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Dynamic combination resonance characteristics of doubly 
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Ratnakar. S. Udar
†
 and P. K. Datta

‡

Department of Aerospace Engineering, Indian Institute of Technology, Kharagpur-721302, India

(Received September 22, 2005, Accepted September 6, 2006)

Abstract. The dynamic instability of doubly curved panels, subjected to non-uniform tensile in-plane
harmonic edge loading P(t) = Ps + Pd cosΩt is investigated. The present work deals with the problem of
the occurrence of combination resonances in contrast to simple resonances in parametrically excited
doubly curved panels. Analytical expressions for the instability regions are obtained at Ω = ωm + ωn, (Ω is
the excitation frequency and ωm and ωn are the natural frequencies of the system) by using the method of
multiple scales. It is shown that, besides the principal instability region at Ω = 2ω1, where ω1 is the
fundamental frequency, other cases of Ω = ωm + ωn, related to other modes, can be of major importance
and yield a significantly enlarged instability region. The effects of edge loading, curvature, damping and
the static load factor on dynamic instability behavior of simply supported doubly curved panels are
studied. The results show that under localized edge loading, combination resonance zones are as important
as simple resonance zones. The effects of damping show that there is a finite critical value of the
dynamic load factor for each instability region below which the curved panels cannot become dynamically
unstable. This example of simultaneous excitation of two modes, each oscillating steadily at its own
natural frequency, may be of considerable interest in vibration testing of actual structures. 

Keywords: parametric instability; combination resonance; the method of multiple scales; finite element
method; tensile non-uniform edge loading; damping. 

1. Introduction

Aircraft and spacecraft structures consist of large number of panel type elements, which are

subjected to a variety of static & dynamic loads during the flight. Many other structures such as

ships, bridges, vehicles and offshore structures also use panel type elements. These components are

susceptible to a variety of time-dependent and time-independent in-plane as well as out-of-plane

loads. Aircraft skin panels are usually subjected to non-uniform in-plane stresses caused by non-

uniform loading at the edges. In many cases the loading is tensile in nature. It is interesting to note

that the curved panels subjected to non-uniform tensile in-plane loading may also undergo tension

buckling due to pockets of compressive zones developed within the curved panels. Induced buckling

may be important in certain applications such as stressed panels in aircraft wing skin. These
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elements being thin are prone to buckling & dynamic instabilities under external loading. The

structural instability may lead to large deflection or large amplitude vibrations of structural elements

leading to local or global failures. Hence the study of static and dynamic behavior of the doubly

curved panels subjected to tensile edge loading is of considerable importance. 

The curved panels subjected to in-plane dynamic (periodic) forces experience resonant transverse

vibrations under certain combinations of the natural frequency of transverse vibration, the frequency

of the in-plane forcing function and the magnitude of the in-plane load. This phenomenon is called

dynamic instability or parametric instability or parametric resonance. The spectrum of the values of

parameters causing unstable motion is called the region of dynamic instability or parametric

resonance. If the frequency of in-plane forcing function at parametric resonance has relation with

only one natural frequency of transverse vibration of the curved panel, the resulting resonance is

called simple resonance; otherwise it is called combination resonance.

In the analysis of the dynamic stability of a structure subjected to a periodic loading

, it is shown that for certain relationship between the excitation frequency

and the natural ones, the dynamic instability occurs in the sense that the amplitude of the response

increases without bound. Parametric resonance in shell structures under periodic loads had been of

considerable interest since the subject was studied by Bolotin (1964). Parametric instability of elastic

structures (columns, plates and shells) with or without damping has been investigated by Bolotin

(1964), where the instability regions were constructed by using the Fourier analysis. A perturbation

technique was employed by Argento and Scott (1993) to study the dynamic instability of anisotropic

circular cylindrical shells subjected to axial loading. 

Tension buckling of rectangular sheets due to concentrated forces has been studied by Leissa and

Ayoub (1989). The influence of damping on the dynamic behavior of the curved panels becomes

more pronounced with the use of special damping treatment to enhance the damping properties of

the structure for vibration control. Parametric excitation behavior of plates with damping subjected

to uniform in-plane loading has been studied by Hutt and Salam (1971). Moorthy et al. (1990)

studied the effect of damping on parametric instability of laminated composite plates with transverse

shear deformation. The effect of damping on the dynamic instability behavior of beams has also

been studied by Engel (1991). The effects of damping on the parametric instability behavior of

plates under localized edge loading (compression or tension) are studied by Deolasi and Datta

(1995). Recently, Sahu and Datta (2001) investigated the principle instability regions for the doubly

curved panels subjected to non-uniform harmonic compressive loading using finite element method.

In all these studies the principal instability region, at which  (ω1 is the lowest natural

frequency of the system) was derived and the effects of the aspect ratio, static in-plane force,

boundary condition and thickness were investigated. 

The existence of the combination resonance phenomenon is well established in dynamic instability

studies. Bolotin’s method (1964) is very common for obtaining the primary instability regions, but it

cannot be used for solving combination resonance problems. Different authors Hsu (1963),

Stupnicka (1978), Nayfeh and Mook (1979), Takahashi (1981) have proposed different methods for

solving combination resonance problems. Iwatsubo et al. (1974) studied the simple and combination

resonances of columns under periodic axial loads. Takahashi and Konishi (1988) analyzed the

simple as well as combination resonances of rectangular plates subjected to an in-plane sinusoidal

linearly varying force by using harmonic balance method. Ostiguy et al. (1993) investigated the

occurrence of simultaneous and combination resonances in multi-degree-of-freedom systems

subjected to parametric excitation by using the generalized asymptotic method. Saha et al. (1997)

P t( ) Ps PdcosΩt+=

Ω 2ω1=
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have studied the simple and combination resonances of a rectangular plate on non-homogeneous

Winkler foundation, subjected to uniform compressive in-plane (biaxial) dynamic loads. Deolasi and

Datta (1997) have studied the simple and combination resonances of isotropic rectangular plates

subjected to non-uniform edge loading with damping. Kar and Sujata (1991) investigated the simple

and combination resonances of tapered symmetric sandwich beam subjected to periodic axial force

by using the method of multiple scales (MMS). Cederbaum (1991) investigated the simple and

combination resonances of shear deformable laminated plates, modeled within HSDT subjected to

biaxial periodic loading by using the method of multiple scales (MMS). Mond and Cederbaum

(1992) investigated the simple and combination resonance zones of anti-symmetric laminated plates

using the method of multiple scales (MMS). Cederbaum (1992) analyzed the simple and

combination resonance characteristics of shear deformable circular cylindrical shell subjected to

uniform periodic axial loading. Argento (1993) investigated the simple and combination resonance

characteristics of composite circular cylindrical shell subjected to combined axial and torsional

loading. Lee and Kim (1995) studied the combination resonances of a clamped circular plate with

three mode interaction by using the method of multiple scales (MMS). Kim and Choo (1998)

investigated the simple and combination resonance (sum and difference) characteristics of free-free

Timoshenko beam subjected to a pulsating follower force using the method of multiple scales

(MMS). Choo and Kim (2000) also studied the simple and combination resonance (sum and

difference) characteristics of isotropic and non-symmetric laminated plates with four free edges

subjected to pulsating follower forces by using the method of multiple scales (MMS). Recently,

investigations of the effect of damping on the simple and combination resonance (sum and

difference) characteristics of planar elastic panel subjected to the supersonic gas flow along with

perturbed gas pressure and the initial compression in the middle plane of the panel have been made

by Bolotin et al. (2002). However there is no reference available in the literature on the simple and

combination resonance characteristics of the doubly curved panels subjected to non-uniform tensile

in-plane harmonic edge loading with damping. 

The present paper deals with the study of the simple and combination resonances of the doubly

curved panels (Fig. 1) subjected to partial and concentrated edge loading cases as shown in Fig. 2.

The first order shear deformation theory is used to model the curved panels, considering the effects

of transverse shear deformation and rotary inertia. The theory used is extended from the dynamic,

shear deformable theory based on the Sanders’ first approximation for doubly curved shells, which

can be reduced to Love’s and Donnell’s theories by means of tracers. Finite element technique is

applied for obtaining the non-uniform initial stress distribution and also to obtain the equilibrium

equation for the flexural motion of the curved panel. Modal transformation is applied to transform

the equilibrium equation into a suitable form. The method of multiple scales (Nayfeh 1973, Nayfeh

and Mook 1979) is applied to obtain the boundaries of simple and combination resonance zones. 

2. Analysis

An eight-noded curved isoparametric quadratic element with five degrees of freedom u, v, w, θx

and θy at each node is employed in the present analysis. The application of the finite element

method to the curved panel subjected to in-plane loading in the presence of damping yields the

following equation of motion in a matrix form 
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(1)

The stress stiffness matrix [S] is essentially a result of the initial stress distribution within the

curved panel, taking out P as common factor. Partial edge loading causes non-uniform initial stress

distribution within the curved panel. Non-uniform stress distribution is taken care for computing [S]

by evaluating initial stresses at Gauss sampling points and using them in Gauss-quadrature

numerical integration.

For static stability or buckling problem, Eq. (1) reduces to 

   (2)

where Pcr is the static buckling load and {q} gives the mode shapes of buckling.

For the free vibration problem without damping Eq. (1) can be expressed as 

(3)

where ω is the natural frequency of vibration and {q} gives the normal modes of vibration.

Both Eqs. (2) and (3) are eigenvalue problems. The solutions to these equations give eigenvalues

Pcr and ω2 respectively and corresponding eigenvectors {q}. These eigenvalue problems can be

effectively solved by the sub-space iteration method for the first few modes of practical interest of

buckling and vibration.

2.1 Dynamic stability problem

In the dynamic stability problem the edge load  is periodic and is expressed in the form

(4)

 can also be expressed as

 (5)

where  and  are termed as the static and dynamic load factors respectively. 

Substituting Eq. (5) into Eq. (1) leads to

(6)

For given values of α, β and Ω, the solution to Eq. (6) is either bounded or unbounded. The

spectrum of the values of these parameters for which the solution is unbounded gives the region of

dynamic instability, corresponding to simple resonance case. 

2.2 Perturbation analysis

The boundaries of the simple and combination parametric resonance zones are obtained by using

the method of multiple scales (MMS) used in perturbation analysis, which was proposed by Nayfeh

M[ ] q··{ } C[ ] q·{ } K[ ] q{ } P S[ ] q{ }–+ + 0=

K[ ] q{ } Pcr S[ ] q{ }– 0=

K[ ] P S[ ]–[ ] q{ } ω
2

M[ ] q{ }– 0=

P t( )

P t( ) Ps PdcosΩt+=

P t( )

P t( ) α Pcr β PcrcosΩt+=

α Ps/Pcr= β Pd /Pcr=

M[ ] q··{ } C[ ] q·{ } K[ ] q{ } α Pcr S[ ] q{ } β PcrcosΩt S[ ] q{ }––+ + 0=
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(1973) and Nayfeh and Mook (1979). Before applying the method of multiple scales, Eq. (6) is

modified into a suitable form by means of modal transformation. It is assumed that the first few

normal modes of undamped free vibration of the curved panel are adequate to define the response

of the curved panel to periodic edge loading.

Applying the modal transformation, Eq. (6) is modified to the following form

(7)

where

  (8)

 is the modal matrix containing first M normal modes of free vibration problem under the edge

load αPcr and {ξ } is the vector of normal co-ordinates.  is a diagonal matrix containing the

squares of the first M natural frequencies ωi, , in the diagonal elements.

The modal damping matrix  can be defined at this stage. It is reasonable to assume  to be

diagonal matrix which gives a desired modal damping ratio in each mode of free vibration (Bolotin

1964).

The damping matrix  can be expressed as

(9)

where  is diagonal matrix containing modal damping ratios in the diagonal elements and  is

also a diagonal matrix which contains squares of natural frequencies of vibration in absence of edge

loading  in the diagonal elements. The diagonal element of ,  can be termed as

the modal damping coefficient in the corresponding mode. 

Eq. (7) can be written in the component form

(10)

The last term on the left hand side represents the coupling of the dynamical load to the normal

modes of the system. The presence of these coupling terms prevents obtaining the exact analytical

solutions for Eq. (10). However, since the amplitude of the dynamical load (ε) is assumed to be

small, a perturbation scheme can be introduced in order to investigate its effect on the stability of

the curved panels. 

The multiscale analysis is based on the observation that the system described by Eq. (10) varies

on different distinct time scales. As a result the time derivatives in Eq. (10) are replaced by

following partial derivatives:

(11)

ξ is expanded in power series in ε in the following way:

(12)

ξ
··{ } Ĉ[ ] ξ

·{ } Λ[ ] ξ{ } 2εcosΩt Ŝ[ ] ξ{ }+ + + 0=

Ĉ[ ] Φ[ ]T C[ ] Φ[ ],  Λ[ ] Φ[ ]T K[ ] αPcr S[ ]–[ ] Φ[ ],  ε β /2 and  Ŝ[ ] Pcr Φ[ ]T S[ ] Φ[ ]–= = = =

Φ[ ]
Λ[ ]

i 1 2 … M, , ,=

Ĉ[ ] Ĉ[ ]

Ĉ[ ]

Ĉ[ ] 2 ζ[ ] Λ[ ]
1/2

=

ζ[ ] Λ[ ]

α β 0= =( ) Ĉ[ ] Ĉii

ξ
··
m 2ζωmξ

·
m ωm

2
ξm 2εcosΩt Ŝ mnξn

n 1=

M

∑+ + + 0= m n, 1 2 … M, , ,=

dξ

dT0

--------
∂ ξ

∂ T0

--------- ε
∂ ξ

∂ T1

--------- ε
2 ∂ ξ

∂ T2

--------- … D0 εD1 ε
2
D2 …+ + +=+ + +=

ξm ξm0 T0 T1 T2, ,( ) εξm1 T0 T1 T2, ,( ) ε
2
ξm2 T0 T1 T2, ,( ) …+ + +=
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Substituting Eqs. (11) and (12) into Eq. (10) and equating like powers of ε, in the absence of

damping second order terms result in the following equations

(13)

(14)

 (15)

2.2.1 The case Ω near 

The expressions for the boundary frequencies of various kinds of resonance zones can be derived

by using the MMS. When the frequency of the excitation is close to the sum of two natural

frequencies of the system, a combination resonance of summed type exists between the various

modes. The nearness of Ω to  can be expressed by introducing the detuning parameter σ,

that is defined by 

(16)

2.2.2 Second order expansion
The general solution of Eq. (13) can be written in the form

(17)

where CC represents the complex conjugate of the preceding terms.

Substituting Eq. (17) into Eq. (14), the particular solution of the equation can be written as

(18)

Substituting Eqs. (17) and (18) into Eq. (15) and eliminating the non-secular terms from it, yields

the following equations

(19)

(20)

where

(21) 

(22) 

D0

2
ξm0 ωm

2
ξm0+ 0=

D0

2
ξm1 ωm

2
ξm1+ 2D0D1ξm0– Ŝ msξs0 exp iΩT0( ) CC+[ ]

s
∑–=

D0

2
ξm2 ωm

2
ξm2+ 2D0D2ξm0– D1

2
ξm0– 2D0D1ξm1– Ŝmsξs1 exp iωmT0( )[ ] CC+

s

∑–=

ω
m

ω
n

+

ωm ωn+

Ω ωm ωn εσ+ +=

ξm0 Am T1 T2,( )exp iωmT0( ) CC+=

ξm1 Ŝ msAs

exp i ωs Ω+( )T0[ ]

ωs Ω+( )2 ωm

2
–

-------------------------------------------
exp i ωs Ω–( )T0[ ]

ωs Ω–( )2 ωm

2
–

-------------------------------------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫

CC+

s

∑=

2iωmD2Am D1

2
Am 2ωmχ̂mAm+ + 0=

2iωnD2An D1

2
An 2ωnχ̂ nAn+ + 0=

χ̂
m

1.0

2ωm

----------
Ŝ msŜ sm

ωm Ω+( )2 ωs

2
–[ ]

------------------------------------------
s

∑
Ŝ msŜ sm

ωm Ω–( )2 ωs

2
–[ ]

-----------------------------------------
s n≠

∑+=
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1.0
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Ŝ nsŜ sn

ωn Ω+( )2 ωs

2
–[ ]

-----------------------------------------
s

∑
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–[ ]
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Eqs. (19) and (20) can be written in the form

(23) 

(24) 

where

(25)

Substituting Eqs. (23) and (24) into Eqs. (19) and (20) yields

(26) 

(27) 

It can be easily verified that Eqs. (26) and (27) are the first two terms in the multiple scales

expansion of

(28) 

(29) 

Eqs. (28) and (29) admit a nontrivial solution, which are expressed in the form

and (30) 

Substituting Eq. (30) into Eqs. (28) and (29) and by using the condition of solvability, it yields 

(31) 

where  and (32)

Solving Eq. (31), it gives 

(33) 

The transition curves correspond to the vanishing of radical in Eq. (33)

(34)

D1

2
Am

1

4
---ΛmnAm

σ Ŝ mn

2ωm

-------------A nexp iσ T1( )–=

D1

2
An

1

4
---ΛmnAn

σ Ŝ nm

2ωn

-------------Amexp iσ T1( )–=

Λmn

Ŝ mnŜ nm

ωmωn

-----------------=

2iωmD2Am
1
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---Λmn 2ωmχ̂m+⎝ ⎠
⎛ ⎞Am

σ Ŝ mn

2ωm

-------------A nexp iσ T1( )–+ 0=

2iωnD2An
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4
---Λmn 2ωnχ̂ n+⎝ ⎠
⎛ ⎞An

σ Ŝnm

2ωn
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2iωm
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dt
---------- ε 1

εσ

2ωm

----------–⎝ ⎠
⎛ ⎞ Ŝ mnA nexp iεσ T0( ) ε

2 1
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---Λmn 2ωmχ̂m+⎝ ⎠
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2iωn

dAn

dt
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εσ

2ωn

---------–⎝ ⎠
⎛ ⎞ ŜnmAmexp iεσ T0/2( ) ε

2 1

4
---Λmn 2ωnχ̂ n+⎝ ⎠
⎛ ⎞An+ + 0=

Am amexp iε λ σ+( )T0 )[= An anexp iελT0–( )=

λ
2

σ εγ1+( )λ 1

4
---Λmn εσγ2+ + + 0=

γ1

1

8
---Λmn

1

ωn

------
1

ωm

-------–⎝ ⎠
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Λmn

8ωm

----------–=

λ
1

2
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1/2
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By substituting Eq. (32) into Eq. (34), Eq. (34) can be written as

(35) 

where 

(36) 

and

(37) 

In the presence of damping

 (38)

(39) 

(40)

(41)

(42) 

The two roots of Eq. (35) correspond to two boundaries of the dynamic instability region. The

case m = n gives the simple resonance zone and the case  gives the combination resonance

zone. The critical dynamic load factor, β * corresponds to the value of β for which the expression

 is equal to zero. For the values of β below β *, Eq. (35) gives complex roots which

means that dynamic instability cannot occur. 

The sum type and the difference type combination resonances cannot exist simultaneously for any

pair of natural frequencies ωm and ωn. It can be stated that the difference type combination

resonance exists, when  and  have different signs as elaborated by Iwatsubo et al. (1974),

Nayfeh and Mook (1979) and Cederbaum (1991). Again the combination resonance of difference

type does not appear in the case of the conservative loading due to the symmetry of  as

explained by Takahashi (1981) and Kim and Choo (1998). 
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ŜmsŜ sm
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3. Results and discussions

3.1 Problem definition

The basic configuration of the problem considered here is isotropic doubly curved panels (Fig. 1)

subjected to tensile in–plane localized edge loading of different types as shown in Fig. 2. The

boundaries of the panel are simply supported along all the edges unless otherwise stated. In the

present analysis, panels of various geometries such as spherical , cylindrical

 and hyperbolic paraboloidal  panels, with ratios of a/Rx and b/Ry as

(0.2,0.2), (0.0,0.2) and (–0.2,0.2) respectively, aspect ratio a/b = 1 and breadth to thickness ratio

b/h = 100 are considered unless otherwise stated for the analysis. In this analysis the tensile buckling

load corresponding to the concentrated load acting at the corner of the curved panel (c/b = 0) is taken

as reference load. For different geometries, corresponding reference value is assigned. 

3.2 Computer program

A computer program has been developed to perform all the necessary computations. Element

elastic stiffness matrices are obtained with 2 × 2 Gauss sampling points to avoid possible shear

locking. Element mass matrices are obtained with 2 × 2 Gauss sampling points, as higher order

integration is often unnecessary. The geometric stiffness matrix is essentially a function of the in-

Ry/Rx 1=( )
Ry/Rx 0=( ) Ry/Rx 1–=( )

Fig. 1 Geometry and co-ordinate system of a doubly curved panel

Fig. 2 (a) Tensile partial edge loading at one end (b) Tensile concentrated edge loading
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plane stress distribution in the element due to applied edge loading. Since the stress field is non-

uniform, plane stress analysis is carried out using finite element technique to determine the stresses

at 3 × 3 Gauss sampling points.

Element matrices are assembled into global matrices by using skyline technique. Subspace

iteration method is adopted throughout to solve the eigenvalue problems. The first forty normal

modes of free vibration are used for modal transformation of Eq. (6) into Eq. (7). Eq. (7) is

considerably smaller and is in a form suitable for application of the MMS. The flow chart of the

computer program is shown in Fig. 1 of the appendix-I. The instability regions are obtained from

Eqs. (16) and (35) and the results are expressed in non-dimensional form. The non-dimensional load

γ and non-dimensional frequency  are defined as shown in Table 1.

Convergence studies are carried out for the free vibration of clamped-free-free-free doubly curved

panels and the results are compared with Leissa et al. (1983) as shown in Table 2. A mesh of

10 × 10 shows a good convergence of the numerical solutions for the free vibration of the doubly

curved panels.

ω

Table 1 Non-dimensional frequency and buckling parameters for isotropic shells

S. No Non-dimensional parameters Isotropic shells

1 Natural frequency 

2 Buckling load 

Where  and 

ω ωa
2
ρh/D

γ( ) P
cr

b
2

/D

D Eh
3
/12 1 ν

2
–( )= G E/2 1 ν+( )=

Table 2 Convergence of non-dimensional free vibration frequencies for C-F-F-F square doubly 
  curved panels/shells

Mesh division
Non-dimensional frequencies of shells

Cylindrical Spherical Hyperbolic paraboloid

4 × 4
6 × 6
8 × 8

10 × 10
Leissa et al. (1983) 

8.3836
8.3726
8.3678
8.3653

(8.3683)

6.6529
6.5955
6.5786
6.5747

(6.5854)

6.6071
6.5192
6.5014
6.4969

(6.5038)

Table 3 Comparison of non-dimensional fundamental frequencies for a simply supported 
doubly curved panels/shells

a/h a/Rx a/Ry

Non-dimensional 

Present FEM Matsunaga (1999) 

10

20

0.0
0.2
0.0
−0.2
0.0
0.2
0.0
−0.2

0.0
0.2
0.2
0.2
0.0
0.2
0.2
0.2

0.09302
0.09821
0.09425
0.09264
0.02386
0.02873
0.02514
0.02376

0.09315
0.09826
0.09436
0.09276
0.02387
0.02872
0.02515
0.02378

ωh ρ/G
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For further validation of the program, the natural frequencies of the doubly curved panels with

different a/h ratios are compared with the results of Matsunaga (1999) as shown in Table 3. Along

with the free vibration studies, the results of buckling of the plates subjected to a pair of tensile

concentrated loads as special case of non-uniform loading are compared with the results of Leissa

and Ayoub (1989) as shown in Table 4. The present finite element based plate buckling results

match well with the results given by Leissa and Ayoub (1989). Non-dimensional buckling loads of

the doubly curved panels subjected to tensile partial and concentrated edge loadings with different

load band widths are shown in Table 5 and Table 6 respectively. 

Table 4 Comparison of non-dimensional tensile buckling loads for a simply supported 
square plate under concentrated edge loading

a/b c/b
Non-dimensional tensile buckling loads

Present FEM Leissa & Ayoub (1989)

1.0
2.0

0.5
0.5

597.1244
628.6746

614.0000
638.0000

Table 5 Non-dimensional tensile buckling loads for a simply supported square doubly curved 
panels/shells under partial edge loading at one end

c/b
Non-dimensional tensile buckling loads of shells

Flat Spherical Cylindrical Hyp-Paraboloid

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

604
1017
1663
2957
6039
10499
6792
6310
11918

806
1249
1979
3336
6345
10757
7130
6656
12253

710
1127
1794
3099
6156
10501
6794
6311

11918

660
1080
1737
3045
6095
10716
7065
6596
12211

Table 6 Non-dimensional tensile buckling loads for a simply supported square doubly curved 
panels/shells under concentrated edge loading

c/b
Non-dimensional tensile buckling loads of shells

Flat Spherical Cylindrical Hyp-Paraboloid

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1031
1840
828
628
597
628
828
1840
1031
380

1266
1985
997
803
776
803
997
1985
1266
532

1143
1856
839
637
607
637
839
1856
1143
466

1095
1936
942
741
708
741
942
1936
1095
428
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Before applying the method of multiple scales (MMS) for obtaining the detailed results, the

validity of the MMS is checked by comparing the simple resonance zones obtained by the MMS

with those obtained by Bolotin’s Method. The results obtained by both methods almost coincide for

small values of β and differ slightly for higher values of β, which are shown in Figs. 3 and 4.

After checking the validity of the method of multiple scales (MMS) for simply supported

spherical panels subjected to partial edge loading at one end and concentrated edge loading near the

centre, the MMS program developed in this paper is used to study the effects of different

parameters on the dynamic instability behavior of the curved panels. 

3.3 Effect of edge loading

It can be observed from Figs. 5-10 that the widths of simple resonance zones are smaller in

general for the partial edge loading of small bandwidth  or for concentrated edge

loading at one end (c/b = 0.0) for the doubly curved panels in comparison to large bandwidth

(c/b = 0.8) of partial edge loading or for concentrated edge loading near the centre (c/b = 0.4). This

may be due to the fact that the edge restraints provide a stabilizing effect on the simple resonance

behavior as in the case of buckling characteristics. The widths of simple resonance zones are very

large, when the curved panels are subjected to concentrated edge loading near the centre (c/b = 0.4),

because the edge restraints are not very effective in this case. It is observed that under tensile

loading the primary instability regions shift inward on the frequency ratio axis for small values of

load bandwidth (c/b = 0.2) or for concentrated edge loading at one end (c/b = 0.0), indicating the

onset of instability much earlier in comparison to large values of load bandwidth (c/b = 0.8) or for

concentrated edge loading near the centre (c/b = 0.4) in contrast to the corresponding compressive

loading cases (Figs. 11 and 12). This is due to the fact that for small values of load bandwidth

(c/b = 0.2) or for concentrated edge loading at one end (c/b = 0.0), the compressive zones on the

c/b 0.2=( )

Fig. 3 Comparison of simple resonances of spherical
panel subjected to partial edge loading at one
end, obtained by Bolotin’s Method and MMS

 c/b 0.2 α, 0.2= =( )

Fig. 4 Same as Fig. 3, but for concentrated edge
loading near the centre  c/b 0.4=( )
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curved panels are much wider, causing the instability effects to appear earlier. 

Further, it is observed from Figs. 5-10 that the widths of combination resonance zones are

comparable to those of simple resonance zones for partial edge loading of small bandwidth and for

concentrated edge loading of the doubly curved panels. It is shown that the widths of the

combination resonance zones are large for the partial edge loading of small bandwidth (c/b = 0.2) or

for concentrated edge loading (c/b = 0.0,0.4) of the doubly curved panels and are very small for

nearly uniform edge loading (c/b = 0.8) in contrast to the simple resonance zones. This may be due

Fig. 5 Regions of simple and combination resonances
of spherical panel subjected to tensile partial
edge loading at one end (c/b = 0.2, α = 0.2)

Fig. 6 Same as Fig. 5, but for (c/b = 0.8)

Fig. 7 Regions of simple and combination resonances
of spherical panel subjected to tensile con-
centrated edge loading at one end (c/b = 0.0,
α = 0.2)

Fig. 8 Same as Fig. 7, but for (c/b = 0.4) 
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to the fact that for the small values of load bandwidth or for concentrated edge loading, the periodic

term in Eq. (7) produces a strong modal coupling leading to the wider combination resonance

zones. This signifies that the combination resonance zones have significant instability effects similar

to the simple resonance behavior. 

Having established the significance of the combination resonance instability along with simple

resonance, the instability regions are plotted in Figs. 13-20, for different cases with regard to

different parameters such as curvature, damping and the static load factor of the applied parametric

edge loading of the doubly curved panels.

Fig. 9 Regions of simple and combination resonances
of cylindrical panel subjected to tensile partial
edge loading at one end (c/b = 0.2, α = 0.2)

Fig. 10 Same as Fig. 9, but for (c/b = 0.8)

Fig. 11 Regions of simple and combination resonances
of spherical panel subjected to compressive
partial edge loading at one end (c/b = 0.2,
α = 0.2)

Fig. 12 Same as Fig. 11, but for (c/b = 0.8)
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3.4 Effect of curvature 

It has been observed from Figs. 13 and 14 that the excitation frequency decreases with

introduction of curvatures from plate to doubly curved panel except hyperbolic paraboloid panel, the

instability regions shift inward on the frequency ratio axis and their widths decrease. This indicates

that the doubly curved panels are more susceptible to dynamic instability under tensile edge loading,

but the dynamic instability behavior of hyperbolic paraboloid panel is similar to that of flat panel. 

Fig. 13 Effect of curvature on simple resonance of
the curved panels subjected to tensile partial
edge loading at one end (c/b = 0.8, α = 0.2)

Fig. 14 Same as Fig. 13, but for tensile concentrated
edge loading at one end (c/b = 0.0)

Fig. 15 Effect of damping on simple and combination
resonances of spherical panel subjected to
tensile partial edge loading at one end (c/b
= 0.2, α = 0.2)

Fig. 16 Same as Fig. 15, but for (c/b = 0.8)
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3.5 Effect of damping 

It can be observed from Figs. 15-18 that the widths of instability regions in the presence of

damping are smaller as compared to those without damping, but damping may have destabilizing

effect on the instability regions for higher values of β. The damping has pronounced effects when

the curved panel is subjected to localized tensile edge loading at one end (c/b = 0.2) or concentrated

edge loading at one end (c/b = 0.0). It can be observed that due to presence of damping, there is a

critical value of dynamic load factor β * for each instability region below which the curved panel

can not become dynamically unstable. The value of β * increases as the modal damping ratio

increases. The extent of the effect of damping on β * also depends on the nature of the edge loading

as can be observed from different load parameters. As the width of partial edge loading is increased

or as the concentrated edge load is moved from one end to the centre, the critical dynamic load

factor decreases, indicating more susceptibility to dynamic instability. Under uniform loading

(c/b = 0.8) or for concentrated edge loading near the centre (c/b = 0.4), the critical dynamic load

factor β * may be so high for the combination resonance zones in the presence of damping with high

modal damping ratio that the combination resonances can be neglected for practical purposes. 

3.6 Effect of the static load factor

The effect of the static load factor on the instability regions can be observed from Figs. 19 and 20.

The simple and combination resonance instability regions shift outward on the frequency ratio axis

and their widths decrease. This indicates that the curved panels are less susceptible to dynamic

instability due to higher static load, because the dynamic instability depends on the strength and

area of compressive zones developed within the curved panels. It means that it has the stabilizing

effect on the dynamic instability behavior of the doubly curved panels.

Fig. 17 Effect of damping on simple and combination
resonances of spherical panel subjected to
tensile concentrated edge loading at one end
(c/b = 0.0, α = 0.2)

Fig. 18 Same as Fig. 17, but for concentrated edge
loading near the centre (c/b = 0.4)
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4. Conclusions

The results from a study of the simple and combination resonance characteristics of the doubly

curved panels subjected to tensile partial edge loading and concentrated edge loading can be

summarized as follows.

• The doubly curved panels subjected to tensile non-uniform edge loading buckle due to

compressive stresses developed within the curved panels. The value of the tensile buckling load

depends on the strength and extent of the compressive zone.

• The combination resonance zone contributes a considerable amount to the total instability region

and the widths of combination resonance zones are comparable to those of the simple resonance

zones for the edge loading of small bandwidth or for concentrated edge loading. 

• The widths of the combination resonance zones are large for the partial edge loading of small

bandwidth or for concentrated edge loading and are very small for nearly uniform loading, but

the widths of simple resonance zones are smaller for localized edge loading of small bandwidth

or for concentrated edge loading at one end. The reason is attributed to the edge restraining

effect.

• The dynamic instability results under tensile periodic edge loading show that the instability

regions occur at higher frequency ratios in contrast to the corresponding compressive loading

cases. The effect of position of loading on the edge is similar to that of compressive loading

case. 

• The instability regions shift inward on the frequency ratio axis and their widths decrease with

introduction of curvatures from plate to doubly curved panel. This indicates that the doubly

curved panels except hyperbolic paraboloid panel are more susceptible to dynamic instability

under tensile edge loading. 

• The effect of damping on the instability regions is stabilizing and it may be destabilizing for

Fig. 19 Effect of static load factor on simple and
combination resonances of spherical panel
subjected to tensile partial edge loading at
one end (c/b = 0.2)

Fig. 20 Same as Fig. 19, but for cylindrical panel 
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higher values of dynamic load factor. There is a critical value of dynamic load factor for each

instability region below which the curved panel is not susceptible to dynamic instability. As the

modal damping ratio increases, the critical dynamic load factor increases.

• For nearly uniform loading or for concentrated loading near the centre, the critical dynamic load

factor with high modal damping ratio for combination resonance zone become so high that

combination resonance effects may not be of practical interest. 

• The curved panels are less susceptible to dynamic instability due to higher static load, because

the compressive stresses developed within the curved panels are not very effective to cause the

dynamic instability.
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Notation

a, b : Panel lengths in X and Y-direction respectively
c : Load parameter
[C] : Damping matrix
D : Flexural rigidity of the panel
E : Modulus of elasticity 
G : Shear modulus
h : Thickness of the panel
[K] : Elastic stiffness matrix
[M] : Mass matrix
P : Edge Load
Pcr : Static buckling Load
{q} : Nodal displacement
Rx, Ry : Radii of curvatures in X and Y-direction respectively
[S] : Stress stiffness matrix
t : Time
x, y, z : Cartesian co-ordinates
α, β : Static and dynamic load factors respectively
σ : Detuning parameter
ρ : Mass density of the material
ν : Poisson’s ratio
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Appendix-I

Fig. 1 Flow chart of the computer program
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