 265 mm2

P 7.2 kN 28.8 kN
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3.3 Evaluation of the ANN performance 

Once the above N3 models are trained, the relationship between the response and the various

design variables in Eqs. (1) and (2) can be readily retrieved by using the N3 models. The next step

is to validate and evaluate the trained N3 models. This can be done by using common error metrics

such as the mean absolute error (MAE) or root-mean-squared error (RSME). The two error

functions can be expressed as

 (3)

(4)

 where n = the numbers of patterns in the validation data set (i.e., test data set); m = the number of

components in the output vector; P = the output vector from the N3 models; and T = the desired

output vector from the nonlinear finite element method. It should be noted that the above-mentioned

scaling equation is used in computing the MAE and RMSE. 

4. ANN-based MCS method for probabilistic response analysis 

Direct MCS is a commonly used traditional method for a probabilistic response analysis.

Extensive reviews of the method are found in Melchers (1999), Haldar and Mahadevan (2000). In

brief, the method uses randomly generated samples of the input variables for each deterministic

analysis, and estimates response statistics after numerous repetitions of the deterministic response

analysis (Haldar and Mahadevan 2000). The main advantages of the method are: (1) engineers with

only a basic working knowledge of probability and statistics can use it; and (2) it always provides

correct results when a sufficiently large number of simulation cycles are performed (one simulation

cycle represents a deterministic analysis). However, the method has one drawback: it may need an

enormously large amount of computation time. In this paper, an ANN-based MCS method is used

to overcome this drawback. The procedures of the method can be summarized as follows: 

(1) Construct a database of deterministic analysis results (27 training data sets and 6 test data

sets). 

(2) Determine the architecture of the ANN model and training algorithm. 

(3) Train the ANN model with the training data sets. 

(4) Evaluate and validate the ANN model with the test data sets. 

(5) Based on the trained ANN model, apply direct MCS to obtain the probabilistic results for

structural response. 

MAE

Pi j Ti j–

j 1=

m

∑
i 1=

n

∑

n m⋅
-------------------------------------=

RMSE

Pi j Ti j–( )
2

j 1=

m

∑
i 1=

n

∑

n m⋅
-----------------------------------------=
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5. Results and discussion 

5.1 Performance of N3 models 

Table 3 shows the comparison of the performance of the N3 models for MAE and RMSE, both

for the training and test data. It can be seen that the N3-5-2 model has the least error for both MAE

and RMSE. 

When the output data of the N3 model are processed or converted to their physical attributes, the

maximum, mean, and minimum prediction errors (i.e., the difference between the predicted values

and the nonlinear finite element analysis results) of the N3 models for the training and test data for

u2 and T may be compared as listed in Tables 4 and 5, respectively. The N3-5-2 model performs

better than the other two models based on the maximum and mean values of the errors of the

predicted u2 and T, and it is thus selected for further validation. 

Figs. 3 and 4 compared the predictions of the N 3-5-2 model and the nonlinear finite element

method for the training and test data for u2 and T, respectively. As shown, a good correlation can be

observed between the predictions of the N 3-5-2 model and the nonlinear finite element analysis

Table 3 Summary of mean errors of N3 models

Angle α
(degrees)

ANN model
Training data Test data

MAE RMSE MAE RMSE

N 3-1-2 0.061 0.0762  0.069  0.0806

 0.5 N 3-3-2 0.0011 0.0015  0.0676  0.0825

N 3-5-2 9.7987e-4 0.0013  0.0472  0.0566

N 3-1-2 0.0453 0.0632  0.0534  0.0640

 5.7 N 3-3-2 0.0013 0.0019  0.0322  0.0387

N 3-5-2 0.0013 0.0019  0.0284  0.0346

N 3-1-2 0.0414 0.0624  0.0462  0.0557

 10.0 N 3-3-2 6.9657e-4 0.0012  0.0442  0.0510

N 3-5-2 6.4861e-4 0.0012  0.0245  0.0287

Table 4 Summary of prediction errors of N3 models for training data

Angle α 

(degrees)
ANN 
model

u2 (mm) T (kN)

Maximum Mean Minimum Maximum Mean Minimum

N 3-1-2 33.9 11.8 2.7 9.0744 3.1237 0.4955

0.5 N 3-3-2 0.7 0.2556 0.0 0.1511 0.0453 0.0019 

N 3-5-2 0.7 0.2296 0.0 0.1085 0.0350 6.0e-4

N 3-1-2 17.9 4.8 0.4 5.096 1.6468 0.024

5.7 N 3-3-2 0.4 0.2037 0.1 0.0663 0.019 0.0034 

N 3-5-2 0.4 0.2037 0.0 0.0566 0.016 0.0024

N 3-1-2 8.9 1.967 0.0 3.1862 1.0325 0.0254

10.0 N 3-3-2 0.2 0.0407 0.0 0.0222 0.0060 3.0e-4 

N 3-5-2 0.2 0.0407 0.0 0.0094 0.0034 6.0e-4
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Table 5 Summary of prediction errors of N3 models for test data

Angle α 

(degrees)
ANN 
model

u2 (mm) T (kN)

Maximum Mean Minimum Maximum Mean Minimum

N 3-1-2 21.1 11.75 1.0 7.8126 4.0744 1.7129

0.5 N 3-3-2 25.0 12.167 3.0 7.982 3.78 0.578 

N 3-5-2 19.0 9.833 2.0 4.2 2.2197 0.364

N 3-1-2 7.8 4.2 0.1 5.3634 2.6461 0.6413

5.7 N 3-3-2 6.0 2.667 0.0 2.974 1.584 0.299 

N 3-5-2 5.0 2.667 0.0 2.492 1.356 0.255

N 3-1-2 3.3 1.667 0.5 3.2622 1.5499 0.1675

10.0 N 3-3-2 3.0 1.50 0.0 2.541 1.484 0.308 

N 3-5-2 1.0 0.667 0.0 1.507 0.8702 0.177

Fig. 3 Comparison between N3-5-2 model and nonlinear finite element analysis, u2 using: (a) training data,
(b) test data 

Fig. 4 Comparison between N3-5-2 model and nonlinear finite element analysis, T using: (a) training data,
(b) test data 
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results in the majority of the cases. This good correlation implies that the N3-5-2 model was

successful in capturing the underlying relationship between the structural response and different

parameters used in the model. 

To validate the performance of the N3-5-2 model in simulating the behavior of physical processes,

a parametric study is performed by simply varying one input parameter at a time (e.g., load

parameter P), while all other input parameters (e.g., E and A) are set to constant values. The u2 and

T predictions of the N3-5-2 model  as compared to the nonlinear finite element analysis results are

shown in Figs. 5 and 6, respectively. From these figures it can be seen that the N3-5-2 model

prediction is almost the same as that of the nonlinear finite element analysis. 

It is concluded from these comparisons that the N3-5-2 model can confidently be used as a

substitute of the nonlinear finite element analysis method. Hence the N3-5-2 model is considered as

an acceptable ANN model and will be combined with a direct MCS method to predict the response

of nondeterministic geometrically nonlinear truss structures. It should be noted that although N3-5-2

model provides the best performance, it does not mean that this is the well-optimized configuration

if one considers computation and training penalties. Also, different structures may require different

sets of configuration. 

5.2 Probabilistic response analysis 

The MCS combined with the nonlinear finite element analysis (FEM-based MCS, simply call

direct MCS) is conducted for probabilistic response analysis of the truss in Fig. 1. As described in

the previous sections, the direct MCS has one drawback: it needs an enormously large amount of

computation time. To overcome the drawback of the direct MCS, we use Monte Carlo simulation

together with an ANN model. The ANN is used to construct approximation response functions. The

Fig. 5 Comparison between N3-5-2 model and
nonlinear finite element analysis-u2 versus P

Fig. 6 Comparison between N3-5-2 model and
nonlinear finite element analysis-T versus P
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proposed method will be called as ANN-based MCS. Because the fluctuation of the means (µ) and

standard deviations (σ) of the structural responses (u2 and T) is negligibly small after 50,000

simulations, the number of simulations is fixed at 50,000. The means (µ) and standard deviations

(σ) for u2 and T obtained with both direct MCS and the proposed method are listed in Tables 6 and

7, respectively. Figs. 7 and 8 show the comparison between the cumulative distribution function

obtained by the direct MCS and the proposed method for u2 and T, respectively. From these tables

and figures it can be seen that: (1) the mean and standard deviations of the structural respones (u2

and T) from the proposed method are very similar to the results from direct MCS, indicating that

the proposed method for predicting the response of the nondeterministic truss is adequate from a

practical point of view; (2) the value of the angle α has a significant effect on the mean and

standard deviations of the structural responses (u2 and T). The mean and standard deviations of the

structural responses (u2 and T) decreases with the increase in the value of the angle α. A similar

Table 6 Comparisons of different methods for the means (µ) and standard deviations (σ) for u2

α 
(Degrees)

ANN-based MCS MCS

µ (m) σ (m) µ (m) σ (m) 

0.5 0.6253 0.0577 0.6266 0.0485

5.7 0.1490 0.0276 0.1490 0.0253

10.0 0.0595 0.0122 0.0594 0.0114

Table 7 Comparisons of different methods for the means (µ) and standard deviations (σ) for T

α 
(Degrees)

ANN-based MCS MCS

µ (m) σ (m) µ (m) σ (m) 

0.5 125.396 19.010 125.858 16.942

5.7 78.974 15.325 78.945 14.146

10.0 50.965 10.654 50.902 9.858

Fig. 7 Cumulative distribution function of u2-
comparison between ANN-based MCS and
MCS 

Fig. 8 Cumulative distribution function of T-
comparison between ANN-based MCS and
MCS 
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conclusion can be found in Imai and Frangopol (2000) and (3) once the approximation response

function is found, we can use it directly instead of conducting deterministic response analysis.

Performing a deterministic response analysis may require several minutes or hours of computation

time; whereas the evaluation of such a response function requires only a fraction of a second.

Hence, the computing time can be saved greatly, particularly when a deterministic response analysis

requires a large amount of computation time or the number of response calculations is large. 

6. Conclusions 

This paper presents an application of artificial neural networks (ANN) to the response prediction

of both deterministic and nondeterministic geometrically nonlinear truss structures. A three layer

feed-forward backpropagation network with three input nodes, five hidden layer nodes, and two

output nodes was firstly developed for the deterministic response analysis. A back propagation

training algorithm with Bayesian regularization is used to train the ANN. The predicted structural

responses obtained by utilizing the trained ANN were compared with the nonlinear finite element

analysis results. The results of the ANN show good agreement with the nonlinear finite element

analysis results. The proposed ANN approach has the following advantages: (1) it is easy to map

the relationship between the input and output data without knowing ‘a priori’ a relationship between

those data; and (2) it reduces the overall time required for implementations by a significant amount

when compared with the existing nonlinear finite element method. This is due to the fact that the

proposed ANN is used for the solution of all kinds of problems instead of step-by-step numerical

iteration procedures, typically in the nonlinear finite element method. 

The proposed ANN is then successfully combined with a direct MCS to predict the response of

nondeterministic geometrically nonlinear truss structures. The ANN-based MCS algorithm gives

similar response statistics compared to the response statistics for the FEM-based MCS (direct

MCS). Also, the algorithm can practically eliminate any limitation on the scale of the problem and

the sample size used for the direct MCS, provided that the predicted response statistics fall within

acceptable tolerances. 

In conclusion, ANN can be effectively used as a supplementary technique to conventional numerical

procedures in response prediction of geometrically nonlinear truss structures. While the use of the

proposed ANN should be limited within the range of the input parameters covered in this study, the

proposed ANN can always be updated to obtain better results by presenting new training patterns as

new data become available. However more research is required to address the limitations and the

restrictions of the proposed ANN. For instance, how to obtain or how to intelligently select training

data is always an open problem with the proposed ANN. Also, the intensive computation (especially

for certain applications in the training stage) is possibly one limitation of the proposed ANN. 

Although emphasis in this study was placed on the response prediction of geometrically nonlinear

truss structures, the proposed ANN algorithm offers immediate applications to other geometrically

nonlinear structures, such as cable-supported bridges. 
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