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Abstract. In this work, a new approach is developed for dynamic analysis of a composite beam with
an interply crack, based on finite element solution of partial differential equations with the use of the
COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the
delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation,
which is needed if the problem has to be solved many times with different crack lengths. In the model, a
physically impossible interpenetration of the crack faces is prevented by imposing a special constraint,
leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the
formulated boundary value problem. The model is based on the first order shear deformation theory, i.e.,
the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear
deformation and rotary inertia terms are included into the formulation, to achieve better accuracy.
Nonlinear partial differential equations of motion with boundary conditions are developed and written in
the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free
beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable
difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction
of the crack’s faces is predicted by the developed model.  

Keywords: composite delaminated beam; contact of crack faces; shear deformation theory; nonlinear
partial differential equations; nonlinear finite element analysis; COMSOL Multiphysics package; automatic
mesh generation. 

1. Introduction

The task of evaluating dynamic response of delaminated composite panels to external loading

with the use of the commercial finite element codes requires much users’ time for preparation of the

input data, especially if many damage cases (different locations and lengths of cracks) need to be

considered: the preparation of the input data for commercial finite element codes involves creating a

shape of the delaminated area with the use of the graphical user interface, or specifying coordinates

of nodes of finite element mesh with account of presence of the delamination. To overcome this

† Ph.D., E-mail: vperel@yahoo.com

DOI: http://dx.doi.org/10.12989/sem.2007.25.5.501



502 Victor Y. Perel

difficulty, the author developed a software package that facilitates preparation of the input data,

allowing its users to specify only coordinates of the crack tips. This software package is run from

the MATLAB command window and interacts with a commercial finite element code COMSOL

Multiphysics, using its mesh generation functions and solvers. It allows its users to evaluate the

changed frequencies, mode shapes and transient response of composite beams with delamination

cracks in fast and practical engineering manner and allows for automatic change of the coordinates

of the crack tips by external functions. This capability can be used, for example, to combine the

developed analysis software with the MATLAB optimization tools to find effective stiffness

characteristics of the damaged composite panels, or to perform model-aided experimental crack

detection. The optimization procedures are not described in this paper. The developed analysis

method is based on finite element solution of partial differential equations of motion of delaminated

composite beam with the use of the COMSOL Multiphysics software package. These partial

differential equations are based on the first-order shear deformation beam theory and take into

account nonlinear effects due to the force of contact interaction of the delamination crack faces.

This force appears in the partial differential equations due to introducing a non-interpenetration

constraint for the crack faces with the use of the Heaviside function. 

Several types of models of delaminated beams have been proposed in the literature. In some

models, for example Ramkumar et al. (1979) and Wang et al. (1982), the contact force between the

delaminated parts is not taken into account, and the physically impossible mutual penetration of the

delaminated parts is allowed. In other models, for example Mujumdar and Suryanarayan (1988), the

delaminated parts are constrained to have the same transverse displacement, excluding the

possibility of the delamination crack opening during the vibration. In the Luo and Hanagud (2000),

the interaction between the delaminated parts is modeled with the use of a nonlinear (piecewise-

linear) spring between the surfaces of the delaminated parts. Stiffness of the spring depends on the

difference of displacements of the lower and upper delaminated parts. If the delamination crack is

open, the stiffness of the spring is set equal to zero, making the distributed contact force equal to

zero. When the delamination crack is closed, the stiffness of the spring is set either to infinity, or to

some finite constant value. The authors set the spring stiffness equal to a constant (either zero, or

0.1, or infinity) before solving the problem, thus assuming that the crack remains either open or

closed all the time during the vibration. So, the possibility for the crack to be open in some time

intervals and closed in other time intervals during the vibration is not foreseen in this model. 

In the paper Wang and Tong (2002), the contact force between the delaminated sublaminates is

introduced as a function of the relative transverse displacement of the sublaminates, in such a way

that the contact force automatically turns out to be zero, when the delamination crack is open, and

takes on a non-zero value, if the crack is closed. So, this model does not require to specify in

advance if the crack is open or closed, and allows for contact and separation of the crack faces

during the vibration. However, the physically impossible interpenetration of the crack faces is not

always prevented in this model. The interpenetration occurs because a constraint, preventing this

phenomenon, is not introduced. 

In the model of the delaminated composite beam, presented by the author in the Perel (2005a), the

constraint, preventing the mutual penetration (interpenetration, overlapping) of the delaminated

sublaminates (of the crack’s faces), was introduced with the use of the Heaviside function and the

penalty function method Reddy (1984), which was the main novelty in solving dynamic problems

for beams with cracks. The longitudinal force resultants in the delaminated sublaminates and rotary

inertia terms were taken into account also. The use of the constraint, which prevented the
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interpenetration of the crack faces, and taking account of the longitudinal force resultants led to

nonlinear partial differential equations of motion, in which a force of contact interaction of the crack

faces was taken into account. 

But the model, presented in Perel (2005a), did not take the shear strain energy into account, and,

therefore, produced sufficiently accurate results only for thin beams. To model thicker beams with

delamination, one needs to use a beam theory, based on simplifying assumptions, which do not lead

to vanishing of the shear strains. The first order shear deformation theory Reddy (1984), based on

assumed linear variation of a longitudinal displacement in the thickness direction, is the simplest

approach that satisfies the requirement of a non-zero shear strain. This approach is used in the

present paper for modeling a composite delaminated beam with a piezoelectric actuator. In this

model, the interpenetration of the crack faces is prevented by a method similar to the one, which

was used in Perel (2005a): by imposing a constraint, written with the use of the Heaviside function

in one of its analytical forms, leading to taking account of a force of contact interaction of the crack

faces and to nonlinearity of the formulated boundary value problem. 

Besides, in Perel (2005a), the solution was obtained by the Ritz method in the form of a series in

terms of eigenfunctions of an eigenvalue problem, associated with the linearized partial differential

equations and linearized natural boundary conditions. This series converged rapidly, providing high

accuracy of the solution. But the process of constructing the system of the eigenfunctions for each

particular crack length involved solving a nonlinear algebraic eigenvalue problem by an iterative

method, which required good initial approximations for each of the frequencies. This caused

difficulty in achieving a complete automatization of the process of constructing the eigenfunctions

and, therefore, required much time, if the problem had to be solved many times with different crack

lengths. This difficulty led to the need of developing a finite element solution of the formulated

problem (in conjunction with the first order shear deformation theory, as mentioned above) and the

computer program with automatic mesh generation, which became the subject of the present paper.

The model is developed to include it, later, into computational procedures for model-aided detection

of cracks, with the use of methods presented in Liu and Han (2003). These procedures involve

giving small increments to crack lengths at each step of the search algorithm for the crack detection,

as a result of which the crack tip does not coincide with the nodes of the initial finite element mesh

after each increment of the crack length. This leads to the need of fast and automatic construction of

the new finite element mesh after each increment of the crack length, and this task is achieved with

the use of the capabilities of the COMSOL Multiphysics package. In this paper, the COMSOL

Multiphysics is used to solve the partial differential equations derived by the author in Perel (2005b). 

So, the main novelty of the model of the delaminated composite beam, presented in this paper, as

compared to the author’s model in Perel (2005a), is that the method of taking account of force of

contact interaction of the crack faces, presented in the Perel (2005a), is combined here with the first

order shear deformation theory and the finite element method, with automatic re-meshing after each

increment of the crack length. This improvement of the model, as compared to the model in Perel

(2005a), leads to higher accuracy of solutions and allows for full automatization of the solution

process. 

2. Partial differential equations with boundary conditions

The partial differential equations, based on the first-order shear deformation theory (Reddy 1984),
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describing vibration of delaminated clamped-free beam with piezoelectric actuator (Fig. 1) and with

account of contact of the crack faces, are derived by the author in Perel (2005) and have the

following form. 

Partial differential equations

for Zone 0 (Part 0)

(1)

(2)

for Zone 1 (Part 1)

(3) 

(4)

for Zone 2 (Part 2 and Part 3)

(5)

(6)

(7)

KG0 w0
″ φ0

′+( ) B0w·· 0 0 in x 0 a,[ ]∈=–

A0φ0″ KG0 w0
′ φ0+( )– C0φ

··
0– IpV′  in  x 0 a,[ ]∈=

KG1 w1
″ φ 1

′+( ) B1w·· 1 0 in x a α,[ ]∈=–

A1φ 1″ KG1 w1
′ φ1+( )– C1φ

··
1– 0  in  x a α,[ ]∈=

KG2 w2
″ φ 2

′+( ) B2w·· 2 χ w3 w2–( ) 1

2
---

1

π
---arctan

w3 w2–

ε
------------------–⎝ ⎠

⎛ ⎞
– 0 in x α β,[ ]∈=–

A2φ2″ KG2 w2
′ φ2+( )– C2φ

··
2– 0 in x α β,[ ]∈=

KG3 w3
″ φ3

′+( ) B3w·· 3 χ w3 w2–( ) 1

2
---

1

π
---arctan

w3 w2–

ε
------------------–⎝ ⎠

⎛ ⎞
+ 0 in x α β,[ ]∈=–

Fig. 1 Cantilever beam with delamination and piezoelectric actuator. a is length of the actuator, α is x-
coordinate of the left crack tip, β is x-coordinate of the right crack tip, γ is z-coordinate of the crack
(distance from x-axis to crack), τ is thickness of the actuator, w0 is transverse displacement of zone 0,
w1 is transverse displacement of zone 1, w2 is transverse displacement of lower part of zone 2 (under
the crack), w3 is transverse displacement of upper part of zone 2 (above the crack), w4 is transverse
displacement of zone 3
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(8)

for Zone 3 (Part 4)

(9)

(10)

Essential boundary conditions

(11a)

where 

(11b)

Natural boundary conditions

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

A3φ 3″ KG3 w 3
′ φ 3+( )– C3φ

··
3– 0 in  x α β,[ ]∈=

KG4 w4
″ φ4

′+( ) B4w·· 4– 0 in  x β L,[ ]∈=

A4φ 4″ KG4 w4
′ φ4+( )– C4φ

··
4– 0 in  x β L,[ ]∈=

Ri t( ) 0 i 1 2 … 12, , ,=( )=

R1 w0 0 t,( ), R2 φ0 0 t,( )≡≡

R3 w0 a t,( ) w1 a t,( ), R4 φ0 a t,( ) φ1 a t,( )–≡–≡

R5 w1 α t,( ) w2 α t,( ), R6 φ1 α t,( ) φ2 α t,( )–≡–≡

R7 w1 α t,( ) w3 α t,( ), R8 φ1 α t,( ) φ3 α t,( )–≡–≡

R9 w2 β t,( ) w4 β t,( ), R10 φ2 β t,( ) φ4 β t,( )–≡–≡

R11 w3 β t,( ) w4 β t,( ), R12 φ3 β t,( ) φ4 β t,( )–≡–≡

KG0 φ0 w0
′+( ) λ3+ 0 at x a= =

A0φ0
′ IpV t( )– λ4+ 0 at x a= =

KG1 φ1 w1
′+( ) λ3+ 0 at x a= =

A1φ 1
′ λ4+ 0 at x a= =

KG1 φ1 w1
′+( ) λ5 λ7+ + 0 at x α= =

A1φ1
′ λ6 λ8+ + 0 at x α= =

KG2 φ2 w2
′+( ) λ5+ 0 at x α= =

A2φ 2
′ λ6+ 0 at x α= =

KG3 φ 3 w3
′+( ) λ7+ 0 at x α= =

A3φ 3
′ λ8+ 0 at x α= =

KG2 φ 2 w2
′+( ) λ9+ 0 at x β= =
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(23)

(24)

(25)

(26)

(27)

(28)

(29)

In the following text it will be assumed that the voltage V (x, t), applied to the piezoelectric

actuator, is distributed uniformly over the length of the actuator (over the interval ) and

depends on time as V (x, t) = V (t) = V0sin(Ωt). Therefore, the spatial derivative , in

the right-hand side of the differential Eq. (2) will be considered equal to zero in the subsequent text,

and the boundary condition (13) will be written as 

(30)

3. Formulation in a form convenient for COMSOL multiphysics implementation

Unknown functions w0, w1, w2, w3, w4, φ0, φ1, φ2, φ3 and φ4 are defined only in the beam’s parts,

which are indicated by the function’s subscripts (Fig. 1). So, the functions with subscript 0 are

defined only in Part 0 (Zone 0); the functions with subscript 1 are defined only in Part 1 (Zone 1);

the functions with subscripts 2 and 3 are defined in Part 2 (Zone 2) and Part 3 (Zone 2)

respectively; the functions with subscript 4 are defined in Part 4 (Zone 3). But for convenience of

using the COMSOL Multiphysics package, one needs to give some definitions to functions w1, w2,

w3, w4, φ1, φ2, φ3 and φ4 in Zone 0; to functions w0, w1, w2, w3, w4, φ0, φ1, φ2, φ3 and φ4 in Zone 1;

to functions w0, w1, w4, φ0, φ1 and φ4 in Zone 2; and to functions w0, w1, w2, w3, w4, φ0, φ1, φ2 and

φ3 in Zone 3. These definitions must not contradict the essential boundary conditions (30).

Therefore, the following definitions are introduced

For Zone 0 (Part 0), i.e.  

(31)

For Zone 1 (Part 1), i.e. in 

(32)

A2φ2
′ λ10+ 0 at x β= =

KG3 φ 3 w3
′+( ) λ11+ 0 at x β= =

A3φ 3
′ λ12+ 0 at x β= =

KG4 φ4 w4
′+( ) λ9 λ11+ + 0 at x β= =

A4φ 4
′ λ10 λ12+ + 0 at x β= =

KG4 φ 4 w4
′+( ) 0 at x L= =

A4φ 4
′ 0 at x L= =

x 0 a,[ ]∈
V′ ∂ V x t,( )/∂ x≡

A0φ 0
′ IpV0sin Ωt( ) λ4+– 0 at x a= =

0 x a≤ ≤

w1 w0,  w2 w0,  w3 w0,  w4 w0≡≡≡≡

φ1 φ0,  φ2 φ0,  φ3 φ0,  φ4 φ0≡≡≡≡

a x α≤ ≤

w0 w1,  w2 w1,  w3 w1,  w4 w1≡≡≡≡

φ0 φ1,  φ2 φ1,  φ3 φ1,  φ4 φ1≡≡≡≡
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For Zone 2 (Part 2 and Part 3), i.e. in 

(33)

For Zone 3 (Part 4), i.e. in 

(34)

In the further presentation, to create a formulation that complies with the format, required by the

COMSOL Multiphysics package, the following notations will be introduced for the Lagrange

multipliers

(35)

In view of definitions (31)-(34), and in view of the notations (35), the partial differential equations

and boundary conditions take the form presented below. To comply with the terminology of

COMSOL Multiphysics, the zones will be called subdomains. The Zone 0 will be called Subdomain

1, the Zone 1 will be called Subdomain 2, the Zone 2 will be called Subdomain 3, the Zone 3 will

be called Subdomain 4. 

Partial differential equations

For Zone 0 (Subdomain 1), i.e. in the interval 

in  (36)

in (37)

in (38)

in (39)

in (40)

in (41)

in (42)

in (43)

in (44)

in (45)

α x β≤ ≤

w0 w2,  w1 w2,  w4 w2≡≡≡

φ0 φ2,  φ1 φ2,  φ4 φ2≡≡≡

β x L≤ ≤

w0 w4 ,  w1 w4 ,  w2 w4 ,  w3 w4≡≡≡≡

φ0 φ4 ,  φ1 φ4 ,  φ2 φ4 ,  φ3 φ4≡≡≡≡

λ̂ 1 λ3, λ̂ 2 λ4≡≡

λ̃ 1 λ5, λ̃ 2 λ7, λ̃ 3 λ6, λ̃ 4 λ8≡≡≡≡

λ 1 λ9, λ 2 λ11, λ 3 λ10, λ 4 λ12≡≡≡≡

x 0 a,[ ]∈

B0w·· 0– KG0 w0
″ φ0

′+( )+ 0= x 0 a,[ ]∈

C0φ
··

0– A0φ0
″ KG0w0

′–( )+ KG0φ0= x 0 a,[ ]∈

0 w0 w1–= x 0 a,[ ]∈

0 w0 w2–= x 0 a,[ ]∈

0 w0 w3–= x 0 a,[ ]∈

0 w0 w4–= x 0 a,[ ]∈

0 φ0 φ1–= x 0 a,[ ]∈

0 φ0 φ2–= x 0 a,[ ]∈

0 φ0 φ3–= x 0 a,[ ]∈

0 φ0 φ4–= x 0 a,[ ]∈
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For Zone 1 (Subdomain 2), i.e. in the interval 

in (46)

in (47)

in (48)

in (49)

in (50)

in (51)

in (52)

in (53)

in (54)

in (55)

For Zone 2 (Subdomain 3), i.e. in the interval 

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

x a α,[ ]∈

B1w·· 1– KG1 w1
″ φ1

′+( )+ 0= x a α,[ ]∈

C1φ
··

1– A1φ1
″ KG1w1

′–( )+ KG1φ1= x a α,[ ]∈

0 w1 w0–= x a α,[ ]∈

0 w1 w2–= x a α,[ ]∈

0 w1 w3–= x a α,[ ]∈

0 w1 w4–= x a α,[ ]∈

0 φ1 φ0–= x a α,[ ]∈

0 φ1 φ2–= x a α,[ ]∈

0 φ1 φ3–= x a α,[ ]∈

0 φ1 φ4–= x a α,[ ]∈

x α β,[ ]∈

B2w·· 2– KG2 w2
″ φ2

′+( )+ χ w3 w2–( ) 1

2
---

1

π
---arctan

w3 w2–

ε
------------------–⎝ ⎠

⎛ ⎞ in x α β,[ ]∈=

C2φ
··

2– A2φ2
″ KG2w2

′–( )+ KG2φ2 in x α β,[ ]∈=

B3w·· 3– KG3 w3
″ φ3

′+( )+ χ– w3 w2–( ) 1

2
---

1

π
---arctan

w3 w2–

ε
------------------–⎝ ⎠

⎛ ⎞ in x α β,[ ]∈=

C3φ
··

3– A3φ3
″ KG3w3

′–( )+ KG3φ3 in x α β,[ ]∈=

0 w2 w0 in x α β,[ ]∈–=

0 w2 w1 in x α β,[ ]∈–=

0 w2 w4 in x α β,[ ]∈–=

0 φ2 φ0 in x α β,[ ]∈–=

0 φ2 φ1 in x α β,[ ]∈–=

0 φ2 φ4 in x α β,[ ]∈–=
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For Zone 3 (Subdomain 4) i.e. in the interval 

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

Boundary conditions

Boundary 1, i.e. x = 0

w0 = 0 at x = 0 (essential BC) (76)

 φ0 = 0 at x = 0 (essential BC) (77)

Boundary 2, i.e. x = a

at x = a (essential BC) (78)

at x = a (essential BC) (79)

at x = a (natural BC) (80)

at x = a (natural BC) (81)

at x = a (natural BC) (82)

at x = a (natural BC) (83)

Boundary 3, i.e. x = α

at x = α (essential BC) (84)

x β L,[ ]∈

B4w·· 4– KG4 w4
″ φ4

′+( )+ 0 in x β L,[ ]∈=

C4φ
··

4– A4φ4
″ KG4w4

′–( )+ KG4φ4= in x β L,[ ]∈

0 w4 w0 in x β L,[ ]∈–=

0 w4 w1 in x β L,[ ]∈–=

0 w4 w2 in x β L,[ ]∈–=

0 w4 w3 in x β L,[ ]∈–=

0 φ4 φ0 in x β L,[ ]∈–=

0 φ4 φ1 in x β L,[ ]∈–=

0 φ4 φ2 in x β L,[ ]∈–=

0 φ4 φ3 in x β L,[ ]∈–=

w0 w1– 0=

φ0 φ1– 0=

KG0 w0
′ φ0+( ) λ̂1–=

KG1 w1
′ φ1+( ) λ̂1–=

A0φ0′ IpV0sin Ωt( )– λ̂ 2–=

A1φ1′ λ̂ 2–=

w1 w2– 0=
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at x = α (essential BC) (85)

at x = α (essential BC) (86)

at x = α (essential BC) (87)

at x = α (natural BC) (88)

at x = α (natural BC) (89)

at x = α (natural BC) (90)

at x = α (natural BC) (91)

at x = α (natural BC) (92)

at x = α (natural BC) (93)

Boundary 4, i.e. x = β

at x = β (essential BC) (94)

at x = β (essential BC) (95)

at x = β (essential BC) (96)

at x = β (essential BC) (97)

at x = β (natural BC) (98)

at x = β (natural BC) (99)

at x = β (natural BC) (100)

at x = β (natural BC) (101)

at x = β (natural BC) (102)

at x = β (natural BC) (103)

Boundary 5, i.e. x = L

(104)

(105)

w1 w3– 0=

φ1 φ2– 0=

φ1 φ3– 0=

KG1 φ1 w1
′+( ) λ̃1– λ̃2–=

KG2 φ2 w2
′+( ) λ̃1–=

KG3 φ3 w3
′+( ) λ̃ 2–=

A1φ1′ λ̃ 3– λ̃ 4–=

A2φ2′ λ̃ 3–=

A3φ3′ λ̃ 4–=

w2 w4– 0=

w3 w4– 0=

φ2 φ4– 0=

φ3 φ4– 0=

KG4 φ4 w4
′+( ) λ1– λ2–=

KG2 φ2 w2
′+( ) λ1–=

KG3 φ3 w3
′+( ) λ2–=

A4φ4′ λ 3– λ 4–=

A2φ2′ λ 3–=

A3φ3′ λ 4–=

KG4 φ4 w4
′+( ) 0 at x L natural BC( )= =

A4φ4′ 0 at x L natural BC( )= =
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In the COMSOL Multiphysics terminology, natural boundary conditions are called the Neumann

boundary conditions, essential boundary conditions are called the Dirichlet boundary conditions, and

the mixed boundary conditions (both essential and natural conditions at the same boundary) are

called the Dirichlet boundary conditions also. With the use of this terminology, the boundary

conditions (76)-(103) at boundaries x = 0, x = a, x = α and x = β are the Dirichlet boundary

conditions, and the boundary conditions (104) and (105) at the boundary x = L are the Neumann

boundary conditions. 

4. Standard form of representation of equations in COMSOL multiphysics for one-

dimensional problems

In COMSOL Multiphysics, in case of N unknown functions uk (x, t) (k = 1, 2, ..., N) of one spacial

coordinate x and time t, the partial differential equations of the second order and the boundary

conditions are written in the following form (summation over repeated indices is implied). 

Partial differential equations

 in subdomains of x (106)

Neumann boundary conditions at external boundaries

 (natural BC) (107)

Dirichlet boundary conditions at external boundaries

 (essential BC) (108a)

 and 

 (natural BC) (108b)

where 

(109)

 
and coefficients cmk, αmk, γm, fm, amk, gm, qmk, hmk, rm are, generally, some known functions of the

coordinate x and time t. Of course, these coefficients can be functions of coordinates only, time

only, or constants. The quantity nx is an x-component of the subdomain’s boundary’s outward unit

normal vector. In case of one-dimensional problems, as the one considered here, nx = 1 at right

edges of subdomains, and nx = 1 at left edges of subdomains, if the x-axis is directed from left to

right, as in Fig. 1. 

If boundary conditions are specified at internal boundaries, i.e. at the boundaries between two

Mmku
··
k Γm′+ Fm k m, 1 … N, ,=( )=

nxΓm Gm–=

Rm 0=

nxΓm λn

∂ Rn

∂ um

---------+ Gm–=

Γm cmkuk′– αmkuk γm+–≡

Fm fm amkuk–≡

Gm gm qmkuk–≡

Rm hmkuk rm–≡
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adjacent subdomains (e.g. Subdomain 1 and Subdomain 2), then the Neumann boundary conditions

take the form 

 (110)

   

and the Dirichlet boundary conditions take the form 

Rm = 0 (essential BC) 

and

(111)

Either the Neumann or Dirichlet boundary conditions must be chosen at each boundary. If only

natural boundary conditions are specified on a boundary of a subdomain, then such boundary

conditions have the form of Neumann boundary conditions. If both essential and natural boundary

conditions are specified at a boundary, then such boundary conditions have the form of Dirichlet

boundary conditions. 

Eqs. (106)-(108) can be written in matrix form as follows. 

Partial differential equations

(112)

Neumann boundary conditions

(113)

Dirichlet boundary conditions

(114a)

and

(114b)

Similarly, the boundary conditions (110) and (111) at an internal boundary, being written in the

matrix form, are 

 nx

1( )Γm

1( )
nx

2( )Γm

2( )
+ Gm natural BC( )–=

     

1
           

     

1–
⎧ ⎨ ⎩ ⎧ ⎨ ⎩

 nx

1( )Γm

1( )
nx

2( )Γm

2( ) ∂ Rk

∂ um

---------λk++ Gm natural BC( )–=
     

1
           

     

1–
⎧ ⎨ ⎩ ⎧ ⎨ ⎩

M[ ] ∂
2

∂ t
2

------- u{ } ∂

∂ x
------ Γ{ }+ F{ }=

N N×( ) N 1×( ) N 1×( ) N 1×( )

nx Γ{ }
N 1×( )

G{ }
N 1×( )

–=

R{ }
N 1×( )

0{ }
N 1×( )

=

nx

Γ1

Γ2

ΓN⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

∂ R1

∂ u1

---------   
∂ R2

∂ u1

---------   …  
∂ RN

∂ u1

----------

∂ R1

∂ u2

---------   
∂ R2

∂ u2

---------   …  
∂ RN

∂ u2

----------

      

∂ R1

∂ uN

---------   
∂ R2

∂ uN

---------   …  
∂ RN

∂ uN

----------

λ1

λ2

λ3⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

+

G1

G2

GN⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

–=

… ……
…

…
… …
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Neumann boundary conditions

(115) 

Dirichlet boundary conditions

(116a) 

and

(116b) 

5. Subdomain and boundary settings of the problem

To comply with the COMSOL Multiphysics’s requirements for notations, the following alternative

notations are introduced for the unknown functions of the present problem: 

(117)

for the spatial derivatives of the unknown functions

(118)

for the constants and for matrix [M] in Eq. (112)

(119)

and all kinds of notations will be used interchangeably in the subsequent text. 

Partial differential Eqs. (36)-(45) for Zone 0 (Subdomain 1), i.e. for x ∈ [0, a] can be written in

matrix form as 

Γ{ }
N 1×( )

1( ) Γ{ }
N 1×( )

2( )
– G{ }

N 1×( )

–=

R{ }
N 1×( )

0{ }
N 1×( )

=

Γ{ }
N 1×( )

1( ) Γ{ }
N 1×( )

2( )
–

∂Rm

∂uk

---------
T

λ{ }
N 1×( )

+ G{ }
N 1×( )

–=

u{ }
10 1×( )

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫ w0

p0

w1

p1

w2

p2

w3

p3

w4

p4⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫ w0

φ0

w1

φ1

w2

φ2

w3

φ3

w4

φ4⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

≡ ≡ ≡

w0x w0
′≡   p0x φ0

′ …,≡,

A0 A0≡   B0 B0 …,≡   Omega Ω,  da[ ] M[ ]≡≡, ,



514 Victor Y. Perel

(120a)

where 

 

 

(120b)

(120c)

Similarly, one can write partial differential equations for other zones in the COMSOL

Multiphysics standard form

Partial differential Eqs. (46)-(55) for Zone 1 (Subdomain 2), i.e. for x ∈ [a, α]

(121)

Partial differential Eqs. (56)-(65) for Zone 2 (Subdomain 3), i.e. for x ∈ [α, β ]

(122)

Partial differential Eqs. (66)-(75) for Zone 3 (Subdomain 4), i.e. for x ∈ [β, L]

M[ ] 1( )

10 10×( )

∂
2

∂ t
2

------- u{ }
10 1×( )

∂

∂ x
------ Γ{ }

10 1×( )

1( )
+ F{ } 1( )

=

M[ ] 1( )

B0  – 0  0  0  0  0  0  0  0  0

0  C0  – 0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

=

Γ{ } 1( )

K*G0* w0x p0+( )

A0*p0x K*G0*w0–

0

0

0

0

0

0

0

0⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

, F{ } 1( )

0

K*G0*p0

w0 w1–

w0 w2–

w0 w3–

w0 w4–

p0 p1–

p0 p2–

p0 p3–

p0 p4–⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

= =

M[ ] 2( )

10 10×( )

∂
2

∂ t
2

------- u{ }
10 1×( )

∂

∂ x
------ Γ{ }

10 1×( )

2( )
+ F{ } 2( )

=

M[ ] 3( )

10 10×( )

∂
2

∂ t
2

------- u{ }
10 1×( )

∂

∂ x
------ Γ{ }

10 1×( )

3( )
+ F{ } 3( )

=
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(123)

Matrices, which enter into Eqs. (121)-(123) are not written here explicitly for brevity. 

The Dirichlet boundary conditions (76)-(77) at Boundary 1, i.e. at x = 0, written in COMSOL

Multiphysics standard form, are 

(124a)

where the column-matrix  is defined by formula (120c), 

(124b)

 = (124c)

and

 

 = (124d)

but the matrix  need not be defined by a user of COMSOL Multiphysics. 

Similarly, one can write boundary conditions for all other external and internal boundaries in the

COMSOL Multiphysics standard form. 

The Dirichlet boundary conditions (78)-(83) at an internal Boundary 2, i.e. at x = a

(125)

The Dirichlet boundary conditions (84)–(93) at an internal Boundary 3, i.e. at x = α

(126)

M[ ] 4( )

10 10×( )

∂
2

∂ t
2

------- u{ }
10 1×( )

∂

∂ x
------ Γ{ }

10 1×( )

4( )
+ F{ } 4( )

=

R{ } 1( )

10 1×( )

0{ }
10 1×( )

=   and  Γ{ }
10 1×( )

1( )
–

∂Rm

1( )

∂uk

------------

T

10 10×( )

λ{ }
10 1×( )

+ G{ }
10 1×( )

1( )
–=

Γ{ } 1( )

R{ } 1( )

10 1×( )

w0  p0  0  0  0  0  0  0  0  0[ ]≡

G{ }
10 1×( )

1( )
0{ }

10 1×( )

∂Rm

1( )

∂uk

------------

T

10 10×( )

1  0  0  0  0  0  0  0  0  0

0  1  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0

∂Rm

1( )
/∂uk[ ]

T

R{ } 2( )

10 1×( )

0{ }
10 1×( )

=   and  Γ{ }
10 1×( )

1( ) Γ{ }
10 1×( )

2( )
–

∂Rm

2( )

∂uk

------------

T

10 10×( )

λ̂{ }
10 1×( )

+ G{ }
10 1×( )

2( )
–=

R{ } 3( )

10 1×( )

0{ }
10 1×( )

=   and  Γ{ }
10 1×( )

2( ) Γ{ }
10 1×( )

3( )
–

∂Rm

3( )

∂uk

------------

T

10 10×( )

λ̂{ }
10 1×( )

+ G{ }
10 1×( )

3( )
–=



516 Victor Y. Perel

The Dirichlet boundary conditions (94)–(103) at an internal Boundary 4, i.e. at x = β

(127)

The Nuemann boundary conditions (104) and (105) at an external Boundary 5, i.e. at x = L,

written in COMSOL Multiphysics standard form, are 

 = (128)

Matrices, which enter into Eqs. (125)-(128), are not written here explicitly for brevity. 

6. Solution of example problems

As an example problem, a clamped-free wooden beam with the following characteristics (Fig. 1)

is considered: length L = 20 × 10−2 m, width b = 2.76 × 10−2 m, thickness h = 0.99 × 10−2 m, wood

density ρ (0) = 418.02 kg/m3, Young’s modulus of the wood in the direction of fibers E1
(0)

= 1.0897 ×

1010 N/m2. The piezoelectric actuator is QP10W (Active Control Experts). Thickness of the actuator

is τ = 3.81 × 10−4 m, its length is a = 5.08 × 10−2 m, the piezoelectric constant in the range of

applied voltage (from 0 to 200V) is  m/V, the Young’s modulus of the actuator

with its packaging is E1
(p)

= 2.57 × 1010 N/m2, mass density of the actuator with its packaging is

ρ (p) = 6151.1 kg/m3. The voltage V (t), applied to the piezoelectric actuator, is distributed uniformly

along the length of the actuator and varies with time as

V (t) = Vasin(Ωt)

where Va = 200 V, Ω = 600 1/s. The wooden beam is cut along its fibers, so that the angle θ in the

formula (6) is equal to zero, and, therefore, the elastic compliance coefficient  for the wood is

equal to . For the piezoelectric actuator, the material coordinate

system coincides with the problem coordinate system, so that the elastic compliance coefficient 

for the material of the piezo-actuator is . Coordinates of the

crack tips are: α = 10 × 10−2 m, β = 15 × 10−2 m, γ = 0.66 × 10−2 − h/2 = 1.65 × 10−3 m. Then the

constants, entering into the variational formulation and the differential equations of the problem,

have the following values in SI units (Perel 2005): A0 = 31.463, B0 = 0.1789, C0 = 2.6429 × 10−6,

G0 = 1.29910 × 106, A1 = 24.319, B1 = 0.11422, C1 = 9.3289 × 10−7, G1 = 1.190999 × 106, A2 = 12.61,

B2 = 7.6147 × 10−2, C2 = 4.8372 × 10−7, G2 = 7.93999 × 105, A3 = 11.709, B3 = 3.8073 × 10−2, C3 =

4.4917 × 10−7, G3 = 3.969995 × 105, A4 = 24.319, B4 = 0.11422, C4 = 9.3289 × 10−7, G4 = 1.190999

× 106, Ip = −3.8285 × 10−3, a = 5.08 × 10−2, Va = 200, Ω = 600, α = 10 × 10−2, β = 15 × 10−2, γ =

1.65 × 10−3, b = 2.76 × 10−2, h = 0.99 × 10−2. The small constant  and the large constant χ in Eqs.

(5) and (6) are chosen to be ε = 1 × 10−3 and χ = 1 × 106. The shear correction  factor K in

expressions for strain energy is set to K = 5/6.

R{ } 4( )

10 1×( )

0{ }
10 1×( )

=   and  Γ{ }
10 1×( )

3( ) Γ{ }
10 1×( )

4( )
–

∂Rm

4( )

∂uk

------------

T

10 10×( )

λ{ }
10 1×( )

+ G{ }
10 1×( )

4( )
–=

Γ{ }
N 1×( )

4( )
G{ }

N 1×( )

5( )
–

d 31 1.05– 10
9–×≈

S11

S11

0( )
1/E1

0( )
9.1768 10

11–× m
2
/N==

S11

S11

p( )
1/E1

p( )
3.8911 10

11–× m
2
/N==
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7. Time-domain response to dynamic excitation

A system of ordinary differential equations of a global (assembled) semi-discrete finite element

model has the form 

(129)

In the last equation,  is a column-matrix, which contains components that depend

nonlinearly on the unknown nodal parameters Θi. Transverse displacements as functions of time at

free ends of delaminated and undelaminated beams, obtained by solving Eq. (129), are shown in

graphs of Fig. 2. These graphs are noticeably different. Numerical experiments show that this

difference is mainly due to the mutual impact of the crack faces during the vibration. 

So, taking account of nonlinearity of the forced response of the delaminated beam due to the

contact interaction of the crack faces can be important for model-aided detection of cracks in

composite beams. 

8. Conclusions

The method of analyzing vibration of the composite delaminated beam, presented in this paper, is

M[ ] Θ··{ } M[ ] Θ{ } R{ }nonlin+ + F{ }=

R{ }nonlin

Fig. 2 Transverse displacement of free end of delaminated beam (solid line) and undelaminated beam (dashed
line). Coordinates of the crack tips of the delaminated beam are α = 1.0 m, β = 15.0 m, γ = 65.1 × 10−3 m
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suitable for studying the effects of the crack length and the crack location on the vibration of the

beam, because this method allows for automatic finite element mesh generation after each increment

of the coordinates of the crack tips. Besides, the model presented in this paper has an increased

accuracy due to taking account of the effect of contact of the crack faces on the vibration. 
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