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Analytical solutions for buckling of simply supported 
rectangular plates due to non-linearly distributed 

in-plane bending stresses
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Abstract. Rigorous analytical solutions are obtained for the plane stress problem of a rectangular plate
subjected to non-linearly distributed bending loads on two opposite edges. They are then used in a
Galerkin type solution to obtain the corresponding convergent buckling loads. It is shown that the critical
bending moment depends significantly on the actual edge load distribution and further the number of
nodal lines of the buckled configuration can also be different from that corresponding to a linear
antisymmetric distribution of the bending stresses. Results are tabulated for future use while judging
approximate numerical solutions.
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1. Introduction

Plate problems are often idealisations of portions of a much more complicated stiffened or built-

up structure, for example, a rectangular portion of an aircraft wing skin bounded by orthogonal

stiffeners or the web of a box girder. Instead of analyzing this overall structure, one attempts to

isolate the small portion of interest and analyze it separately, for the sake of simplicity, using plate

theory. However, while doing so one has to keep in mind that the boundary conditions and the loads

can then be specified only intuitively because they depend on the relative stiffnesses of the

separated free bodies. In addition to the analysis of this intuitive problem, it is thus necessary to

find out the effect of a possible change in boundary conditions or load distribution.

Based on this reasoning, and with specific reference to the problem of stability of rectangular

plates, it is necessary to obtain results for different boundary conditions and statically equivalent

load distributions. While the classical problems of uniform uniaxial and biaxial compression and in-

plane shear have been extensively studied for plates with different boundary conditions

(Timoshenko and Gere 1961), non-uniform variations of loading have also been considered. Some

notable early investigations in this regard have been those of Timoshenko (1910) for collinear

concentrated loads by means of an energy method which does not require the complete
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determination of the in-plane stress field, and Benoy (1969) for a parabolically distributed load

using an assumed in-plane stress distribution. More recently, Leissa and Ayoub (1988) considered

the case of collinear concentrated loads using a combination of finite element method for plane

stress analysis and Ritz method for stability analysis. Similarly, stiffened plates under partial edge

loading were studied using finite element method by Srivastava et al. (2003). As an alternative to

finite element method, the use of mesh free method has been advocated by Liew and Chen (2004)

and Chen and Liew (2004) who considered moderately thick/functionally graded plates under non-

uniform loading. The influence of non-uniform loading on laterally restrained plates was examined

by Bedair (1996). Orthotropic plates under parabolic loading have been studied by Hu et al. (2003)

using an assumed plane stress field. Bert and Devarakonda (2003) studied plates under sinusoidally

distributed load and showed that it is necessary to carry out the plane stress analysis carefully to

obtain correct values of the buckling load. Very recently, a comprehensive set of rigorous analytical

solutions have been obtained for a simply supported plate subjected to various uniaxial stress

distributions (Jana and Bhaskar 2004, Jana 2005) and it has been shown that the total buckling load

of a square plate can vary significantly (between 65% to 166%) from that corresponding to uniform

stress distribution. 

All the above-mentioned investigations are with reference to uniaxial compression. With reference

to the related problem of buckling due to uniaxial in-plane bending loads, a number of investigators

have studied the effect of a linear antisymmetric bending stress distribution. For example, the

classical text-book of Bulson (1970) cites and presents results, based on approximate energy

methods, for various combinations of classical and non-classical boundary conditions on the loaded

ends and the longitudinal sides. Recently Leissa and Kang (2002) adopted a Frobenius’ series

approach and obtained an exact solution for the specific case of a plate with simply supported

loaded ends and clamped sides, with the load varying linearly along the loaded ends; they later

extended it to arbitrary boundary conditions on the unloaded sides (Kang and Leissa 2005). 

From the above literature survey, it is clear that the practically important problem of plate

buckling due to non-uniform loading has been the focus of many recent studies but almost all of

them have been confined to loads causing uniaxial compression. The present work aims to expand

this knowledge base by considering the effect of non-linear bending stress distributions. While the

general remarks made earlier justify such a study, it is also appropriate in the light of observations

with reference to the effects of transverse shear deformation in not-so-slender beams. For example,

the plane stress solution corresponding to a simply supported beam (Little 1973), shows that the

bending stress does not vary linearly but in a complex nonlinear fashion which approaches the

linear distribution asymptotically as the beam becomes longer and longer. Thus, when a relatively

short box beam undergoes bending, the webs are subjected to nonlinearly distributed bending

stresses. Similarly, with reference to the sheet stiffener combination that is typical of aircraft

construction, the actual service loads are usually transmitted to the skin through the stiffeners, and

thus any in-plane bending action on a rectangular portion of the skin is basically due to localized

forces at the ends of opposite sides.

The present study is based on a rigorous superposition methodology for plane stress analysis and

a Galerkin type solution with a set of complete admissible functions for stability analysis. Attention

is confined to plates simply supported all around and the effect of five different uniaxial bending

stress distributions on the overall value of the critical moment is examined.
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2. Plane stress analysis

The different antisymmetric bending stress distributions, applied on the edges x = ±a/2, are as

shown in Fig. 1. They are listed in an order such that the moment arm between the resultants of the

tensile and compressive stresses increases. Each of the load cases of Fig. 1 can be analyzed

rigorously by using a superposition of three Airy’s stress functions (or building blocks), taken in the

form of appropriate single Fourier series (Little 1973) as described below.

All the cases except load case 1 (full sine load) can be divided into two parts where the first part

Fig. 1 Various load cases considered

Fig. 2 (a) The linear antisymmetric component, (b) The nonlinear component – Building block 1,
(c) The corresponding residual shear stress 
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(Fig. 2(a)) is one for which the in-plane stress distribution is linear everywhere in the domain of the

plate. It is necessary to find out the plane stress solution only for the remaining part (Fig. 2(b)) and

this is in terms of the following building blocks. Load case 1 directly corresponds to the second

part. 

2.1 Building block 1

The appropriate series representation of the normal stress of Fig. 2(b) is taken as 

  (1)

Substituting the Airy stress function φ1 given by

       (2)

into the governing biharmonic equation , one can obtain the general solution for the

function  as

 (3)

in which C1r through C4r are constants which are to be obtained from the boundary conditions.

It has to be noted that this stress function solution automatically gives a zero normal stress at

y = ±b/2. Enforcement of the zero shear stress boundary condition as well as the normal stress

distribution as defined in Eq. (1) at x = ±a/2, yields

(4)

where C1r and C4r are given by

(5)

But this produces a residual shear stress (Fig. 2(c)) at y = ±b/2 as 

 (6)

which is neutralized by the next two building blocks.
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Fourier sine series 

     (7)

with the first term as shown in Fig. 3(a). Am are undetermined coefficients. By applying the zero

normal stress and imposed shear stress boundary conditions at y = ±b/2, one can obtain the stress

function φ2 for this case as

 (8)

where C2m and C3m are given by

 (9)

This will impose a shear stress (Fig. 3(b)) at x = ±a/2 as given by

(10)

2.3 Building block 3

The third building block corresponds to imposed shear stresses at x = ±a/2 as given by

 (11)

where Bn are undetermined coefficients and the first term is as shown in Fig. 4(a). The stress

function for this building block is similar to that of the building block 1; the constants however, will

take on different values when the condition of zero normal stress and applied shear stress are

enforced along x = ±a/2. The final solution is given by
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Fig. 3 (a) Building block 2, (b) The corresponding residual shear stress
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 (12)

where C1n and C4n are given by

 (13)

However, this will impose a shear stress (Fig. 4(b)) at y = ±b/2 as given by 

 (14)

2.4 Superposition

All the field equations and boundary conditions of this two-dimensional elasticity problem are

satisfied by the above building blocks except those of zero shear stresses on the four edges of the

plate. These conditions are now enforced on the net superposed solution to yield

at y = ±b/2  (15)

at x = ±a/2  (16)
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Fig. 4 (a) Building block 3, (b) The corresponding residual shear stress
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carried out for each load case so as to ensure that the zero shear boundary condition is always

numerically satisfied; with the other boundary conditions and the field equations already satisfied

analytically, the present superposition method thus yields a rigorous solution for the plane stress

problem.

Fig. 5 Satisfaction of the zero shear condition at (a) x = ±a/2, (b) y = ±b/2 

Fig. 6 In-plane stress field for load case 4 (a/b = 1)
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Fig. 6 shows a three-dimensional plot of the in-plane stresses for a square plate subjected to cubic

load (load case 4). It can be seen from these figures that the stress field is characterized by non-zero

σy and τxy and that these stresses, though small, are not insignificant as compared to σx. These

additional non-zero stresses σy and τxy would naturally play a part in the buckling behaviour of the

plate. This observation is true for all the other load cases except case 3 (i.e., the linear distribution). 

Fig. 7 represents the comparison of σx stress distribution for the same total moment for the

different load cases, with the patch size taken as b/400 for case 5. According to St. Venant’s

principle, all the load cases have a tendency to diffuse towards the linear one in the interior of the

Fig. 7 Stress diffusion for different load cases (a/b = 1)
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plate. It is clear that this diffusion is quite rapid and the variation at the central section (x = 0) is

nearly linear even for a square plate.

3. Stability analysis

The governing differential equation for thin plate buckling is

 (17)

Owing to the complexity of this equation when each of the in-plane stresses is in series form, exact

analytical solution is not possible. Therefore, the buckling solution is obtained by using the Galerkin

method for the case of simply supported rectangular plates with the admissible functions

 (18)

which form a complete set, thus ensuring convergence to the exact solution with increase in the

number of terms.
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Table 1 Validation study for the case of linear load (case 3)

Method
Critical value of σ

o
b2/D

a/b = 2/3 a/b = 1 a/b = 3/2

Present 235.7 252.0 238.0

Kang and Leissa (2005) 235.7 252.0 238.0

Table 2 Total critical bending moment (values of k in M
cr

 = kπ2D) for different load cases

Load cases
a/b = 1.0 a/b = 2.0

Present method NISA Present method

1. Full sine load 3.119 3.047 3.402

2. Half sine load 4.046 4.052 3.890

3. Linear load 4.255 4.227 3.980

4. Cubic load 5.069 5.035 4.324

5. Localised load 
(Patch size=b/400)

5.915 5.871 4.661
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to be b/400; it is found that the value of the critical bending moment varies by less than 1% when

the patch size is varied between b/50 and b/400. 

The results of Table 2 show that the critical bending moment increases when one moves from full

sine load to the localized load in the order of case numbers – i.e., as the moment arm between the

tensile and compressive force resultants increases. This has to be expected because the edges are

supported and any moment applied predominantly at the centre of the plate has a greater tendency

to cause lateral deformation and hence buckling. The actual results show that this effect changes the

overall critical moment quite significantly for a square plate – with the values ranging from 0.73 to

1.39 times that for the case of linear stress distribution. 

Table 2 also includes results found out using the finite element package NISA – this is just to

provide an idea of the errors involved in a straightforward use of a commercial package for the

present type of problems. The results presented are those based on a four-noded quadrilateral

element with successive mesh refinement to ensure convergence. Though the finite element results

are seen to agree well with those of the analytical solution, it is clear that exact coincidence cannot

be achieved in spite of careful convergence studies.

As the aspect ratio (a/b) of the plate increases, the significance of the actual edge load distribution

decreases. For instance, for a/b = 2, the different values as shown in Table 2 range from 0.85 to

1.17 times that for the case of linear stress distribution. For aspect ratios of 5 and more, the values

for all the cases are found to be more or less the same. 

Fig. 8 presents the qualitative picture of the mode shapes for a square plate. For all the load cases

except the case of localized loads (Case 5), the mode shape for the square plate corresponds to zero

nodal lines parallel to the x-axis and one nodal line parallel to the y-axis; for Case 5, the shape

corresponds to zero nodal lines in both the directions. Thus, the number of nodal lines cannot be

simply extrapolated from experience with the case of linear bending stress, but depends on the

actual distribution considered. 

The actual shapes of the buckled configuration are compared in Fig. 9 for the different cases for

which the number of nodal lines is the same; each curve is normalized with respect to its peak

value. It has to be noted that the variations in x and y directions are given by a summation of

harmonic functions and are hence not simple one or two term functions. From Fig. 9, one can see

that the buckled shapes are more or less the same for the four cases shown in the x-direction. This

Fig. 8 Qualitative picture of the buckled shape for (a) Cases 1-4, (b) Case 5
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is also true in the y-direction, but for a slight shift of the peak value. It should be pointed out that

the buckled shapes for cases 2 and 3 agree so well that they cannot be distinguished from the

graphs. 

4. Conclusions

Based on rigorous plane stress solutions, the buckling loads of plates under various bending stress

distributions have been obtained. It has been shown that the actual distribution has a significant

influence on the critical value of the total moment; further, the number of nodal lines of the buckled

configuration can also be different. The primary purpose of the present investigation is to highlight

the quantitative severity of different load distributions; however, the analytical results presented

herein will also be of use in judging the accuracy of various approximate methods commonly used

for such problems.
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